
 1 

EMP Theoretical Notes 

TN 369 
23 May 2022 

 

NUMERICAL SIMULATION OF THE HEMP ENVIRONMENT1 
Aleksandr I. Golubev, Anton V. Terekhin, Vladimir A. Terekhin, Egor V. Uvarov 

Russian Federal Nuclear Center - All-Russia Research Institute of Experimental Physics,  

Sarov, 607200 Russia, Email: terekhin.vladimir.1947@gmail.com; 

William A. Radasky, 

Metatech Corporation, 358 S. Fairview Ave. Suite E, Goleta, CA 93117, USA,  

Email: wradasky@aol.com 

ABSTRACT 

A model based on a self-consistent solution of the Boltzmann kinetic equation for electrons together 

with Maxwell's equations has been developed to determine the characteristics of the high-frequency component 

of an electromagnetic pulse (EMP) generated in air by a pulse of gamma radiation from a high-altitude nuclear 

explosion. This approach makes it possible to correctly take into account the initial spectral-angular distribution 

of the generated electrons and positrons, as well as their further interaction with the medium and the generated 

electric field. Examples are given that illustrate the importance of taking into account nonlinear, nonstationary, 

and kinetic effects in predicting the EMP parameters of a high-altitude nuclear explosion. 

INTRODUCTION 
In the mid 1960’s a classical work by W. J. Karzas and R. Latter [1] was published. It de-

scribed, for the first time, the mechanism of generating an electromagnetic pulse (EMP) of a high-

altitude nuclear explosion (  km) based on the cophased emission (in the Earth’s magnetic 

field) of relativistic electrons generated due to Compton scattering of gamma-quanta and absorbed 

at a height of 15 to 30 km. As for identifying EMP parameters of a high-altitude nuclear explosion 

to solve a multi-dimensional system of Maxwell’s equations, a high-frequency approximation based 

on a short duration of a gamma radiation burst  ~ 100 m, as compared to the spatial scale ~ 10 

km of a varying atmospheric density, was proposed. The aforementioned approach allowed estimat-

ing the amplitude-time characteristics of a high-altitude EMP (HEMP), which are the basis, to the 

present day, for specifying requirements on the resistance to nuclear explosion EMP effects.  

In the mid 1990’s a physical model was proposed in [2] and further developed in [3]-[6] to 

describe the propagation of a high-power EMP to the atmosphere and ionosphere. The model was 

based on a self-consistent solution of the Boltzmann kinetic equation for electrons in combination 

 
1 The paper is based on materials of the report “Development of Modern Technologies for the Calculation of HEMP Pa-
rameters Accounting for Non-linear, Non-stationary and Kinetic Effects” (January 2004) executed under the subcon-

tract S0303-1021-03 between Sarov Labs and Metatech, Inc. 
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with Maxwell’s equations. The Boltzmann equation was numerically solved for the following two 

groups of electrons: 

• Slow electrons (< 1-10 keV), which were described by a classical two-polynomial expansion 

assuming that the electron distribution function anisotropy is weak;  

• Fast electrons (> 1-10 keV), which were described with a modified method for macroparti-

cles with consideration of the electromagnetic field effect on their motion, energy losses in 

the continuous slowing-down approximation, and multiple scattering.   

Using this model, the self-consistent electrodynamic EMP propagation problem was implemented 

based on the selection of the main and slowly varying pulse parameters in the solution of Maxwell’s 

equations, i.e. the amplitude and phase [3]. 

This new approach allowed calculating parameters of the avalanche ionization evolution in 

gas (N2) preliminarily ionized by an external source of gammas. It was demonstrated [4] that even a 

relatively small number of fast electrons could decrease the breakdown electric field amplitude by 

an order of magnitude. A considerable drop in the electric stability of air due to gamma and X-ray 

radiation is caused by the relativistic electron avalanche development. Theoretical studies of this 

phenomenon were described in [7]. In particular, the requirement of a large space (  100 m) for 

such avalanche development was shown and because of this fact the effect was not observed under 

laboratory conditions. At the same time, HEMP parameters may be strongly affected by the ava-

lanche growth of the concentration of relativistic electrons escaping under the effect of electromag-

netic fields [2].  

