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1 Equality of electrical width of dielectric layers

Let √
εrn+1

εrn

=

√
εrn

εrn-1

= ξ. (1.1)

Also, εrn ∝ r−2. Consider three layers with radii rn−1, rn, rn+1

rn
√
εrn = rn−1

√
εrn−1 ⇒ rn−1 = rnξ, (1.2)

rn+1
√
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√
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rn

ξ
. (1.3)

The thickness of the shells (rn−1, rn) and (rn, rn+1) is

rn − rn−1 = rn − rnξ = rn(1− ξ), (1.4)

rn+1 − rn =
rn

ξ
− rn = rn

(
1− ξ
ξ

)
. (1.5)

The electrical thickness of the layer (rn−1, rn) is (rn− rn−1)
√
εrn . Similarly, the electrical thickness

of the layer (rn+1, rn) is (rn+1 − rn)
√
εrn+1 . Therefore,

(rn − rn−1)
√
εrn = rn(1− ξ)√εrn , (1.6)
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εrn+1 = rn
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ξ

)
√
εrn+1 = rn(1− ξ)√εrn . (1.7)

i.e., (rn − rn−1)
√
εrn = (rn+1 − rn)

√
εrn+1 . QED.

2 Physical interpretation of ν

The pulse from the source (switch) does not have a single characteristic frequency. Therefore, it
is difficult to define a wavelength for such a pulse. A single pulse, however, has a definite “spatial
width” in a given medium. The spatial width is the electrical distance occupied by the pulse in
the medium (for e.g. a 100 ps pulse has a width of 3 cm in air). The spatial pulse width can
therefore be considered equivalent to wavelength of a wave with some characteristic frequency. ν
denotes the number of such spatial pulse widths.

The transmission line calculations that are used to determine the r’s and εr’s for various
layers of the focusing lens are based on plane wave approximations. Such approximations do
not take into account the curvature of the dielectric (except in a very special sense described
in the section below). The accuracy of the transmission line based approximate formulas can be
determined by examining the transmission coefficient. One can consider a higher ν as a plane wave
approximation and hence approaching the transmission line formulas. A higher ν also implies a
larger lens (through the relation for r0). An optimum ν must therefore be determined for which the
transmission coefficient is close to that of the transmission line approximations and the dimensions
of the focusing lens are practically acceptable. This is done through numerical simulations.
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Figure 2.1: Diagram to explain physical meaning of ν. F1 and F2 are the first and second focal
points respectively.

Curvature of dielectric

Figure 2.1 shows a diagram of the focusing lens system. F1 and F2 are the first and second focal
points respectively. F1A and F1B are the feed arms. The dimensions of the right triangle F1OA
(3,4,5) are as indicated in the figure. Note that, 4F1OA ∼= F1OB ∼= F2OA ∼= F2OB. One
can therefore imagine a cone (AF2B) of half-angle θ = arctan(4/3) through the focusing lens.
This conical region is geometrically identical to the region from which the spherical TEM wave
is launched, i.e., AF1B. Therefore, in this region (AF2B) of the focusing lens, the sphericity is
taken into account by the spheroidal wavefront of the incoming wave. ν determines the number
of spatial pulse widths for a single layer as shown in Fig. 2.1. A higher ν implies a higher field
amplitude at the focus, but as indicated by simulations, the electric field amplification saturates
after about ν = 5. The numerical simulations are necessary to take into account the curvature of
the dielectric and validate the transmission line approximations used to calculate the thicknesses
and dielectric constants of the various layers of the focusing lens.

3 Droop time, td

Consider an exponential transmission line, i.e., the transmission line impedance varies exponen-
tially along the line. Such a transmission line can be considered as a transformer since the output
voltage is some multiple of the input voltage. Ideally, an infinitely long, exponential transmission
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line is desirable. This is because if one considers the discrete equivalent, the reflections between
Zn and Zn+1 approach zero as the increment in the transmission line impedance is minimal. This
implies that an input pulse suffers no loss in amplitude at the output, i.e., there is no droop in the
pulse. This is not true if the transmission line is of finite length, for then there are bound to be
reflections which will decrease the amplitude of the input pulse. The time taken for the input to
droop by a given percentage is called the droop time. One must therefore determine how much
droop is practically acceptable for a given length of transmission line.

The above explanation is a over -simplified. The impedances and responses of an exponential
transmission line are in fact different for low and high frequency inputs and these must be taken
into account.
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