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Abstract—The rise in popularity of smartphones, along with
the need for personalized services with different Quality of
Service (QoS) requirements, has created an increased interest
for energy-efficient resource management frameworks in wireless
networks, where user actions and decisions are interdependent.
Our focus is placed on the transformation and treatment of the
uplink power control problem under the perspective of game
theory in satisfaction form. The novel concept of Minimum
Efficient Satisfaction Equilibrium (MESE) is introduced and its
properties are investigated. Considering that each user is associ-
ated with a cost function with respect to its actions, the MESE
point defines each user’s transmission power that satisfies its QoS
prerequisites with the lowest cost. We prove that at the MESE
point the system achieves the lowest possible cumulative cost,
while each user individually is penalized with the minimum cost
compared to the corresponding cost of any Efficient Satisfaction
Equilibrium (ESE) point. The existence, uniqueness and benefits
of the MESE are studied, and a distributed low complexity
algorithm based on the Best Response Dynamics that converges to
the MESE point is proposed. Through modeling and simulation,
the performance of the proposed novel resource management
framework is evaluated, and its benefits are revealed.

Index Terms—Satisfaction equilibrium, energy efficiency, game
theory, power control, utility function, resource management

I. INTRODUCTION

THE volume of the data traffic and the number of con-
nected devices are continuously increasing, while this

trend is expected to further intensify with the advent of 5G
networks and the evolution of Internet of Things (IoT) [1].

Given the aforementioned setting and responding to the need
for distributed solutions for resource management purposes,
Game Theory arises as a natural choice and a powerful tool to
cope with users’ selfish and competitive behavior regarding
the resource orchestration process within the emerging 5G
networks. Accordingly various resource management problems
in wireless networks have been considered in the recent liter-
ature, based on the concept of Expected Utility Maximization
and game theory (e.g. [2]–[4]). In those approaches, the non-
cooperative game theory is adopted to formulate the resource
management problems and their solutions conclude to Nash
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equilibrium points, which are stable operational points for all
the users in the network.

However, it is well-known that the Nash equilibrium points
stemming from users’ selfish decision-making are generally
inefficient. A first step to guide the selfish users to a more
efficient operating point was the introduction of pricing mech-
anisms, where the users are penalized with respect to their
resources’ consumption [5]. Still those approaches could not
address the main disadvantage of the Nash equilibrium points
in a holistic manner. In particular, customized heuristic pricing
mechanisms are required each time to treat different resource
types and networking environments. Furthermore, even when
pricing is considered, each user still aims at maximizing his
own perceived Quality of Service (QoS). Thus the realization
of the aforementioned maximization goal does not offer a
notifying difference to the experienced satisfaction.

Therefore, the unprecedented need of rethinking the re-
source orchestration process arises in 5G wireless networks
to address the QoS demands of the significantly increasing
number of users. Towards this direction, a new concept of
equilibrium is introduced, Satisfaction Equilibrium, where the
users aim to satisfy their minimum QoS prerequisites instead
of targeting at QoS maximization [6], [7]. In [8] the definition
of the Satisfaction Equilibrium (SE) and the general conditions
for examining its existence have been discussed in detail.
Also, the concept of users’ effort to achieve the SE has been
introduced, leading to a refinement of the SE, namely the
Efficient SE (ESE). At the ESE point, all the users conclude to
a resource allocation strategy, which requires the lowest effort
to satisfy their minimum QoS prerequisites. In [9] and [10],
the concepts of SE and ESE are applied in a simplified uplink
power control problem considering interference channels in a
single-cell environment. Additionally, reinforcement learning
has been introduced in [11] to determine the SEs and ESEs
under different conditions. However, many interesting proper-
ties that emerge when the satisfaction equilibrium framework
is applied to this setting have not been revealed yet [12]. Our
work aims at filling this gap, and focuses on the transformation
and treatment of the uplink power control problem under the
perspective of game theory in satisfaction form.



A. Contributions and Outline

Specifically, we study in detail the satisfaction equilibrium
points for QoS provisioning in wireless networks, where user
actions and decisions are interdependent. This is achieved via
examining the uplink power control problem for a general set
of users’ realistic utility functions, which are increasing with
respect to the user’s uplink transmission power and decreasing
with respect to the intracell interference. A representative
example (but not limited to this one) is the Shannon’s for-
mula. The novel concept of Minimum Efficient Satisfaction
Equilibrium (MESE) is introduced, which is shown to be of
special interest among the satisfaction equilibrium points that
have already been proposed in the literature, i.e., Satisfaction
Equilibrium (SE) and Efficient Satisfaction Equilibrium (ESE).

Assuming that each user is associated with a cost function
of arbitrary form with respect to its actions, at the MESE
point each user transmits at a power level that satisfies its
QoS prerequisites with the lowest cost. It is worthwhile noting
that we prove that at the MESE point, not only the system
achieves the lowest possible cumulative cost, but also each
user is penalized with the minimum cost compared to the
corresponding cost at every other ESE point. The existence
and uniqueness of the MESE point is thoroughly studied.

