
Efficient Power Control for Integrated Sensing and
Communication Networks with Dual Connectivity

Panagiotis Charatsaris∗, Maria Diamanti∗, Eirini Eleni Tsiropoulou†, and Symeon Papavassiliou∗

{pancharatsaris@netmode.ntua.gr, mdiamanti@netmode.ntua.gr, eirini@unm.edu, papavass@mail.ntua.gr}
∗ School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

† Dept. of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA

Abstract—Integrated Sensing and Communication (ISAC) has
recently emerged as an additional communication service within
the Internet of Things (IoT) and Cyber Physical Systems (CPS)
era, through which distributed nodes are able to communicate
their sensing information to a Base Station (BS) using integrated
signals. In this paper, we study the coexistence of ISAC with other
communication types of the nodes, by introducing a software-
defined framework to control the nodes’ uplink transmission
powers related to each service. Each node is simultaneously
engaged into two types of communications with different BSs
for ISAC and generic data transmission to the cloud via dual
connectivity. The uplink power splitting/control problem between
the BSs is formulated as a non-cooperative game in satisfaction
form, through which each node autonomously concludes to a
Satisfaction Equilibrium (SE) point that meets its minimum
ISAC and pure communication-oriented requirements. Different
achievable SE points are analyzed, while an Reinforcement
Learning (RL) and a searching-based algorithm are introduced
to conclude to the SE and Minimum Efficient SE (MESE) of the
studied problem. Simulation results demonstrate the operation of
the algorithms and the overall proposed framework in achieving
an efficient share of the resources to the different services.

Index Terms—Dual Connectivity, Integrated Sensing and Com-
munication, Game Theory, QoS Satisfaction, Power Control.

I. INTRODUCTION

Radio sensing is a vital functionality of smart-X Internet of
Things (IoT) applications and Cyber Physical Systems (CPSs)
that determines their intelligence to perform decision making
and interact with their surroundings. To create network aware-
ness, sensing data need to be communicated among the net-
worked entities, indicating the necessity for Integrated Sensing
and Communication (ISAC) design and underlying enabling
technologies [1]. Nevertheless, within this form of distributed
networks, sensing-oriented communication (enabled by ISAC
technologies) constitutes an additional operation that should
be considered along with other types of information or com-
putation task-oriented communications, adding in this way
an extra degree of freedom during resource management and
optimization. In this context, the dual connectivity interface [2]
of IoT/CPS nodes could be utilized to enable their concurrent
engagement into different types of communications, which
however remains practically unexplored in the literature.

In this paper, our aim is to apply and study ISAC paradigm
under a more tangible use case that considers the coexistence
of other types of communications, by exploiting the wireless

networks’ feature of dual connectivity. The IoT/CPS nodes,
within the considered network, sense their surroundings and
transmit the sensing data to a Base Station (BS) using ISAC
signals, for further processing and establishment of network
awareness. At the same time, however, they are concurrently
connected to a different BS to accommodate data transmission
to the core network/cloud, by utilizing their dual-connectivity
interface. Subsequently, the problem of power split/control
between the BSs arises at each node and is modeled as a game
in satisfaction form [3]. The goal is to satisfy both the min-
imum ISAC and pure communication-oriented performance
requirements, while examining different types of satisfaction
equilibria to control the performance-energy cost tradeoff.

A. Related Work & Motivation

The convergence of radio sensing and communication has
been widely explored from a physical layer perspective (e.g.,
transceiver, coding, ISAC waveform design), and systematic
attempts to classify the different research activities and steer
future progress are lately made [1]. In the meanwhile, another
stream of research adopts a from-practice-to-theory approach
and studies the entangled sensing and communication prob-
lems, by considering direct applications to realistic use cases,
e.g., [4]–[6]. In [4], multiple-vehicle tracking and vehicle
identifier (ID) association is achieved at a Road-Side Unit
(RSU), by exploiting ISAC signaling, thus, contributing to the
reduction of frequent ID feedbacking from the vehicles to the
RSU and the occupation of uplink channels. In [5], the joint
IoT device-to-server association and subchannel allocation
problem is examined under a general IoT environment setting,
where IoT devices concurrently sense their surroundings and
wirelessly upload the sensing results to edge servers for further
processing. The ultimate objective of this work is to introduce
a holistic scheduling method that controls the gains between
sensing, communication and computing, while the proper
scheduling of sensing, communication and motion for cellular
connected Unmanned Aerial Vehicles (UAVs) over mmWave
frequencies is pursued in [6].

