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Abstract—Modern models for Public Safety Networks (PSNs)
utilize Unmanned Aerial Vehicles (UAVs) acting as ad-hoc base
stations and complementing the Macro Base Station (MBS) to
support the ground users’ efficient and undisturbed communica-
tion. In this paper, we introduce a holistic and realistic framework
that dynamically enables the ground users to invest their trans-
mission power in an autonomous manner either in the UAV-based
and/or MBS-based communication, while accounting for their
Quality of Service (QoS) prerequisites and risk preferences. The
UAV-based communication is characterized by limited available
bandwidth, but close distance among the users and the UAV, thus
resulting in users’ low transmission powers and high achievable
data rate, if properly utilized. In our work, the UAV’s bandwidth
is treated as a Common Pool of Resources (CPR), which can be
exploited by all the users residing in the disaster area. However,
the latter comes at the expense of resource fragility and potential
failure from over-exploitation, due to its fully shared nature
and excessive competition among the users. In contrast, the
MBS due to its inherent characteristics acts as a safe resource,
providing a guaranteed perceived satisfaction to the users based
on their transmission power investment. Considering ground
users’ diverse behavioral patterns, when probabilistic uncertainty
of the UAV’s shared bandwidth is introduced, we model the
ground users’ power control problem under the principles of
Prospect Theory. The formulated resource orchestration problem
is solved as a Fragile CPR game and its convergence to a unique
Pure Nash Equilibrium (PNE) point is proven. A distributed
low-complexity algorithm that converges to the unique PNE is
devised, while the performance of the proposed approach is
evaluated through modeling and simulation.

Index Terms—Extreme Communication, Public Safety Net-
works, Resource Fragility, Prospect Theory, Game Theory.

I. INTRODUCTION

Public Safety Networks (PSNs) are utilized to ensure re-
silient and reliable exchange of data in disaster-stuck areas
(e.g., natural disasters, terrorist attacks). PSNs are expected
to be deployed in extreme communication environments and
are characterized by their fast deployment, adaptive operation,
coverage guarantee, low latency, and extended energy avail-
ability for their users. Unmanned Aerial Vehicles (UAVs) sup-
port PSNs towards improving system adaptivity and resilience
by providing coverage extension, reduced transmission power
requirements and enhanced bandwidth availability.
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A. Related Work

Among the key challenges related to the deployment and
operation of the UAVs to support the communication demands
in PSNs, that have attracted significant interest in the literature,
are: (a) the intelligent resource management to support the
PSNs’ energy-efficient operation, and (b) the efficient band-
width allocation to improve users’ achievable data rate. In [1],
the authors use the UAV as a relay to enable the communi-
cation of ground users, who are either far away from a base
station or simply obstructed. A non-convex joint optimization
problem is formulated and solved towards optimizing users’
transmission power, achievable data rate, bandwidth usage and
UAV’s position. Furthermore, a centralized resource allocation
problem is studied in [2] towards maximizing the overall users’
throughput in a UAV relay system, while considering that the
users adopt the Non-Orthogonal Multiple Access (NOMA)
technique for their communication. In [3], the problem of
maximizing the uplink minimum throughput of all the ground
users during a specific period of the UAV’s flight is studied,
while considering the UAV’s maximum speed constraint and
the users’ energy availability. The problem of joint aerial-
terrestrial resource management in mobile radio networks
supported by a UAV is studied in [4] and the authors show
that significant improvement in users’ achievable data rate and
energy-efficiency can be obtained, by properly optimizing the
system’s parameters related to the UAV flight.

The uplink resource allocation regarding the power and
transmission timeslots allocation among the ground users is
investigated in [5] to optimize the users’ uplink sum rate. The
authors decompose the joint sum rate optimization problem
into the individual problems of energy allocation and trans-
mission timeslots allocation, which subsequently are solved
separately. Furthermore, in [6], the authors propose a game-
theoretic mechanism for load balancing between WiFi access
points and LTE unlicensed base stations mounted on a UAV,
utilizing a no-regret learning algorithm. The optimal location
of a UAV when device-to-device underlay links are present is
studied in [7].

B. Contributions and Outline

The previous examined research works, have demonstrated
that the UAV provides additional bandwidth and communica-
tion flexibility to the users. The majority of the literature has



assumed that the users in PSNs act as neutral expected utility
maximizers, thus the Expected Utility Theory (EUT) has been
used to solve the emerging resource management problems
[8]. However, this does not hold true in real PSNs, where users
make decisions: a) under risks introduced by the extreme and
uncertain communication environment, the limited information
availability and bandwidth limitations, and b) based on their
personal characteristics and reactions under risks.

Despite the extensive existing literature with respect to the
resource allocation problem in UAV-assisted PSNs, to the best
of our knowledge the resource orchestration considering users’
risk-aware behavior in terms of communicating either over the
UAV and/or the MBS has not been studied so far. In this paper,
we aim at exactly filling this gap, by designing a novel flexible
users’ power control framework, where the users exploit both
the MBS and UAV connectivity, while exhibiting risk-based
behavior. This is based on the use of Prospect Theory (PT) [9]
which presents a realistic model to capture users’ risk-aware
characteristics within the UAV-assisted PSN, thus introducing
a more pragmatic approach compared to the conventional EUT,
that treats the humans as risk-neutral utility maximizers.