A distributed and low complexity Minimum Effort Best
Response Dynamics algorithm is proposed, which is based on
the best response dynamics behavioral rule and converges to
the MESE point that is also the most energy-efficient from all
the existing ESEs. A series of experiments are performed to
evaluate the performance and attributes of the proposed novel
resource management framework which is based on games in
satisfaction form. A basic comparative study demonstrates its
superiority and benefits in terms of power savings and im-
proved network capacity, against approaches targeting energy-
efficiency and/or utility maximization.

The remainder of the paper is organized as follows: Section
II introduces the definitions and relevant information regarding
the SE, ESE and MESE points. In Section III, the uplink
power control game is formulated in its satisfaction form,
the existence of the ESE points is shown, and the existence,
uniqueness, and benefits of the MESE point are proven and
discussed. Section IV introduces the Minimum Effort Best
Response Dynamics algorithm to determine the MESE point,
its convergence is shown and the corresponding complexity
analysis is provided. Section V presents a detailed numerical
and comparative performance evaluation, while Section VI
concludes the paper.

II. GAMES IN SATISFACTION FORM

In this section, we provide some definitions and the
basic notation that will be used in the rest of the pa-
per. A game in satisfaction form is defined as [10] Ĝ =
(K, {Ak}k∈K , {fk}k∈K), where K = {1, . . . |K|} represents
the set of players, Ak is the strategy set of player k ∈ K,
uk(ak,a−k) represents player’s k payoff (i.e., utility function),
and fk(a−k) = {ak ∈ Ak : uk(ak,a−k) ≥ uthr} determines
the set of actions of player k that allows its satisfaction,

that is its payoff to be above a threshold value uthr, given
the actions a−k played by all the other players. A strat-
egy profile is denoted by a vector a = (a1, . . . , a|K|) ∈ A,
A = A1 × · · · ×Ak × · · · ×A|K|.

Definition 1: An action profile a+ is an SE point for the
game Ĝ = (K, {Ak}k∈K , {fk}k∈K) if

∀k ∈ K, a+k ∈ fk(a
+
−k) (1)

It should be noted that there could exist multiple strategy
vectors a+ = (a+1 , . . . , a

+
|K|) satisfying player’s minimum

QoS prerequisites, some of which are of particular interest. A
representative example is the Efficient Satisfaction Equilibrium
(ESE) where each player of the system achieves its minimum
QoS prerequisites via being simultaneously penalized with
the minimum cost. To capture the notion of the players’
penalty and effort associated with a given action choice, the
concept of the cost function for each player is introduced.
For all k ∈ K, the cost function ck : Ak → [0, 1] satisfies the
following condition: ck(ak) < ck(a

′

k), ∀(ak, a
′

k) ∈ A2
k, if and

only if, ak requires a lower effort by player k than action a
′

k.
Definition 2: An action profile a∗ is an ESE point for the

game Ĝ, with cost functions {ck}k∈K , if

∀k ∈ K, a∗k ∈ fk(a∗−k) (2a)
∀k ∈ K, ∀ak ∈ fk(a∗−k), ck(ak) ≥ ck(a∗k) (2b)

Another equilibrium point of special interest is the Mini-
mum Efficient Satisfaction Equilibrium (MESE). At the MESE
point, all players satisfy their QoS prerequisites (Eq. 3a), with
the minimum cost for themselves (Eq. 3b), as well as with the
minimum total cost from the system’s perspective (Eq. 3c).

Definition 3: An action profile a† is a Minimum
Efficient Satisfaction Equilibrium (MESE) for the game
Ĝ = (K, {Ak}k∈K , {fk}k∈K), with cost functions {ck}k∈K ,
and set of action profiles that are ESEs {E} if

∀k ∈ K, a†k ∈ fk(a
†
−k) (3a)

∀k ∈ K, ∀ak ∈ fk(a†−k), ck(ak) ≥ ck(a
†
k) (3b)

∀e ∈ E,
∑
k∈K

ck(ek) ≥
∑
k∈K

ck(a
†
k) (3c)

III. RETHINKING UPLINK POWER CONTROL

The aforementioned definitions and concepts, along with the
pressing need for cost efficient (i.e., energy efficient) solutions
in the era of wireless communications, motivate and support
the rethinking and redefinition of the power control problem
in wireless networks. Let us consider K transmitter/receiver
pairs denoted by index k ∈ K. For all k ∈ K, transmitter k
uses power level pk ∈ Ak, with Ak generally defined as a
compact sublattice. For each player k ∈ K, we denote pmin

k

and pmax
k the minimum and maximum power levels in Ak,

respectively. For every pair of devices (i, j) ∈ K2, gij is the
channel gain coefficient between transmitter i and receiver j.

For the rest of this section, we will assume and study
uplink power control games in which each player has a utility
function that is increasing with respect to its own transmission
power and decreasing with respect to the total summation over



the powers of the rest of players, as the latter quantity acts
as interference to the examined player’s transmission. One
representative example of such utility function that satisfies the
aforementioned realistic assumption, is the commonly adopted
Shannon capacity which is given by:

uk(pk,p−k) = log2(1 +
pkgkk

σ2
k +

∑
j 6=k pjgjk

)[
bps

Hz
] (4)

where σ2
k is the noise variance at receiver k.