Although there exist some works that directly apply ISAC
to realistic use cases and study optimization problems therein,
its application in dual-connectivity wireless networks has not
been considered so far. Dual connectivity is a functionality
enabled since Long Term Evolution (LTE) networks [2], while



being of practical use in state-of-the-art technologies, such as
Multi-access Edge Computing (MEC) [7]. The major problem
to be tackled in dual-connectivity wireless networks is the
efficient power splitting/control among the different entities
that provide connectivity. Given that energy resources need
to be sparingly managed within an IoT or CPS environment,
efficient power control mechanisms that target at Quality of
Service (QoS) satisfaction rather than myopic utility maxi-
mization (at the cost of higher power consumption) are im-
portant. In this context, non-cooperative games in satisfaction
form constitute a promising framework [3]. Contrary to games
in normal form, a game in satisfaction form concludes to
a Satisfaction Equilibrium (SE) point, in which players just
satisfy their minimum QoS prerequisites, while other types of
equilibria (e.g., Efficient SE, Minimum Efficient SE) can be
explored too to strike a good balance between QoS satisfaction
and experienced cost [8]. Application examples of satisfaction
form games in networking range from subchannel allocation
in wireless networks of limited spectrum [9] to the efficient
determination of the data perturbation level for secure though
accurate distributed classification [10].

B. Contributions & Outline

In this paper, we aim to address the research gap related to
the coexistence of ISAC with other types of communications
within an IoT/CPS environment. To achieve this, we introduce
a software-defined framework to control the wireless resource
share (i.e., uplink transmission power) among two types of
services, i.e., ISAC and pure-communication, which is tech-
nologically and scientifically enabled by the dual connectivity
functionality and game theory in satisfaction form, respec-
tively. The main contributions of this paper are as follows:

1) An IoT network/CPS environment consisting of multiple
nodes is considered. Each node senses its environment
and uploads the respective sensing data by transmitting
ISAC signals to a dedicated BS, while preserving its
typical connection to the core network through a different
BS via dual-connectivity.

2) The power splitting/control problem among the BSs is
formulated as a non-cooperative game in satisfaction
form, allowing each node to autonomously determine an
efficient solution point that meets the minimum perfor-
mance requirements of the two services, i.e., ISAC and
pure communication, while different types of satisfaction
equilibria are discussed and analyzed.

3) A Reinforcement Learning (RL) and a searching-based
algorithm are introduced to effectively determine the
problem’s Satisfaction Equilibrium (SE) and Minimum
Satisfaction Equilibrium (MESE) points, respectively. De-
tailed numerical results demonstrate the operation and
effectiveness of the proposed framework.

The remainder of the paper is organized as follows. Sec-
tion II presents the system model. In Section III the power
control problem is formulated as a game in satisfaction form
and the different types of SE are analyzed. Section IV intro-
duces the algorithms employed to derive the SE and MESE.

Section V is devoted to the performance evaluation of the
proposed framework, and Section VI concludes the paper.

II. SYSTEM MODEL

We consider an IoT/CPS environment consisting of a set of
nodes N = {1, . . . , n . . . , N} and two serving BSs denoted
by i and j, respectively. Each node performs simultaneously
two services, by utilizing its dual-connectivity interface. The
first service concerns the sensing of potential targets/obstacles
in its vicinity and the wireless upload of the sensing data
to BS i for further processing and establishment of network
awareness, whereas the second regards the node’s n constant
data exchange and connectivity to the core network that is
achieved through BS j. For the accomplishment of the former
service, we assume that each node n is equipped with ISAC
technologies and thus, integrated signals are used for the
joint sensing of target and communication with BS i. The
two services are performed over separate frequency bands
of bandwidth WISAC [Hz] and WCOM [Hz], accordingly,
while the different nodes’ transmissions to both BSs i and j
are multiplexed in the power domain, using Non-Orthogonal
Multiple Access (NOMA) technique.