The same model was also used to investigate the propagation of sub-nanosecond and high-

amplitude EMPs in air [5] – [6]. It was shown that because of its short duration, such a pulse has a 

higher breakdown threshold and, therefore, an EMP with amplitude ~ 1 MV/m could propagate to a 

height of 100 km without appreciable energy losses. 

The research of the mid 1970’s (e.g. [8]) demonstrates that in the near zone of atmospheric 

NE the generated polarized electric field has a limited amplitude due to the electron avalanche de-

velopment. This requires accounting for self-consistent effects to predict HEMP parameters. 

The emerging spatial and temporal picture of the polarization charge differentiation caused 

by the self-consistent motion of Compton electrons might be viewed as a giant spherical capacitor 

having a kilometer radius and a distance of dozens of meters between the “plates”. This capacitor 

expands with the speed of light from the explosion center and under certain conditions might serve 

as an efficient accelerator of positrons, which emerge due to the generation of pairs (from high-

energy gammas in the fission spectrum) and are captured by the electric field and accelerated 

up to ultra-relativistic energies [9]. 
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Obviously, all of the effects above (and many others) might manifest themselves during the 

HEMP generation both in the source region, i.e. at distances of several kilometers to nuclear explo-

sion, and in the deposition region, or the enhanced ionizion region (H=15-30km), where gamma 

quanta are mainly absorbed. All of this requires the development of a self-consistent kinetic model 

to describe processes of the HEMP generation and propagation that would allow accounting for 

nonstationary, non-linear, and kinetic effects. So, the present paper is focused on the development 

of such a model to address the early-time (E1) HEMP behavior. 

Section 1 presents the HEMP generation problem setup for the self-consistent solution of 

Maxwell’s equation system in the high-frequency approximation [1] and the Boltzmann kinetic 

equation for electrons. Similarly to solutions described in [2] – [6], the Boltzmann equation is 

solved for the following two groups of electrons:  

• Slow electrons (< 1-10 keV) described using the elliptic representation of the Boltzmann 

equation [10], which we modified to take into consideration the external magnetic field ; 

and 

• Fast electrons (> 1-10 keV) described in the continuous slowing-down and multiple scatter-

ing approximation [11]. 

Section 2 gives results of  

• the verification of a complete set of cross-sections for collisions of electrons with air mole-

cules (which are the input data for the numerical code) using the in-lab experimental data; 

• the analysis of the radiation-induced conductivity dynamics of reaching the equilibrium; and 

• the investigation of the electron escape effect on the avalanche ionization kinetics in calcula-

tions of the radiation-induced conductivity. 

To illustrate the importance of the effects above, Section 3 presents the calculated character-

istics of EMP generated by a point instantaneous source of gammas.  

A gamma ray source with a peak production rate of MeV/s has the spectrum 

coinciding with the  fission spectrum and is located at a height of H=15-30 km above the Earth 

surface. This is a quite representative problem to study physical processes governing the early-time 

(E1) HEMP behavior.  
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1. A SELF-CONSISTENT MODEL TO DESCRIBE HEMP 

The HEMP generation and propagation problem can be divided into two parts [6]. The first 

one is the analysis (based on the numerical solution of the Boltzmann kinetic equation) of the dy-

namics of electrons and positrons in the electric and magnetic field with collisions between these 

particles and neutral molecules taken into account. The distribution function  for particles 

  allows finding their current density , where  and  are 

the particle velocity and momentum, respectively, and . 

The current density  is required for the second part to describe the space and time 

evolution of the electric,  and magnetic,  fields behind the EMP front moving at the speed of 

light. Using variables  and , where  is a unit vector directed from the explosion 

center to the point of interest, the system of Maxwell’s equations describing the dynamics of gener-

ated electromagnetic fields takes the form:  

 
 

  (1.1) 

. 
 

The path lengths of electrons and positrons in atmosphere and lower ionosphere are much 

less than the typical scale of a varying air density. Hence, the spatial dependence of the particle dis-

tribution function can be ignored and the locally uniform kinetic equation can be solved: 

  (1.2) 

where  is geomagnetic field, N is the concentration of molecules,  is the integral of Boltz-

mann collisions, and  is a source of electrons and positrons generated by gamma rays from NE . 

