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Abstract

The dielectric constant, εr, as a function of angle, θ′, is derived for the lens boundary
curve. Limitations of the derivation are stated. A methodology for discretizing the
curve is presented.
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1 Introduction

There are many ways to vary the dielectric constants in a non-uniform launching lens. The planar
construction, perhaps the simplest, has been shown in [1]. However, the planar construction has
the disadvantage that the ray paths within the lens are too complicated and hence simulation
results are difficult to analyze. A natural way around the problem is to design the lens such that
the dielectric constants are distributed along the ray paths i.e. each ray travels along a path with
a unique dielectric constant. In such a design the equal time condition can be satisfied for all rays
from the lens. Such a design is equivalent to stating that εr = f(θ′) (in the r′, θ′ coordinate system,
[2]). However, the bending of rays due to dεr/dθ

′ is neglected.

2 Derivation of εr as a function of θ′

Figure 2.1: Diagram for deriving equation of εr as a function of θ′ for an arbitrary lens boundary
defined by the function r′(θ′)

In Fig. 2.1, O is the focal point and R is the radius of a sphere with O as center. The sphere
is where the waves are being measured. Applying the sine rule to triange AOC

r′

sin(π − θ)
=

r

sin θ′
=

b

sin(θ − θ′)
(2.1)

We can obtain b from the first and third relation as

b = r′
(

sin θ cos θ′ − cos θ sin θ′

sin θ

)
(2.2)
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From which θ is obtained as

cos θ′ − cot θ sin θ′ =
b

r′
⇒ θ =

∣∣∣∣cot−1

[(
cos θ′ − b

r′

)]
1

sin θ′

∣∣∣∣ (2.3)

The absolute value is required in the above equation as one can obtain two solutions for θ. We
want r′ to always be positive. Negative angles will give negative r′ which is not the convention
used in our calculations.

Using the first and second relation from equation (2.1), and equation (2.3), we can obtain an
expression for r

r = r′
sin θ′

sin θ
for 0 < θ′ ≤ θ/2; r = δh = ∆ for θ′ = 0; (2.4)

Since at θ′ = 0 we don’t have a triangle and hence the sine rule is no longer valid.

Applying the equal time condition to a ray along r′ and a ray along the height (r′2 = h) of the
lens

r′
√
εr(θ′) + (R− r) = h

√
εr(π/2) +

(
R− 5h

4

)
(2.5)

εr(π/2) is the dielectric constant at θ′ = π/2 i.e. the first layer (layer closest to switch/source).
Hence,

εr(θ
′) =

[
h
√
εr(π/2) + (r − 5h/4)

r′

]2

(2.6)

where the function r′(θ′) = a0 + a1θ
′ + a2θ

′2 + a3θ
′3 is defined in [2].

The incident angle θi as evaluated in [2] is

θi = cot−1

(√
εr(π/2)− cosψ

sinψ

)
= tan−1

(
sinψ√

εr(π/2)− cosψ

)
; ψ = 37◦; (2.7)

The boundary condition for the derivative of r′(θ′) at θ′ = π/2 is r′(θ′) = r2 tan θi = r2

(
sinψ√

εr(π/2)−cosψ

)
.

The equations needed to be solved to evaluate the constants (a0 − a3) in r′(θ′) are

r′(0) = r′1; r′(π/2) = r′2,

dr′(θ′)

dθ′
|θ′=0 = 0;

dr′(θ′)

dθ′
|θ′=π/2 = r2

(
sinψ√

εr(π/2)− cosψ

)
,

For r′1 = r′2 = h and θ′ = 0 equation (2.6) reduces to

√
εr(0) =

h
√
εr(π/2) + (δh− 5h/4)

h
(2.8)
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For
√
εr(0) = 1.5⇒ εr(0) = 2.25 and δ = 1/4

1.5 =
√
εr(π/2) + (1/4− 5/4)⇒ εr(π/2) = 2.52 = 6.25 (2.9)

Note that the dielectric constants for this case are significantly lower than the planar case in [1],
which is practically desirable.

There are two important factors/phenomena not considered in the derivation above:

1. Snell’s law is not applied at the boundary interface between the lens and air for the (virtual)
rays originating from the focal point. Note that a straight ray (radius R) is assumed to
orginate inside the lens and follow the same path outside. This is obviously not electromag-
netically true as one should take into account Snell’s law. However, this would complicate
the derivation as it would require prior knowledge of the dielectric constant at the boundary
interface − the function that we are trying to calculate! One could obtain simultaneous
equations or perhaps use a recursive technique.

2. It would follow from the application of the Eikonal equation in electromagnetics to the
current problem that a continuous distribution in the dielectric constant would cause the
rays to follow a curved path instead of a straight path inside the lens. However, this may not
be too much cause of worry, since for practical reasons the lens is discretized, so that within
each layer of constant εr the ray paths would be straight lines. However, a strict analytical
treatment would have to take into account the Eikonal equation.

Nevertheless, the above derivation serves as a good first approximation and starting point.

3 Discretization of εr(θ
′)

It is very difficult to construct a physical lens with a continuously varying dielectric constant as
derived above. Therefore, we must discretize the curve into regions of equal dielectric constants.
This would not only make it easier to construct but also easier to simulate.

The discretization of the lens curve can be done using the tolerable time difference. Let the
tolerable time difference between any two waves arriving on the measurement sphere be δ (≤ 10
ps). We want to split the lens boundary into εr increments such that the time difference of two
rays between adjacent layers is not more than δ. Referring to Fig. 3.1, the condition for this is

(l1
√
εrk + r1)− (l2

√
εrk + r2) = δ × (3× 108 m/s) (3.1)

εrk is the dielectric constant of the kth layer. The difference in times to travel two distances (l1, l2)
along the lens boundary does not exceed δ. Note that εrk is the same for both l1 and l2 (representing
the same layer).

Figure 3.2 shows the application of the discretization condition, equation (3.1), for δ = 7.5 ps.
The dielectric constants and angles of various layers for Fig. 3.2 are tabulated in table 1. Note
that equation (3.1) implies that at least 7 layers are needed for δ = 7.5 ps. Lesser number of layers
would be required for larger δ values. The lens is a body of revolution, so that in three dimensions
each layer will give a cone. The entire geometry of the lens in three dimensions will appear as a
series of concentric cones.

The derivation for εr as a function of θ′ presented above, although semi-analytical, should yield
better results than the planar cases described in [1]. This is because all the rays from the lens
satisfy the equal time condition and undergo minimum number of reflections.
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Figure 3.1: Diagram for discretizing εr(θ
′) on the lens boundary.

Figure 3.2: Plot of εr(θ
′) curve discretized on the lens boundary.
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Table 1: Dielectric constants and angles of various layers in Fig. 3.2
Dielectric constant Angle in degrees
2.250 6.894
2.318 16.799
2.621 29.117
3.228 43.550
4.135 59.92
5.214 78.103
6.250 98.010

4 Conclusion

εr as a function of θ′ has been derived for the lens boundary curve. Limitations of the derivation are
stated. The curve is discretized so as to enable easier construction and simulation of the problem.
In general, results for the conical case are considered more reliable as calculations presented here
give an analytical basis for design and diagnosis of simulation and experimental results.
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