Each node n aims to determine its total uplink transmission
power pn [W] and the optimal power split over the two
services, where xn, xn ∈ [0, 1] indicates the percentage of
power investment for the ISAC service. Hence, the transmis-
sion power of node n to BS i is pISAC

n = xnpn and the
remaining pCOM

n = (1− xn)pn refers to the service of BS j.

A. Sensing Model

Focusing on the sensing model related to the first service,
we assume that each node n disposes a dual-functional trans-
mitter. To sense a target, each node n radiates an integrated
OFDM waveform, which is then reflected back conveying the
detection information. The corresponding radiated signal by
node n at time instance t is formally written as [5]:

sn(t) = ej2πfct
S−1∑
l=0

gnc
l
ne

j2πWISAC(t−lTs) × rect

[
t− lTs

Ts

]
,

(1)
where S is the number of consecutive integrated symbols ra-
diated towards the target, Ts [s] is the duration of a completed
OFDM symbol, fc [Hz] is the center frequency of the wireless
channel, gn is the amplitude of the integrated waveform, cln
is the phase code of the modulated symbol l, and rect[z] is a
pulse function, giving 1 when 0 ≤ z ≤ 1 and 0 otherwise.

The reflected signal by the target to node n is written as:

zn(t) =

∫ ∞

−∞
qn(τ)sn(t− τ)dτ + w(t), (2)

where qn(t) and w(t) denote the impulse response and the
zero-mean Additive White Gaussian Noise (AWGN).

The performance of each node’s n sensing operation is
evaluated by calculating the Mutual Information (MI) between



the reflected signal zn(t) and the impulse response qn(t)
conditioned on the initial waveform sn(t), which is given by:

MIn = I (zn(t), qn(t)|sn(t))

=
1

2
STsWISAC log2

(
1 + γISAC

n,sens

)
, (3)

where γISAC
n,sens corresponds to the radar Signal-to-Interference-

plus-Noise Ratio (SINR) of node n:

γISAC
n,sens =

pISAC
n ST 2

s |Qn(f)|2

I0 +
∑

n′∈N ,n′ ̸=n Gn′,npISAC
n′

. (4)

Qn(f) is the Fourier transformation of impulse response qn(t),
Gn′,n is the channel gain from node n′ to node’s n radar
receiver, and I0 is the power of zero-mean AWGN.

B. Communication Models

Without loss of generality, we assume that the channel gains
observed by each BS are sorted in ascending order, such as
Gi,1 ≤ · · · ≤ Gi,n ≤ · · · ≤ Gi,N and Gj,1 ≤ · · · ≤
Gj,n ≤ · · · ≤ Gj,N , and the decoding of the nodes’ signals
is successfully implemented by employing the Successive
Interference Cancellation (SIC) technique, starting from the
the highest channel gain node.

The achieved throughput of node n for communication with
BS i and the delivery of the sensing data is calculated as:

RISAC
n = WISAC log2

(
1 +

pISAC
n Gi,n

I0 +
∑n−1

n′=1 Gi,n′pISAC
n′

)
.

(5)
Similarly, the node’s n achieved throughput during the data

exchange with BS j is given by:

RCOM
n = WCOM log2

(
1 +

pCOM
n Gj,n

I0 +
∑n−1

n′=1 Gj,n′pCOM
n′

)
.

(6)

III. SATISFACTION FORM GAMES AND EQUILIBRIA FOR
EFFICIENT POWER CONTROL

In this section, we formulate the problem of power control
and splitting among the two BSs as a non-cooperative game
in satisfaction form, and examine different satisfaction equi-
libria to satisfy the minimum ISAC and pure communication-
oriented performance requirements.