The self-consistent solution scheme for the HEMP problem is presented in Fig. 1.1. Obvi-

ously, an ability to solve a 3D problem2 is highly unlikely, even with the use of modern computers 

and advanced methods for parallel computations. So, to describe the early-time HEMP behavior, we 

use three reasonable simplifications. 

 
2 A 3D (in the coordinate space) system of Maxwell’s equations for the electromagnetic fields is considerably diverse in 

scale, and the 3D (in the momentum space) integral/differential Boltzmann equation varies within a wide range of parti-

cle energies from eVs (conductivity electrons) up to hundreds of MeVs (escaping electrons and accelerated positrons) 
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Fig. 1.1.  Basic equations. 
 

1.1. Boltzmann Equation 

Today, we have a lot of developed numerical methods to solve the multi-dimensional 

Boltzmann kinetic equation for particles in different energy spectra. They have been used rather ef-

ficiently to solve various problems in the gas-discharge and ionospheric plasma physics. However, 

the problem above has some specific feature requiring special methods to solve equation (1.2), 

namely, electrons generated due to the atmosphere ionization by gamma rays have energies within a 

wide range of values, from eVs to hundreds of MeVs, with all parts of the energy range being sig-

nificant and requiring special consideration. 

We are not aware of the works proposing methods to find the distribution function for elec-

trons (positrons) in such a wide range of varying energies. For this reason, two developed approxi-

mate approaches were offered in [2] – [6] to solve the kinetic equation using a single scheme justi-

fied from viewpoint of physics.  

All particles fall into one of the two energy groups. Slow particles with the energies e 10 

keV are described in a non-relativistic approximation. It is possible to use the so-called elliptical 

representation of the Boltzmann equation [10], which we generalized for the case of the external 

magnetic field . In order to describe kinetics of fast particles (with energies e 10 keV), the en-

ergy loss continuity and angular scattering approximation is used and in case of collisions with 

molecules (e.g. [11]) the relativistic Fokker-Planck approximation is used for the collision integral 

ü Compton effect
ü Photoeffect
ü Pair production

p,e=a

B
!

E
!

Gamma rays
X-rays

 

HANE

)E(c)En(B
!!

!!
´Ñ-=

t¶
¶´-

t¶
¶

)B(cj4)Bn(E
!!!

!!
´Ñ=p+

t¶
¶´+

t¶
¶

),p(fvpdej 3 t×= òå
a

a
!!!

aa
a

a
a +×=

¶
¶×úû

ù
êë
é +´+×+

t¶
¶
úû
ù

êë
é ×- S)f(JN

p
f)BB(

c
vEef

c
)vn(1 st

0 !
!!!!!!

£

0B
!

³



 6 

(e. g. [3], [6]). Systems of kinetic equations describing slow and fast particles are correlated through 

the corresponding boundary conditions with regard to the energy variable, i.e. the transition of par-

ticles from one energy group to another and backwards will be possible. 

1.1.1. Kinetics of Slow Electrons  

Slow	 electrons	 are	 non-relativistic	 and,	 therefore,	 we	 can	 omit	 terms	 	 and	

	 in	 the	 Lorentz	 force	 expression.	 Indeed,	 intensities	 of	 the	 electric	 and	 magnetic	
fields	are	of	the	same	order,	while	the	velocity	of	slow	electrons	is	much	less	than	the	speed	of	
light.	So,	the	kinetic	equation	for	slow	electrons	takes	the	form	

,    (1.3) 

where  is collision term, and  denotes sources. 