The considered QoS requirement for each user k is to
have a channel capacity uk(pk,p−k) higher than a given
threshold uthr[

bps
Hz ]. The satisfaction correspondence of user

k is subsequently expressed as:
fk(p−k) = {pk ∈ Ak | uk(pk,p−k) ≥ uthr}

= {pk ∈ Ak | pk ≥ (2uthr − 1)
σ2
k +

∑
j 6=k pjgjk

gkk
} (5)

In the above inequality, note that if a user raises its transmis-
sion power then some other users may also have to increase
their transmission powers as well to get satisfied. Also, given
the strategy profile of the other users p−k, the following
statement is valid for each user k:

p ∈ fk(p−k)⇒ ∀p∗ ∈ Ak : p∗ ≥ p, p∗ ∈ fk(p−k) (6)

Thus, given the strategies of the other users, i.e, p−k, there
is a transmission power pMSP

k which on one hand satisfies
the QoS prerequisites of the examined user k, but on the
other hand playing with a lower transmission will leave the
user unsatisfied. Contrary, if the user transmits with a greater
power, then the user will remain satisfied. We will refer to that
power pMSP

k as the Mininum Satisfying Power (MSP) of user k
given p−k. Note, that under the assumption we made about the
monotonicities of the utility functions, the inequality (6) holds
true for the rest of our analysis. In the following, we examine
the existence of an ESE in the uplink power control game
Ĝ = (K, {Ak}k∈K , {fk}k∈K) with cost functions {ck}k∈K
and payoff/utility functions {uk}k∈K (Eq. 4).

A. Existence of ESE and MESE

To prove the existence of at least one ESE point in the
uplink power control game Ĝ in our setting we first mention
the Tarski and Knaster’s fixed point theorem [13].

Theorem 1 (Tarski and Knaster’s fixed point theorem): Let
L be a complete lattice and let f : L → L be an order-
preserving function. Then, the set of fixed points of f in L is
also a complete lattice.

Let A be the set of the strategy space of the game Ĝ as
defined above. Let us also define the lattice L = 〈A,�〉,
where � is the component-wise less or equal. Note that L is
a complete lattice as all of its subsets have both a supremum
and an infimum. The next step is to construct an appropriate
function g : L → L. For that purpose, we will use the notation
BRk(p−k) as the best response function of a user k, while
the strategies of the rest of the users are p−k. That is, the
transmission power pk ∈ Ak : pk = argminpk∈fk(p−k) c(pk).
Let us define the function g : L → L as follows:

g(p) = (BR1(p−1), . . . , BR|K|(p−|K|)) ∀p ∈ A

Note that if fk(·) 6= ∅ for every user k, then BRk(p−k) ∈
Ak, ∀p−k ∈ A−k, ∀k ∈ K. Following those definitions we
conclude to the following proposition.

Proposition 1: If an uplink power control game in satisfac-
tion form Ĝ with cost function {ck}k∈K and utility function
{uk}k∈K (Eq. 4), has the fk functions for every user k non
empty for every input then it possesses at least one ESE.

Proof: The proof comes from the Theorem 1. As men-
tioned, L is a complete lattice. We can also note that ∀p,p′ ∈
A : p � p

′
it holds that:

(BR1(p−1), . . . , BR|K|(p−|K|)) �

(BR1(p
′

−1), . . . , BR|K|(p
′

−|K|))

Or equivalently g(p) � g(p
′
). That means that for every

user k, when the rest of the users have played p−k and
then they increase their powers, k’s best response will be a
greater or equal transmission power than it was. The latter
holds true because of the monotonicity we assumed on the
utility functions, and thus either k’s best response will still
satisfy user’s k QoS prerequisites or user k should increase
its transmission power in order to be satisfied, thus, inevitably
playing an action (transmission power) that is related to a
greater cost than before. In that fashion, we also proved
that g is an order-preserving function. Following the previous
analysis, Tarski-Kraskel’s theorem ensures the existence of a
fixed point of function g. That is, ∃p ∈ A :

p = g(p)⇔
(p1, . . . , p|K|) = (BR1(p−1), . . . , BR|K|(p−|K|)

That would mean that for the strategy profile p, every user
has played its best response strategy given the strategies of
the rest of the users. So, p is an ESE for the game Ĝ.

Given the proof of the existence of at least on ESE, we can
easily conclude to the existence of at least one MESE as well.

B. Uniqueness and Benefits of MESE
Below, we provide some propositions that hold true in the

considered uplink power control game, to show the main bene-
fits of the MESE point and the specific conditions under which
it is unique. We assume that the fk functions are non empty for
every input and every player k, where this assumption ensures
the possession of at least one ESE (Proposition 1).

Proposition 2: In an uplink power control game Ĝ as men-
tioned above, if an action profile p+ is an SE of the game and
it holds that ∀k ∈ K,∀pk ∈ Ak : pk ≥ p+k , ck(pk) ≥ ck(p

+
k )

there exists one action profile p∗ that is an ESE in which it
holds that ck(p+k ) ≥ ck(p∗k),∀k ∈ K.