A. Satisfaction Game Formulation

The non-cooperative game in satisfaction form is character-
ized by the tuple G = (N , {An}n∈N , {fn}n∈N ), where N
is the set of players, i.e. the nodes, An = {(pn, xn)|pn ∈
[0, pmax], xn ∈ [0, 1]} is each node’s n action space of
cardinality An, where (pn, xn) is every feasible combination
of power level and split among the services and pmax is the
maximum feasible power level. Also, fn is the specific set of
actions of player n that satisfy the minimum ISAC and pure-
communication requirements given the actions selected by the
other players/nodes. In our case, this set is defined as:

fn(a−n) = {an ∈ An|un(an,a−n) ≥ uthr}, (7)

where un is the node’s n utility function. In other words, fn
includes the actions that allow the utility un to be above a
threshold uthr.

The utility of node n is dependent on the payoffs gained
by the two simultaneously performed services, i.e., the ISAC
service in collaboration with BS i and the pure communication
with BS j, the latter of which are defined as uISAC

n = MIn ·
RISAC

n and uCOM
n = c · RCOM

n , with c ∈ R+ [bits] being a
constant balancing factor. Subsequently, the overall utility of
node n is the weighted sum of uISAC

n and uCOM
n , i.e.,

un = wISACuISAC
n + wCOMuCOM

n , (8)

where wISAC , wCOM are appropriate weight factors, such
that wISAC + wCOM = 1.

B. Satisfaction Equilibria
In this type of games, each player instead of trying to self-

ishly maximize its personal utility, aims to reach a minimum
threshold and achieve a satisfactory operation for the system.
The simplest equilibrium is a Satisfaction Equilibrium (SE).

Definition 1 (Satisfaction Equilibrium). An action profile
a∗ = (a∗1, . . . , a

∗
n, . . . , a

∗
N ) is a SE for game G if:

a∗n ∈ fn(a−n),∀n ∈ N . (9)

When a SE is achieved, all nodes are satisfied and have
no incentives to change their action. Apparently, there may
exist multiple action profiles that satisfy the nodes’ minimum
requirements, but are differentiated in the level of effort that
the nodes exert to achieve them. It is, therefore, natural for the
players to seek to satisfy their constraints with the minimum
possible effort. To quantify the effort required by an action, the
concept of cost is introduced. For all n ∈ N , the cost function
cn : An −→ R satisfies the following condition: cn(an) <
cn(a

′
n)∀(an, a′n) ∈ A2

n, if and only if, an requires a lower
effort by device n than action a′n. Based on this definition, we
introduce the Efficient Satisfaction Equilibrium (ESE).

Definition 2 (Efficient Satisfaction Equilibrium). An action
profile a∗ = (a∗1, . . . , a

∗
n, . . . , a

∗
N ) is an ESE for game G,

with cost function {cn}n∈N , if:

a∗n ∈ fn(a−n),∀n ∈ N , (10a)

cn(an) ≥ cn(a
∗
n),∀n ∈ N ,∀an ∈ fn(a

∗
−n). (10b)

Particularly, the equilibrium point, in which the players
achieve not only the minimum cost for their action but also
from the overall system’s perspective is called Minimum
Efficient Satisfaction Equilibrium (MESE).

Definition 3 (Minimum Efficient Satisfaction Equilibrium).
An action profile a∗ = (a∗1, . . . , a

∗
n, . . . , a

∗
N ) is a MESE for

game G, with cost function {cn}n∈N , and set of action profiles
that are ESEs {E} if:

a∗n ∈ fn(a−n),∀n ∈ N , (11a)

cn(an) ≥ cn(a
∗
n),∀n ∈ N ,∀an ∈ fn(a

∗
−n), (11b)∑

n∈N
cn(en) ≥

∑
n∈N

cn(a
∗
n),∀e ∈ E. (11c)



IV. LEARNING SATISFACTION EQUILIBRIA

In this section, we present an RL and a searching-based
algorithm that are used to obtain the different SEs and the
MESE that exist for the formulated problem. The two algo-
rithms are executed in a fully distributed manner, such that
each node knows just its action and the last selected action of
the others, while observing its personally achieved utility.