Let us derive equations for the moments of the electron distribution function in its general 
form. The integration of equation (1.3) with respect to variable  gives us the following 
equation: 

.   (1.4) 

Multiplying equation (1.3) by  and then integrating it, we obtain the second equation: 

.  (1.5) 

Here,  

Collision terms  include the elastic scattering process, excitation of air molecules, im-

pact ionization, and attachment of electrons to molecules of О2. We derive the following expres-

sions for these terms: 

  (1.6) 

where М is a molecule mass,  is kinetic energy of electrons,  and  are thresholds of the mol-

ecule excitation and ionization of the k-th level, respectively,  is the differential cross-
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section of ionization,  is the transport cross-section of elastic scattering, 

 is the ionization cross-section of a molecule,  is the attachment cross-

section, and 

 

is the effective cross-section. Though these integrals are written for a one-component gas, the gen-

eralization to a gas mixture is obvious. 

Now, we are ready to use formulas (1.4) and (1.5) to derive the moment equations for ellip-

tical approximations. For convenience, we introduce denotations for some integrals: 

 

. 

In the elliptical approximation we can write 

,      (1.7) 

where functions  and  depend on  and . 

For the first two moments, we obtain equations 
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  (1.8) 
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. 

Thus,	equations	for	 	and	 	in	the	elliptical	approximation	have	the	form:	

  (1.9) 

Note that with  equations (1.9) transform into those obtained by Richley [10] for  and  

in the elliptical approximation.  

1.1.2. Kinetics of Fast Electrons 

We can write the following kinetic equation for the distribution function of fast electrons, ff 

(sources in the right-hand part are omitted, for simplicity): 

,   (1.10) 

where  is the dynamic friction force, which governs energy losses in the continuous slowing-

down approximation according to the Bethe-Bloch formula. 

Sources  and  in the right-hand part of equation (1.10) describe the generation of fast 

electrons in the ionization process of neutral molecules due to their collisions with electrons and 

under the impact of gamma/X-ray radiation from the NE. Finally, the term  is a part of the colli-

sions integral that describes the angular scattering of fast electrons. 

The left-hand part of equation (1.10) describes the trajectory of a particle in the phase space 

under the influence of the Lorentz force and the dynamic friction force, FD. This part of the equa-

tion is easily simulated with the macro particles moving along real electrons’ trajectories. Certain 

difficulties should be attributed to the term , which describes electron collisions and, therefore, 

their stochastic removal from the deterministic trajectory. This process can be simulated using ei-

ther the Monte-Carlo method, or the method of macro particles with the way of describing the mul-

tiple scattering offered by C. Longmire in [12] – [13] and modified in [3]. 

As compared to Longmire’s model, in the modified model the electric field also affects the 

variation in the average cosine of the scattering angle, . Besides,  also has an effect on the de-

gree of varying the macro particle momentum. 
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 (1.11) 

To complete the presentation of the approximation approach to describing the dynamics of 

fast electrons, we should give the explicit form of electron sources in the right-hand part of kinetic 

equations (1.3) and (1.10) governed by ionization collisions of fast electrons with molecules. As-

suming that during the molecule ionization the secondary fast electrons emerge mainly in the direc-

tion orthogonal to the ionizing particle momentum, we obtain the following expression for  

( ): 

.   (1.12) 

The source ( ) of slow electrons resulting from the molecule ionization by fast electrons 

looks like 

   (1.13) 

I.1.3. Sources of Fast Electrons 

As it was mentioned in the introduction to this paper, fast particles are the result of Compton 

scattering of gamma quanta by bound electrons of air molecules (the Compton effect), photo-

absorption of quanta (the photo effect) and the generation of electron-positron pairs. Assuming that 

the gamma radiation spectrum is preset as a combination of lines with energies  and a relative 

number of quanta  in these lines, the source of Compton electrons, may be represented in the 

following form: 

.  (1.14) 

 can be calculated using Tables from [14], while in order to describe  (i.e. the ener-

gy angular distribution) use the Klein-Nishina-Tamm cross-section.  
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complicated form of these equations for theoretical and numerical analysis we’ll use some approx-

imations to solve Maxwell’s equations.  