Proof: For the proof we exclude the powers pd : pd >
p+k ,∀k ∈ K. Thus, the modified strategy space is denoted
by A

′

k, and the corresponding game is Ĝ
′
. In the game Ĝ

′
,

we know that the strategy p+k will satisfy the user k, ∀k ∈
K, regardless the strategies of the rest of the users (Eq. 6).
Applying proposition 1 that proves the existence of an action
profile p∗ that is an ESE for Ĝ′, we have that

∀k ∈ K,∀pk ∈ A′k : pk ∈ fk(p∗−k), ck(pk) ≥ ck(p∗k) (7)



Because by default p+k is the maximum transmission power
of the set A′k of the kth user in Ĝ′, it means that p+k ≥ p∗k
and consequantly ck(p

+
k ) ≥ ck(p

∗
k) based on Eq. 7. So, the

above statement combined with our assumption regarding the
monotonicity of the utility function, enables us to conclude to
the following statement regarding the initial game Ĝ:

∀k ∈ K, ∀p ∈ Ak : p ∈ fk(p∗−k), ck(p) ≥ ck(p∗k)

Due to the above statement and given that p∗ is an SE in Ĝ,
we conclude that p∗ is also an ESE in Ĝ. Thus, we have also
proven implicitly that

∑
k∈K ck(p

+
k ) ≥

∑
k∈K ck(p

∗
k).

Assuming the above setting, the following holds true.
Proposition 3: In an uplink power control game Ĝ let two

action profiles p∗(1), p(2), and p∗(1) be an ESE. Then for each
user k holds that if ck(p

∗(1)
k ) > ck(p

(2)
k ) then p∗(1)k > p

(2)
k .

Proof: This proposition is proven via the reductio ad
absurdum, as follows. If ck(p

∗(1)
k ) > ck(p

(2)
k ) and it was

p
∗(1)
k < p

(2)
k , it would mean that in the strategy profile

p∗(1) user k would remain satisfied if it played p
(2)
k (Eq.

6), which reduces its cost. That is a contradiction because
p∗(1) is an ESE. In addition, p∗(1)k = p

(2)
k can’t hold because

ck(p
∗(1)
k ) 6= ck(p

(2)
k ).

Using these propositions we prove the following statement
to study the plurality of the set of the MESE points.

Proposition 4: For any two MESEs p†(1),p†(2) it holds that
ck(p

†(1)
k ) = ck(p

†(2)
k ), ∀k ∈ K.

Proof: Let {E} be the set of action profiles that are ESEs.
Let us now denote two MESEs of the game, p†(1) and p†(2)

such that for one user k it holds that ck(p
†(1)
k ) 6= ck(p

†(2)
k ). In

order for them to be MESEs the following should hold:

∀p∗ ∈ E,
∑
k∈K

ck(p
∗
k) ≥

∑
k∈K

ck(p
†(1)
k ) =

∑
k∈K

ck(p
†(2)
k ) (8)

As assumed, there is one user k that ck(p
†(1)
k ) 6= ck(p

†(2)
k )

and consequently p†(1)k 6= p
†(2)
k . Without loss of generality,we

assume that ck(p
†(1)
k ) < ck(p

†(2)
k ). Because of the fact that

p†(1) and p†(2) are ESEs, from Proposition 3 we get p†(1)k <

p
†(2)
k . Thus, the total summation over the costs of all users

in p†(1) would be lower than the one of p†(2) if they do
not differentiate in any other strategy. This, denotes that there
should be one other user j (j 6= k) that cj(p

†(1)
j ) > cj(p

†(2)
j ).

With the same argument it holds that p†(1)j > p
†(2)
j .

Let p+ be an action profile with p+k = p
†(1)
k and p+j = p

†(2)
j .

Note that p+ has lower summation over the costs of users k,
j from both p†(1) and p†(2). Continuing in that fashion, p+

strategy profile picks for every user k the power that gives k
the lower cost over p†(1)k and p

†(2)
k . Because of Proposition

3, the transmission power would always be the lower of the
two. If ck(p

†(1)
k ) = ck(p

†(2)
k ), let p+k be the lower transmission

power of the two. Note that p+ is an SE as each user k was
satisfied by playing p+k either at p†(1) or at p†(2) while all

of the other users have played greater or equal transmission
powers (Eq. 6). So, at p+ it holds that:∑

k∈K

ck(p
+
k ) <

∑
k∈K

ck(p
†(1)
k ) =

∑
k∈K

ck(p
†(2)
k ) (9)

Note that in order to construct p+ we chose strategies between
two ESEs. Thus, because of Eq. 6 and Eq. 2b we get that
∀k ∈ K,∀p ∈ Ak : p ≥ p+k , ck(p) ≥ ck(p

+
k ). Thus, applying

proposition 2 on p+ gives us an ESE p† with∑
k∈K

ck(p
+
k ) ≥

∑
k∈K

ck(p
†
k) (10)

Combining inequalities (9) and (10) we conclude:∑
k∈K

ck(p
†
k) ≤

∑
k∈K

ck(p
+
k ) <

∑
k∈K

ck(p
†(1)
k ) =

∑
k∈K

ck(p
†(2)
k )

which leads to contradiction with (8) as p† is an ESE. So,
ck(p

†(1)
k ) = ck(p

†(2)
k ),∀k ∈ K, which completes the proof.