A. Reinforcement Learning-based SE Algorithm

The proposed RL algorithm’s aim is to conclude to any
SE that at least satisfies all constraints defined by the action
set fn,∀n ∈ N [3]. To facilitate the subsequent analysis,
let us index the elements of each node’s n set An with the
index kn ∈ Kn = {1, . . . ,Kn}. At each iteration τ , each
node evaluates its achieved utility and accordingly assigns
a probability πn(τ) = (πn,1(τ), . . . , πn,kn

(τ) . . . , πn,Kn
(τ))

to each available action an,kn
∈ An. In this way, the node

indicates its preference towards selecting the specific action
an,kn in the future. After probabilistically selecting an action
an,kn , each node examines whether the threshold uthr is
satisfied. For the nodes that this holds true, their selected
action remains unchanged for the next iteration, otherwise they
update their probability distribution using the following rule
and proceed to the next RL algorithm’s iteration:

πn,kn
(τ + 1) =

{
πn,kn

(τ), if un(τ) ≥ uthr

g(πn,kn
(τ)), otherwise

(12)

with

g(πn,kn(τ)) = πn,kn(τ)+λτrn,τ (1{an(τ)=an,kn}−πn,kn(τ)).
(13)

The parameter λτ = 1
τ+1 represents the learning rate of

the algorithm, while an(τ) the action selected by node n at
iteration τ . rn,τ is a reward function calculated as:

rn,τ =
umax
n − un(τ)− uthr

2umax
n

, (14)

where un(τ) is the utility of node n at iteration τ and umax
n is

the maximum utility that node n can achieve, as in the single-
node system case. The physical meaning and interpretation of
probabilities’ update rule is that higher probability values are
assigned to actions that yield at higher node utilities and thus,
it is more likely to satisfy the minimum requirement uthr.

The pseudocode of the RL-based SE algorithm is presented
in Algorithm 1. It should be noted that the convergence of this
algorithm is highly affected by the initial action chosen by
each player. Therefore, in order to avoid running into infinite
loops, its operation is terminated if all nodes remain unsatisfied
after a predefined number of iterations.

B. MESE Search Algorithm

To determine the MESE of the examined problem, a type of
Best Response Dynamics (BRD) algorithm is used, according
to which each node selects the specific best response action
that achieves the minimum cost [8]. The algorithm comprises
two sequential phases, namely the ”Preparation Phase” and the

”Turn Phase”. During the ”Preparation Phase” (Algorithm 2),
each node determines for each action an,kn ∈ An the
minimum cost action between an,kn and all subsequent ones
in the set An. In more detail, after this phase, a list Sn[]
is derived for every player n, each element Sn[z] of which
expresses the index of action an,kn

that provides the minimum
cost over the actions {an,zn , . . . , an,Kn

}. The player selects its
initial action from the list Sn[] minimizing the cost function,
regardless of whether this actions satisfies its constraints, i.e.,
actionsinitial = (an,S1[0], . . . , an,SN [0]).

Algorithm 1 Reinforcement Learning-based SE Algorithm

1: Initialize τ = 0;
2: for each n ∈ N do
3: for each an,kn ∈ An do
4: πn,kn

(0) = 1
An

;
5: end for
6: Select an action an(0) ∼ πn(0);
7: end for
8: while ∃n, un(τ) < uthr do
9: for each n ∈ N do

10: Update distribution πn(τ + 1) according to (12)
11: if un(t) ≥ uthr then
12: an(τ + 1) = an(τ);
13: else
14: an(τ + 1) ∼ πn(τ + 1);
15: end if
16: end for
17: Update τ = τ + 1;
18: end while

Algorithm 2 MESE Search Algorithm Preparation Phase

1: Initialize min = cn(an,Kn
), minindex = Kn;