I.2.1. High Frequency Approximation [1], [15] 

In a spherical system of coordinates  with its center at the source of explosion, 

equations (1.1) will look like  

   (1.15) 

By integrating the last two equations with respect to , we obtain 

    (1.16) 

   (1.17) 

Substituting the expressions obtained into the 2nd and 3d equations of system (1.15), we obtain the 

following equations: 

 

 (1.18)  

 

 (1.19) 

Further, we assume that the behavior of electromagnetic fields in space and time in the problems of 

interest is such that  
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Within the high-frequency approximation, since we have  

   , 

where , equations for transversal components of the electric field are simplified and take 

the form:  

,    (1.20) 

where ; and formulas (1.16) and (1.17) for transversal components of the mag-

netic field look lile   

 .    (1.21) 

Expressions (1.20) – (1.21) in combination with equations  

   (1.22) 

for radial components of the generated electro-magnetic field form a full system of electro-dynamic 

equations in the high frequency approximation, which can be used to look at parameters of the ear-

ly-time HEMP behavior. 
 

2. ON THE RADIATION-INDUCED CONDUCTIVITY IN AIR 
The approach described above was used to study the radiation-induced air conductivity dynam-

ics in order to:  

• verify a complete set of cross-sections of electron-air molecule collisions (which are the in-

put data for the numerical technique) using in-lab experimental data; 

• analyze the dynamics of the radiation-induced conductivity reaching the equilibrium; and 

• investigate the effect of escaping electrons on the avalanche ionization kinetics in radiation-

induced conductivity calculations. 
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2.1. Verification of the Method Using a Lot of Measurement Data for Nitrogen and 

Oxygen 

In order to verify the proposed model accuracy and demonstrate its capabilities, we calculat-

ed the drift velocity (W) and the Townsend coefficient (a/N) in nitrogen with a varying intensity of 

the external electric field (E/N) within the range of values (1-103) Td. The comparison of the calcu-

lated results and experimental data is shown in Figs.2.1 - 2.2. 

There is a good agreement between the calculated drift velocity, W and experimental data 

[16]-[19] (see Fig.2.1) with an insignificant, but continuously growing deviation for E/N >100 Тd 

(1 Td = 10-17 Vcm2). This is due to the assumed isotropic nature of inelastic scattering cross-

sections. The validity of this statement was demonstrated in [20] for E/N = 800 Td, where it was 

shown that two assumptions -  the inelastic scattering cross-section is a) isotropic and b) has the in-

dicatrix coinciding with the elastic scattering - lead to the discrepancy of values, with experimental 

data in intermediate position. 

Though the kinetic model with the binomial decomposition allows accounting for the inelas-

tic scattering anisotropy, we have almost no data on the indicatrix for molecular gases. So, the devi-

ation shown in Fig.2.1 reasonably demonstrates the accuracy of our model. Besides, the comparison  

(Fig.2.2) between the calculated Townsend ionization coefficient,  and experimental 

data from [16], [21] - [22] proves the model accuracy.  

We calculated the values of drift velocity W, Townsend coefficient a/N and attachment co-

efficient  (three-particle–  and dissociative– ) in oxy-

gen with a varying intensity of the external electric field E/N within the range of values (10-103) Td. 

The calculated results and experimental data from [23] – [27] are compared in Figs.2.3 - 2.5. 

W/ionn=a

N/h MOMOe 22 +®++ - OOOe 2 +®+ -



 13 

 

 

 
Fig. 2.1. Dependence of the electron drift velocity, W in molecular ni-
trogen on the ratio of the applied electric field to the gas density, 
E/N. Solid line represents simulation results. Triangles are the exper-
imental data. 

 Fig. 2.2. Dependence of the electron ionization coefficient, a/N in 
molecular nitrogen on the ratio of the applied electric field to the gas 
density, E/N. Solid line represents simulation results. Triangles are 
the experimental data. 

100 101 102 103
10-1

100

101

102

 

 

W
(c

m
/m

ks
)

E/N(Td)

 present result
 Hasegawa et al.(1998)
 Wedding et al.(1985)
 Roznersky,Leja(1984)
 Belvin et al.(1967)
 Lowke (1963)

102 103 104
10-1

100

101

102

103

 

 

a
/N

(1
0-1

8 cm
2 )

E/N(Td)

 present result
 Wedding et al (1985)
 Haydon et al (1976)
 Folkard et al (1973)
 Daniel et al (1970)



 14 

 

 

 

 
Fig. 2.3. Dependence of the electron drift velocity, W in molecular 
oxygen on the ratio of the applied electric field to the gas density, 
E/N. Solid line represents simulation results. Triangles are the exper-
imental data. 

