EM Implosion Memos

Memo 15

March 2007

Lens Design for Incoming Spherical Wave for Different Biological Dielectric Tissues

Serhat Altunc and Carl E. Baum

University of New Mexico
Department of Electrical and Computer Engineering
Albuquerque New Mexico 87131

Abstract

In this paper different biological dielectric tissues are used as different target dielectrics and we try to obtain better focusing for a prolate-spheroidal IRA for an incoming spherical wave from the reflector for these tissues.
1 Introduction

This paper is an extension of [1,2] and the lens design considerations are based on [3]. We use 5 different target dielectric tissues and these are water, muscle, tumor, skin and fat that can be used for some biological applications [4]. Ten layers of an increasing dielectric lens, which have the same ratio of dielectric constants between adjacent layers, are considered for a prolate-spheroidal IRA [2].

2 Design Considerations

Ten layers of increasing-dielectric-constant lens are used based on the calculations in [1]. We use the same ratio of dielectric constant between subsequent layers for \(\varepsilon \frac{1}{N} \)

\[
\varepsilon_{\text{ratio}} = \varepsilon_{\text{rmax}}
\]

(2.1)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Layer} & h_n / h & \Delta z_n / h & z_n / h & \theta_{1\text{max}} & \theta_{2\text{max}} \\
\hline
1 & 1.0 & 0.096 & 0.000 & 0.992 & 0.927 \\
2 & 0.9 & 0.079 & 0.096 & 1.056 & 0.992 \\
3 & 0.8 & 0.066 & 0.175 & 1.120 & 1.056 \\
4 & 0.7 & 0.054 & 0.241 & 1.185 & 1.120 \\
5 & 0.6 & 0.044 & 0.295 & 1.249 & 1.185 \\
6 & 0.5 & 0.036 & 0.339 & 1.313 & 1.249 \\
7 & 0.4 & 0.027 & 0.374 & 1.379 & 1.313 \\
8 & 0.3 & 0.020 & 0.401 & 1.442 & 1.379 \\
9 & 0.2 & 0.013 & 0.421 & 1.506 & 1.442 \\
10 & 0.1 & 0.006 & 0.434 & 1.571 & 1.506 \\
\hline
\end{array}
\]

Table 2.2 \(h_n / h, \Delta z_n / h, z_n / h, \theta_{1\text{max}}, \theta_{2\text{max}} \) values for \(\theta_{1\text{max}0} = \pi / 2 \) [2]

\(h_n / h, \Delta z_n / h, z_n / h, \theta_{1\text{max}}, \theta_{2\text{max}} \) are defined in [2].

A new coordinate system can be defined as centered at \(z = z_0 \). We will call this system \(z' \) and it can be defined as

\[
z' / h = -(z - z_0) / h
\]

(2.2)
A lens is designed for incoming spherical waves to obtain better focusing for a prolate-spheroidal IRA for different dielectric human tissues. We obtain better focusing for higher dielectric lens.

Ψ / h vs z'/h values for $\theta_{1\max 10} = \pi / 2$ and 85^0 for different $e_{r\max}$ are presented in Fig. 3.1 and Fig. 3.2. One can see from Fig. 3.1 and Fig. 3.2 for smaller $e_{r\max}$, the first shell moves left. This is because we have fixed the vertical (Ψ / h) axis values to increment by a uniform 0.1, leaving some variation (small) in the location along the horizontal coordinate.
Figure 3.1 Ψ/h vs z'/h for $\theta_{1\text{max}} = \pi/2$ and different $\varepsilon_{r\text{max}}$
Figure 3.2 Ψ / h vs z / h for $\theta_{1\text{max}10} = 85^0$ and different $\varepsilon_{r \text{max}}$:

- a) $\varepsilon_{r \text{max}} = 81$
- b) $\varepsilon_{r \text{max}} = 70$
- c) $\varepsilon_{r \text{max}} = 50.74$
- d) $\varepsilon_{r \text{max}} = 34.7$
- e) $\varepsilon_{r \text{max}} = 9.8$
References