2: Sn[Kn] = Kn;
3: for k = Kn − 1, 1 do
4: if cn(an,k) ≤ min then
5: Sn[k] = k;
6: minindex = k;
7: min = cn(an,k);
8: else
9: Sn[k] = minindex;

10: end if
11: end for

The Turn Phase (Algorithm 3) aims to find an action that
satisfies each node’s utility with a minimum cost. To this
end, each player is sufficient to perform a binary search from
the Minimum Satisfying Action (MSA), i.e., the action that
satisfies the node’s minimum requirements computed at the
previous iteration τ−1, to an,KN

(supposing the actions are in
increasing order of total cost), searching for the first action that
satisfies the requirements. The latter constitutes the Minimum
Satisfying Action (MSA) for the next iteration τ that will
remain unchanged in case it keeps satisfying the constraint
for the particular node. Accordingly with the SE algorithm,



we suppose that the iterative process terminates after a defined
number of iterations, in case that all devices are unsatisfied.

Algorithm 3 MESE Search Algorithm Turn Phase

1: Initialize τ = 0;
2: while ∃n, un(τ) < uthr do
3: for each n ∈ N do
4: if un(t) < uthr then
5: Keep the same action
6: else
7: MSA = BinarySearch(An,MSA,An, un,A−n)
8: Change action to an,Sn[MSA]

9: end if
10: end for
11: Update τ = τ + 1;
12: end while

V. EVALUATION & RESULTS

In this section, we evaluate the performance of the pro-
posed framework, via modeling and simulation. We consider
a circular area of 300 m radius, within which two BSs and
N = 5 nodes are uniformly spatially distributed. Each node
senses a target located up to 100 m far from it. The sensing-
related parameters are set as: S = 10, Ts = 5 us, while,
for simplicity, we assume that the target frequency response
follows the standard normal distribution. The channel gain
between any two network entities, i.e., BS, nodes, targets, is
set as G = 1

d4 , where d [m] is the distance between the two
entities. The rest constants are set as: I0 = W · N0, with
W = {WISAC ,WCOM} = 2 MHz, N0 = −174 dBm/Hz,
and pmax = 2W . For the nodes’ utilities, we consider
uthr = 4 ∗ 107 bits2/s, wISAC = wCOM = 0.5 and c = 1
bits. The convergence limit of both algorithms is 500 iterations
and the cost function used in the MESE algorithm is the total
power level pn,∀n ∈ N . The number of power states pn is
201 (range [0, pmax] with step 0.01), whereas the number of
power split states xn is 101 (range [0, 1] with step 0.01).

First, we study the convergence behavior of the RL-based
SE (Fig. 1a) and the MESE Search (Fig. 1b) algorithms, by
examining the progression of the utility value un,∀n ∈ N as
a function of the algorithms’ iterations. As can be observed,
the SE algorithm requires twice the number of iterations of the
MESE algorithm in order to converge, due to its probabilistic
operation. The SE algorithm is, also, differentiated from the
MESE in the fact that higher utility values are achieved for
the nodes, given that the MESE algorithm’s target is to find
the SE yielding the minimum possible cost to the system, i.e.,
total power, results though in more efficient utility levels. At
this point, it should be noted that although the nodes persist on
their selected action after the minimum utility threshold uthr

is exceeded, their utility seems to keep changing values, as it
is directly affected by the actions of the remaining unsatisfied
nodes via the interference term.

The SE algorithm’s convergence behavior is further com-
pared against two different approaches, regarding the proba-

(a) (b)

Fig. 1: Convergence behavior of SE and MESE algorithms.

(a) (b)

Fig. 2: Number states impact on SE and MESE algorithms.

TABLE I: Comparative evaluation of SE algorithm’s percent-
age of successful convergence instances.