The above proposition, shows that every MESE point
gives the same cost to a given user. Consequently, if ∀k ∈
K,∀p1, p2 ∈ Ak : (p1 6= p2), ck(p1) 6= ck(p2) (which is a
common case in the uplink power control), then the MESE
point is unique. The following proposition shows that each
user achieves the minimum cost at a MESE point compared
to the experienced cost at any ESE point.

Proposition 5: In the considered uplink power control game,
let p† be a MESE of the game and {E} the set of ESEs, it
holds that ck(p

†
k) ≤ ck(p∗k),∀k ∈ K,∀p∗ ∈ E.

Proof: Let us study the strategy profile p that:

∀k ∈ K, ∀p∗ ∈ E, pk = argmin
p∗k

ck(p
∗
k) (11)

Thus, the strategy profile p picks for each user the power
that gives the lowest cost for the user over all its strategies
that belong to the set of ESEs. In case of a tie (more than one
strategies that minimize the cost), it picks the lower strategy
from those. Let us focus on a random user k. Let p∗ be one
ESE such that pk = p∗k. So, from all the ESEs of the game,
p∗ gives the lowest cost to user k, ck(p∗k). Because of Eq. 11,
we have: ∀i ∈ K, ci(pi) ≤ ci(p

∗
i ). For the users i′ that holds

ci′(pi′) < ci′(p
∗
i′), Proposition 3 gives pi′ < p∗i′ . For all users

i′′ that holds ci′′(pi′′) = ci′′(p
∗
i′′) the way that we broke the

ties gives us pi′′ ≤ p∗i′′ . So, combining the above statements
we have proven that ∀i ∈ K, pi ≤ p∗i .

Owing to the above, user k will certainly be satisfied in
strategy profile p because it was satisfied at the ESE p∗ in
which the other users have played greater or equal transmission
powers (Eq. 6). The above analysis holds for every user k, thus
every user in strategy profile p is satisfied, thus p is an SE.
Note that in order to construct p, we chose strategies between
strategy profiles that are ESEs. Thus, based on of Eq. 6 and Eq.
2b we get that ∀k ∈ K, ∀p ∈ Ak : (p ≥ pk), ck(p) ≥ ck(pk).
Now, we can apply Proposition 2 that gives us an ESE p† that:

∀k ∈ K ck(pk) ≥ ck(p†k) (12a)∑
k∈K

ck(pk) ≥
∑
k∈K

ck(p
†
k) (12b)



Taking into consideration Eq. 11, we can note that only the
equality can hold in inequalities (12) so: ∀k ∈ K ck(pk) =
ck(p

†
k) and

∑
k∈K ck(pk) =

∑
k∈K ck(p

†
k). Note that we

cannot find an ESE that has lower total cost than p. Thus,
p† is an MESE. Due to Proposition 4 every MESE assigns
the same cost to a given user. That means that every MESE
allocates to each user the minimum cost that it could possibly
have in an ESE as exactly p does.

One final observation is that if the cost function of every
user is increasing with respect to its transmission power,
MESE would be unique and there would not exist any strategy
profile that satisfies all the users and simultaneously allocates
to any user lower cost than the MESE. This is easily concluded
if one applies proposition 2 on any random SE of the game.

IV. ALGORITHM & CONVERGENCE

In this section, we present a distributed algorithm that
converges at a Minimum Efficient Satisfaction Equilibrium
(MESE) of the game Ĝ = (K, {Ak}k∈K , {fk}k∈K). For this
purpose we first introduce the Best Response Dynamics (BRD)
in the context of a game in satisfaction form.

A. Best Response Dynamics

Best Response Dynamics is defined as the behavioral rule in
which each user always chooses its uplink transmission power
to be its best response (BR) as defined earlier, depending on
the uplink transmission power of the rest of the users. In the
context of this paper, the dynamics should not be sequential but
asynchronous. As shown in [10], when the BRD start from an
SE as an initial strategy profile, they converge monotonically
to an ESE. The algorithm that is studied in the following
section is the BRD starting with the action profile associated
with the lowest effort for each user.