 Fig. 2.4. Dependence of the electron ionization coefficient, a/N in 
molecular oxygen on the ratio of the applied electric field to the gas 
density, E/N. Solid line represents simulation results. Triangles are 
the experimental data. 
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Fig.2.5. Attachment coefficient  for electrons in oxygen vs E/N. Solid curves represent simula-
tion results. For comparison, we show the data obtained by Grunberg (1969) and systematized in 
the review [16]. 

Examples in the figures above demonstrate a high accuracy of the model in describing slow 

electrons. Unfortunately, we have no experimental data on the governing role of fast electrons. 

There is only one experimental fact - the energy lost by a fast electron (having energy >10 keV) to 

generate one electron-ion pair does not depend on the electron energy and equals 36 eV for molecu-

lar nitrogen and 34 eV for oxygen. This data is in a good agreement with our computation results. 

2.2 Numerical Simulation Data on Radiation-Induced Conductivity in Air 

For a model point gamma source, we simulated the radiation-induced conductivity dynam-

ics:  

• the rate of the gamma-quanta yield varied with time in accordance with formula 

,     (2.1) 

• the energy spectrum of gamma rays was described by formula 

 ,    (2.2) 

which approximates the U235 fission spectrum,  , 

 

The calculated dynamic characteristics of electrons governing the radiation-induced conduc-

tivity are shown in Figs.2.6–2.7.  
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Fig. 2.6. Electron mean energy <e> vs time  
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Fig. 2.7. Electron drift velocity We vs time 
 

Basing on the results obtained we can make the following conclusions:  

• The traditional approach to determine HEMP parameters on the base of two goups of elec-
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- relativistic electrons (with energies e ~ 106 eV) resulting from Compton scattering of 

gamma quanta, and  

- low-energy conductivity electrons (with energies e~1-10 eV),  
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may be used, if the characteristic time of variations in the gamma flow is 10/d ns; HEMP pa-

rameter calculations for a prompt gamma quanta output require the kinetic approach.  

• In case of pre-breakdown intensities of the electric field, it is necessary to use the kinetic 

approach, because it is the only way to describe the escape of relativistic electrons affecting 

the radiation-induced conductivity characteristics. 

3. HEMP WAVEFORMS CALCULATIONS  

To exemplify the developed model application, we give results of parameter calculations for 

HEMP induced by a model point gamma source. The rate of the quanta yield from the source varies 

with time in accordance with the law: 

.    (3.1) 

The energy spectrum of gamma rays is assumed to be time independent and is described by formula 

(2.2), which approximates the U235 fission spectrum.  

The source is located at an altitude  above Earth’s surface in exponential atmosphere 

with inhomogeneity scale   km.  The geomagnetic field,  is directed at angle  to the 

vertical. This is a representative problem for studying physical processes associated with the  

HEMP generation at early times.  

3.1. Influence of Multiple Scattering and Self-Consistency on HEMP Characteristics 

To illustrate the discrepancy of results obtained with the use of HEMP models accounting 

for various effects, a number of calculations were performed for the problem below. A point source 

of gamma rays is located at an altitude of  km above the Earth surface. The geomagnetic 

field B0=0,5 Gs is parallel to the Earth surface, . The observation point is on the Earth sur-

face at a right angle to the geomagnetic field.  

Three different models were used in our calculations. The first one was a fully self-

consistent model used to solve the Boltzmann equation with consideration of multiple scattering of 

fast electrons and the generated electromagnetic field effect on the motion of fast electrons. The 

second model neglects the generated fields in the motion equation for fast electons (no self-

consistency). The third model additionally neglects the effect of multiple scattering. Time depend-

encies of the radiated electric field at the observation point obtained with each of the models above 

are shown in Fig.4.1. It is clear seen that, if multiple scattering and self-consistency effects are ig-

nored (either separately, or simultaneously), the EMP amplitude and the rate of field rise  are over-

estimated.  
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Fig. 3.1 Time dependencies of radiated electric field obtained using different models 

The common approach to the treatment of the Compton electron currents and air conductivi-

ty in the HEMP problem implies that there are two groups of electrons. One group includes primary 

electrons generated due to the Compton effect, or the photoeffect. Another group includes second-

ary electrons generated due to the air ionization by primary electrons. Though such division has a 

clear physical sense, we face difficulties in describing these groups separately. Some of the second-

ary electrons generated by fast primary electrons have enough energy to produce further ionization. 