Distribution Learning-Based Selection-Based Uniform

Convergence 73.2% 38.6% 37.4%

bility distribution used for the state selection, namely: a) the
”Selection-Based” distribution, where the probability of each
action is inversely proportional to the number of times that
this action has been already selected, and b) the ”Uniform”
probability distribution, i.e., πn,kn

= 1
An

. Table I lists the
percentage of successful convergence instances derived out
of 500 independent simulation executions under the three ap-
proaches. Indeed, the proposed RL-based distribution approach
achieves to successfully converge to 73.2% of the instances,
significantly surpassing the other two.

Subsequently, we study the impact of the number of states
comprising the action set on the behavior of the proposed
framework, by selecting different sampling steps. Fig. 2a,
depicts the real execution time required for the SE algorithm to
converge (z axis) for different combinations of initial number
of power states pn (x axis) and power spilt percentages xn

(y axis), considering sampling steps from 0.01 to 0.09. Obvi-
ously, the more states used, the more the increment observed
in the algorithm’s complexity and hence, real execution time.
Fig 2b illustrates the total cost, i.e., total power used in
the system, concluded by the MESE algorithm for different
numbers of initial states (sampling steps [10−3, 10−2, 10−1]).
The accumulation of more possible states, especially of xn

states, enables the algorithm to achieve a lower system cost.
Fig. 3 summarizes the proposed framework’s pure operation

under different values of the nodes’ satisfaction threshold uthr



(a) (b) (c)

Fig. 3: Operation of the proposed framework under different satisfaction thresholds, weight factors, and number of nodes.

and weight factor wISAC , as well as different number of
nodes in the system. In particular, Fig. 3a presents the total
cost, i.e., total power, (left vertical axis) and the percentage
of satisfied devices (right vertical axis) achieved by the final
actions concluded by the SE and MESE algorithms, for
different values of satisfaction thresholds. As the satisfaction
threshold becomes more strict, the percentage of satisfied users
decreases, resulting in almost half of the nodes to be satisfied
by the SE algorithm that seeks to just achieve higher node
utilities, as implied by Eq. (14). Furthermore, the increase
in the satisfaction threshold results in higher total power
consumption particularly for the MESE algorithm, since the
SE algorithm aims to just satisfy the nodes’ requirements
regardless of the incurred cost. Finally, although for higher
threshold values the cost of MESE is higher than that of SE,
a much larger number of nodes are satisfied.

In Fig. 3b, the proposed framework is compared against
a centralized optimization approach for the power split-
ting/control problem, whose aim is to maximize the sum of
all the devices utility with respect to the constraints defined in
action set An. The presence of more nodes in the system leads
gradually to more and more of them to remain unsatisfied,
with the centralized approach resulting in constantly lower
satisfaction rates, although achieving higher individual utility
values for the nodes. Considering the system’s total cost, the
centralized method forces some of the devices to consume the
maximum permitted power in order to maximize their utility
and thus, concludes to always consuming more power.

Fig. 3c illustrates the percentage of power consumed by
each service, i.e., ISAC and pure communication, under dif-
ferent values of the weight factor wISAC . For both algorithms,
increasing the weight of ISAC leads to higher amount of the
total selected energy level given for this service. Considering
the operation of MESE algorithm, the communication service
seems to be generally performed with higher power percent-
ages. Given that, in our implementation, the cost function is the
total power consumed by each node, then the lowest possible
power split factor xn is chosen at each iteration, when the
minimum satisfying power level is computed.

VI. CONCLUSION & FUTURE WORK

In this paper, the power control problem in an ISAC and
dual connectivity-enabled IoT/CPS network was modeled as a

satisfaction game. The IoT/CPS nodes communicated simul-
taneously with two BSs for ISAC and pure-communication
services, respectively, and aim to satisfy the minimum perfor-
mance requirements set by each service. Different types of sat-
isfaction equilibria and corresponding algorithms were exam-
ined in order to control the tradeoff between the performance
and incurred cost. The numerical results demonstrated the
convergence behavior of the satisfaction equilibria algorithms,
as well as the effect of different parameters on their operation
and the effectiveness of the proposed framework. Part of our
current and future work focuses on the inclusion of computing-
related communication services, and the proper scheduling of
sensing, communication and computing resources.
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