B. Minimum Effort Best Response Dynamics

Initially, each user k pre-processes its data with the Prepa-
ration Phase of the Minimum Effort Best Response Dynamics
(MEBRD) algorithm. Note that after executing the preparation
phase of the MEBRD algorithm, each user k has computed the
vector Sk[]. The element Sk[j] denotes the uplink transmis-
sion power that provides the minimum cost over the powers
Pk[j], . . . , Pk[|Ak|−1]. Therefore, if the Minimum Satisfying
Power (MSP) is a power pMSP

k = Pk[i] ∈ Ak,∀k ∈ K given
p−k then BRk(p−k) = Sk[i]. After the preparation phase,
each user chooses the power that minimizes its cost function.
Therefore, the starting strategy profile of the dynamics will be:
pstart = (S1[0], . . . ,S|K|[0]). Then, each user who is in turn
to play executes the Turn Phase of the MEBRD algorithm. The
auxiliary vectors Sk[] will help each user to calculate its BR
in every turn with a binary search. Due to the monotonicity of
the utility function and the fact that each user either does not
change or increases its transmission power at each turn (as we
will prove in the convergence section), user k should only do
binary search from the MSP of its previous turn to its current
pmax
k . With the binary search each user k is searching for the

smallest value in Pk[] that satisfies uk(p,p−k) ≥ uthr, which

is the MSP of player k given p−k. The algorithm stops when
no one user has a new best response strategy to play.

C. Convergence

In this section we prove that the above algorithm converges,
under finite number of steps, to an MESE of the considered
uplink power control game. To conclude this, we prove a set
of propositions as follows:

Proposition 6: The MEBRD algorithm monotonically con-
verges to a strategy profile p† ∈ A.

Proof: In the first turn of each user k, it examines whether
it is satisfied or should increase its power in order to get
satisfied. Because of the dynamics, it will not choose a lower
transmission power as everyone started with the one that is
associated with the lowest cost, Sk(0). This fact shows that in
the first round, each user k is either playing again Sk(0) (if it
is still satisfied) or increases its power.

Due to the fact that the utility functions uk are decreasing
with respect to the total summation over the powers of the
users, if a set of users increases its power levels and no user
does the opposite, an individual that kept its power unchanged,
is now satisfied by greater power levels than before (or with
exactly the same ones). Taking into account the above fact
and that in the first round all users either raised their powers
or held the same values, we can conclude to the following
statement. In every turn all users will either keep the power
levels of the previous turn (if they are still satisfied) or increase
them (in order to get satisfied). It is noted that because of the
assumption that fk() will be not empty for every p−k, user k
will always have a best response. Therefore, for each user k
its sequence of played strategies {pk} is increasing through a
finite set, so, its strategy eventually converges (monotonically)
to a strategy p†k.

Proposition 7: p† is an ESE.
Proof: In this algorithm, when the turn phase of a user k

is running, it chooses the transmission power that satisfies it

Algorithm 1 Preparation Phase

1: Sort in ascending order all powers pk in a vector Pk[];
2: power ← Pk[|Ak| − 1];
3: min← ck(power);
4: Sk[|Ak| − 1]← power;
5: for p← |Ak| − 2, 0 do
6: if ck(Pk[p]) ≤ min then
7: Sk[p]← Pk[p];
8: power ← Pk[p];
9: min← ck(Pk[p]);

10: indexOfMin← p;
11: else
12: Sk[p]← power;
13: end if
14: end for
15: Msp← Pk[0];
16: IndexOfMsp← 0
17: play Sk(0);



but also has the minimum cost. When the previous power that
the user selected, is not still the one mentioned above it should
change strategy when its turn comes. Due to proposition 6, all
users will eventually converge to a transmission power that
has those two properties. Thus, because of the dynamics and
its eventual convergence, p† is an ESE.

Proposition 8: p† is a MESE.
Proof: Let p∗ = (p∗1, . . . , p

∗
|K|) be an ESE of the game

and p† = (p†1, . . . , p
†
|K|) be the strategy profile that our

algorithm converges. Before we continue note that based on
Eq. 2b, 6 it holds that

∀k ∈ K, Sk(0) ≤ p∗k (13)

Is there a possibility for one player i, to hold p†i > p∗i ?
Following Eq. 13 and due to the fact that in every turn a
user cannot decrease its power, in order for this to happen, a
user j from all the users, has played a power that exceeds its
p∗j during one of its turns. Let p be the strategy profile of the
game right before this turn. Because of the above we have:

∀k ∈ K, pk ≤ p∗k (14)

Thus player j played a transmission power pexcj ∈ Aj that

pj ≤ p∗j < pexcj (15)

Since the strategy profile p∗ = (p∗1, . . . , p
∗
|K|) is an ESE, from

Eq. 2b, Eq. 6, we also get that

∀p ∈ Aj : (p ≥ p∗j ), cj(p) ≥ cj(p∗j ) (16)

Because of the fact that p∗ is an SE, we get that p∗j ∈ fj(p∗−j).
Because of Eq. 14, and the fact that the utility functions are
decreasing with respect to the total summation of the powers
of the other users we obtain that:

p∗j ∈ fj(p−j) (17)

Combining Eq. 15, Eq. 16, and Eq. 17 user’s j best response
can be neither pexcj , nor any power that is strictly greater than
p∗j . Thus, user j will not play a power that is greater than p∗j .
So the answer to the previously stated question is negative.