The completion of the residual ionization and thermalization of the distribution of secondaries takes  

some time (so-called "formative time lag"). This effect may be most important for fast rising pulses 

because of a lower density of secondary electrons and, therefore, a lower air conductivity for some 

time. If secondary electrons are described by some preset distribution, there arises the problem of 

how we can properly select the form of this distribution and its parameters. 
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The principle of our method is that we do not divide electrons into primary and secondary 

ones. Our division into fast and slow electrons is associated with the self-consistent solution of 

Maxwell’s equations in combination with the Boltzmann equation for electrons. The conductivity is 

not considered a separate physical factor influencing the HEMP waveform. The time lag effect is 

automatically taken into consideration in calculating HEMP parameters using the kinetic approach. 

3.2. HEMP Dependence on the Burst Altitude and Gamma Source Intensity 

The first series of computations was performed to study the dependence of HEMP parame-

ters on the burst altitude. For a constant peak gamma yield rate,  1033 MeV/sec, the burst alti-

tude varied within the range of values  km. The corresponding time dependences of 

-components of the electric field at the ground level are shown in Fig. 3.2. Note that the HEMP 

amplitude dependence on the source altitude has its maximum  kV/m at  km. 

In the second series of computations performed at a fixed burst altitude,  50 km, the 

gamma yield rate varied within the range of values  MeV/sec. The corresponding 

dependences of the electric field -components on time at the ground level are shown in Fig. 3.3. 

The HEMP amplitude and rise time increase monotonically with the growth of . In particular, for 

the peak value  MeV/sec the amplitude is  kV/m. 

Finally, a series of computations was performed to examine the spatial distribution of the 

HEMP amplitude at a fixed burst altitude  75 km and for a peak intensity  

MeV/sec. In these calculations we assumed  - the angle between the geomagnetic field 

vector and the vertical. Observed points ranged within heights  km and ground distances 

km. The calculated distribution of the HEMP amplitude is shown in Fig. 3.4. Note the 

two regions of high electric field, which correspond to the source region in the vicinity of the burst 

point and the deposition region in the altitude range from 20 to 40 km. 
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Fig. 3.2. Time dependencies of radiated electric field for various burst altitudes. 
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 Fig. 3.3. Time dependencies of radiated electric field for various source intensities 
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Fig.3.4. Spatial distribution of the radiated electric field amplitude 
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CONCLUSION 
We have developed a model to determine parameters of an electro-magnetic pulse (EMP), 

generated in air by gamma rays from a high-altitude nuclear explosion. The model is based on a 

self-consistent solution of the Boltzmann kinetic equation for electrons together with Maxwell’s 

equations. Slow electrons (below several keVs) are described using the elliptic representation of the 

Boltzmann equation taking into account the process of both elastic and inelastic scattering. Fast 

electrons (above several keVs) are simulated with the particle method using the relativistic Fokker-

Planck approximation. The electron model allows considering the exchange between ensembles of 

slow and fast electrons. The effect of formative time lag is automatically taken into consideration 

within the framework of our model. HEMP fields are determined using Maxwell's equations in the 

high-frequency approximation. 

The developed model was applied to examine the role of non-linear, non-steady-state and 

kinetic effects on the HEMP waveform. In particular, comparative calculations were performed to 

study the influence of multiple scattering and self-consistent electromagnetic fields on HEMP char-

acteristics.  It was found that multiple scattering plays a significant role for all considered parame-

ters of the gamma ray source. Parametric calculations of HEMP induced by a point gamma source 

at altitudes from 50 to 300 km were presented as an example of the developed model application. 
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