Algorithm 2 Turn Phase

1: if still satisfied then
2: do not change transmission power;
3: else
4: [Msp, IndexOfMsp] ←

BinarySearch(Pk[],Msp, |Ak|, uk(),p−k);{Finds
new lower limit (as the vector p−k has changed) using
binary search in Pk[] from previous Msp to Pmax

using the utility function of the player}
5: play Sk(IndexOfMsp); {When all of

Pk[indexOfMsp] to Pk[|Ak − 1|](= Pmax))
strategies satisfies you play the power that gives the
lowest cost}

6: end if

Considering the above argument, it holds that, ∀k ∈
K, p†k ≤ p∗k. Furthermore, since the action profiles p∗ and
p† are ESEs, it holds that for every user k:

∀p ∈ Ak : p ≥ p†k, ck(p) ≥ ck(p†k) (18a)
∀p ∈ Ak : p ≥ p∗k, ck(p) ≥ ck(p∗k) (18b)

But as we have proven for each user k it holds that p∗k ≥ p
†
k,

therefore based on Eq. 18a we conclude: ∀k ∈ K, ck(p
†
k) ≤

ck(p
∗
k). Consequently,

∑
k∈K ck(p

†
k) ≤

∑
k∈K ck(p

∗
k). Given

that the above analysis is valid for every ESE p∗, it will also
hold true for one MESE. So p† is a MESE.

One corollary of the above is that since it holds that ∀p∗ ∈
E,∀k ∈ K, p†k ≤ p∗k we have also shown that from all the
ESEs, p† is the most efficient one in terms of power. It is also
noted that in this work we proved that MEBRD converges to
the MESE point, under the assumption that for every player k,
fk(·) is not empty. Nevertheless, in practice this assumption
is not required to hold for the proposed scheme to work, and
it can be relaxed by simply adding for each player k one
auxiliary (virtually maximum) transmission power, pMk , in its
strategy space such that ∀p−k ∈ A−k, pMk ∈ fk(p−k) and
ck(p

M
k ) = +∞. If MEBRD converges to the strategy profile

p† = (pM1 , . . . , p
M
|K|) then the game does not possess any ESE.

D. Complexity

In this subsection, the complexity of the algorithm is studied
in the case of the users are playing sequentially in a given
order. Let us concentrate on one user k in order to specify its
CPU time complexity excluding the time that other users take
in order to make their decisions. At first, user k should sort
the array Pk[] so that would be a O(|Ak| · log2(|Ak|)) time
complexity. In every cycle of turns, someone should always
increase its power, or else the algorithm converged to p†. The
worst case is bound by the case where the game would have
C = |A1|+ · · ·+ |A|K|| cycles of turns. So, in C−|Ak| cycles,
user k will find out, in constant time, that it is satisfied. On
the other hand, in |Ak| cycles of turns the user should do
one binary search in Pk[] in order to find out its next move.
Therefore, for all of the cycles it will totally spend O((C −
|Ak|) + |Ak| · log2(|Ak|)). Thus, the total time complexity is
O((C−|Ak|)+|Ak|·log2(|Ak|)). Note, that if each user has the
same cardinality in its strategy space, N , the total complexity
will be O(|K| ·N +N · log2(N)).

V. PERFORMANCE ANALYSIS AND EVALUATION

In this section, we provide some indicative numerical results
to evaluate the performance of the MEBRD algorithm, while
at the same time demonstrating the key benefits of the MESE
point. For demonstration purposes, the utility function of each
user is assumed to follow Eq. 4. The distance dk,∀k ∈ K from
the base station is randomly and uniformly distributed within
the range of 1 to 50 m. The gain gk of each user k is inversely
proportional to the square of its distance dk, i.e., gk = 1

d2 .
Each user is assumed to have a finite number of power levels,
while its maximum transmission power is 1Watt.



A. Pure Operation

Fig. 1 presents, for a two user uplink power control game,
the steps of the MEBRD to converge to an MESE point
with respect to each user’s transmission power, assuming
either increasing cost function (Fig. 1a) or arbitrarily randomly
chosen cost function (Fig. 1b). The colored region represents
all the strategy profiles that are SEs and each point’s color
depends on the cumulative cost of the two users, where the
light and dark color represents high and low cost, respectively.
It is noted that in Fig. 1a each user starts with its lowest
transmission power and monotonically converges to the unique
MESE which is also the SE that charges each user with the
lowest possible cost and power. Please also note that in Fig.
1a and Fig. 1b, the linear trend of the satisfaction region
stems from the selection of the uthr value, which in our case
represents the utility that each user would gain if it transmitted
with an intermediate power, i.e., 0.5W , in its feasible power
range. In the rest of this section we consider increasing cost
function with respect to user’s transmission power.

Assuming that each user is capable of achieving its QoS
prerequisites, it is highly possible for the game to possess
multiple ESEs. In Fig. 2, we compare the cost allocation of
different ESEs (multiple curves) of an uplink power control
game with four users. We confirm that the MESE achieves
the lowest cumulative cost by assigning to each user the
transmission power associated with the lowest effort compared
to every ESE, as claimed in Proposition 5.

B. Complexity Evaluation

The time complexity of the MEBRD algorithm, as analyzed
in Section IV. D, mainly depends on the number of users in
the system and the number of the discrete transmission power
levels that each user possesses. Fig. 3 presents the behavior of
the execution time of the MEBRD algorithm with respect to
the number of each user’s discrete transmission power levels.

The time complexity of the MEBRD algorithm depends
also on every parameter of the game, such as for instance
each user’s threshold uthr, above which the user is satisfied.
For example, if each user is satisfied by gaining very low
bit rate, most of the transmission powers will satisfy the user
independently of the power of the others, hence the MESE
that the MEBRD algorithm converges will consist of low
transmission powers and it will converge fast. Specifically, Fig.
4 presents the time needed for the MEBRD to converge to its
MESE as a function of the number of users in the system,
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Fig. 1: Convergence of the MEBRD algorithm in a 2-user
uplink power control game
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Fig. 3: Execution time of the MEBRD algorithm as a function
of the number of each user’s transmission power levels

assuming 150 different transmission power levels available to
each user. In particular two cases are studied with respect
to each user’s threshold parameter uthr: (a) high threshold
(Fig. 4a) and (b) low threshold (Fig. 4b). In the latter case,
it is easier to satisfy the requirements and more SEs are
expected to exist. Please also note that the low thresholds are
selected such that the game even with 400 users in the system
will possess at least one equilibrium. The top curve in each
subgraph (referred to as Static) represents the time needed for
the MEBRD algorithm to converge. For example, when the
game consists of a lower number of users (e.g., 100) each user
is satisfied easily, thus experiencing a fast convergence. On
the other hand, when the number of users is approaching 400,
the algorithm needs more iterations to converge. After that
number, the system does not possess any equilibrium points. In
this case the number of required iterations decrease, since each
user makes greater steps increasing its transmission power in
order to meet its QoS prerequisites and eventually fail.

The second curve in the two subgraphs of Fig. 4 (referred
to as Dynamic Entrance) denotes the time needed in order the
MEBRD algorithm to converge, when each run of the MEBRD
is not independent as before. In contrary, five users every
time enter the game, while the previous number of users had
converged to the MESE and use this point in order to initialize
their strategies in the new run. As the algorithm does not need
to be in sequential turns, it will still converge to the MESE for
the new number of users, while lower convergence time than
before (top curve) is observed. Last it is observed that in the
latter case the time needed for convergence is not necessarily
strictly increasing with respect to the number of users.
C. Comparative Results

In this subsection, we compare the MESE as a strategy
profile, with the corresponding ones that an Energy Efficiency
Maximization or Shannon Maximization algorithm would ob-
tain, with respect to different performance metrics. Specifi-
cally, in this scenario, six users are considered in the system
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Fig. 4: Execution time of the MEBRD algorithm as a function
of the number of users in the system.
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Fig. 5: Comparison of strategy profiles for MEBRD, Energy-
Efficiency Maximization and Shannon Maximization

that are located at decreasing distances from the base station.
Therefore, users with lower ID have the highest distances from
the base station, thus worse channel conditions. With reference
to the energy efficiency maximization case, a utility function
that represents the achievable data rate over corresponding
consumed power (expressed in bits/joule) was adopted, as
typically defined and used in corresponding literature [5]. In
both cases of Shannon and energy efficiency utilities we set
W = 106Hz. In particular, Fig. 5a suggests that for the first
3 users (the 3 users that are the farthest from the base station)
the energy efficiency maximization algorithm, as expected,
scores higher in the energy efficiency metric. However, as
shown in Fig. 5b this happens at the cost that each of the
three users transmits with a very high transmission power
compared to the MESE, hence gaining higher bit rate than their
QoS prerequisites (Fig. 5c). Thus, the MESE strategy profile
converges to quite low transmission powers, while assigning
to each user bit rate that is close to its threshold (green line in
Fig. 5c) and therefore satisfying each user’s requirement. The
other two strategy profiles do not properly adapt to the users’
needs, since they either exceed the threshold forcing the users
to transmit with high power, or leave the users unsatisfied.

VI. CONCLUDING REMARKS

In this paper, we adopted the game theory in satisfaction
form, to redefine and treat the uplink power control problem in
wireless networks, for a general set of users’ utility functions.
Given this setting, we initially defined and discussed the
different equilibrium points, i.e., SE, ESE and MESE. Among
those, the MESE appeared to be of high theoretical and
practical interest, and therefore its properties were thoroughly
examined. In particular, it is shown that at the MESE point, for
any arbitrary cost function, each user transmits with a power
level which satisfies its QoS prerequisites with the lowest
cost not only from its own perspective, but from the whole
system’s perspective as well. The existence and uniqueness of
the MESE point were shown and a distributed algorithm was
introduced to determine the MESE point. Detailed numerical
results were presented to highlight and reveal the benefits
of the MESE point compared to other types of equilibrium,
and the superior performance of the proposed novel resource
management framework in terms of power savings and im-
proved network capacity. As part of our current and future
work, we plan to investigate and quantify the ”inefficiency”
introduced by the commonly adopted solutions in the literature
that directly target energy efficiency maximization.
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