Specific prospect-theoretic utility functions are defined rep-
resenting the ground users’ satisfaction from the UAV and
MBS-based communication and corresponding bandwidth us-
age. The bandwidth’s fragility in the UAV-based communi-
cation is examined regarding its exploitation by the users
(Section II-B). Based on the above, a user-centric power
control problem is formulated as a maximization problem
of each user’s expected prospect-theoretic utility, and it is
confronted as a non-cooperative game among the users [10].
The specific decision at stake refers to the users’ investment of
their transmission power in the two available communication
alternatives. The existence and uniqueness of a Pure Nash
Equilibrium (PNE) is shown and the convergence of the
users’ power strategies to the unique PNE is proven (Section
III). A distributed low-complexity algorithm that converges
to the unique PNE is also devised (Section IV). A series of
experiments are performed to evaluate the performance of the
proposed user-centric risk-aware power control framework in
the UAV-assisted PSNs, in terms of users’ transmission power
investment, achievable data rate, fragility of the UAV’s avail-
able bandwidth and impact of users’ risk-aware behavior on
the system’s operation. Moreover, the concept of the freshness
of information is adopted and numerically evaluated, in order
to capture the need and criticality of fast data exchange that
can be achieved through the UAV-based communication, and
thus contribute to the greater rate of return and corresponding
satisfaction for the users in some scenarios (Section V).
Finally, Section VI concludes the paper.

II. PROSPECT-THEORETIC UAV-ASSISTED PUBLIC SAFETY
SYSTEMS: OPERATION OVERVIEW AND MODELING

A. The Tragedy of the Commons

In the UAV-assisted PSN, each ground user i, i ∈ N ,
where N denotes the set of users, can communicate over
the UAV and/or the MBS. The UAV-based communication

is characterized by limited available bandwidth (as the UAV
acts as an ad-hoc communication solution in the disaster
area) compared to the MBS-based communication. However,
due to the UAV’s proximity to the users and respectively
improved channel gain, the UAV-based communication be-
comes more attractive to them as they can achieve higher
data rates with lower transmission power. Similarly, the close
distance between the users and the UAV contributes to the fast
exchange of data, thus, improving the freshness of information,
which is critical in many requested services especially during
a catastrophic event. Thus, the available bandwidth in the
UAV-based communication is considered as a Common Pool
of Resources (CPR), since it is non-excludable (i.e that is
accessible by all users), rivalrous, and subtractable. However,
the potential over-exploitation of the CPR would conclude to
the failure of the UAV’s bandwidth, as due to the increased
interference at the receiver, i.e., UAV, none of the ground users
will be eventually satisfied . This observation is motivated by
the well-known concept of the Tragedy of the Commons [11].

In contrast, the MBS usually resides far away from the
majority of the users and higher transmission power levels are
required by the ground users to achieve their QoS satisfaction.
Thus, the MBS-based communication becomes less attractive
as it results to lower energy-efficiency transmissions. On
the other hand, assuming that usually a greater portion of
bandwidth is available by the MBS to support the ground
users’ communication and considering that more processing
capabilities are offered by the MBS, in our system model the
MBS’s available bandwidth is treated as a safe resource alter-
native, due to the fact that each user can obtain a guaranteed
level of QoS given its personal characteristics (e.g. channel
gain, transmission power).

Within the considered UAV-assisted PSN, each user i, i ∈ N
has a maximum transmission power PMax

i , which is invested
to the UAV and MBS-based communication towards fulfilling
its QoS demands. Each user’s goal is to determine in an
autonomous manner its transmission power investment to the
UAV-based communication PUAVi and to the MBS-based
communication PMBS

i . The percentage of user’s i power
investment to its transmission to the UAV is xi, xi ∈ [0, 1],
thus, PUAVi = xiP

Max
i , thus, PMBS

i = (1− xi)PMax
i .

B. Prospect-theoretic Utility Functions

The ground users are assumed to exhibit risk-aware behavior
towards determining their transmission power levels PUAVi .
This behavior stems from the uncertainty of the outcome
and the enjoyed QoS, due to the UAV’s limited available
bandwidth, communication traffic congestion, and the in-
creased interference. To capture users’ risk-aware behavior, we
follow the Prospect Theory principles, and the users’ prospect-
theoretic utility is accordingly defined as follows [9].

Ui(yi) =

{
(yi − y0,i)λi when yi > y0,i
−ki(y0,i − yi)µi otherwise

(1)

where yi(xi, xT ) is the user’s i actual utility, xT =
∑N
i=1 xi

the total power investment to the UAV-based communica-
tion, and y0,i the reference point. The users’ satisfaction



is determined with respect to a reference point y0,i [9],
which is considered as the ground truth of the users’ actual
utility yi(xi, xT ). We define y0,i ,

BMBS/NMBS

PMBS
i

ln(1 +

γMBS
i ),∀i ∈ N , as the achieved energy-efficiency, if the

users were exploiting only the safe resource (transmission
only to the MBS), where BMBS is the MBS’s bandwidth,
NMBS the number of users transmitting to the MBS, γMBS

i =
BMBS

RMBS
i

hMBS
i PMBS

i∑
j>i h

MBS/UAV
j P

MBS/UAV
j +σ2

represents the user’s i

Signal to Interference plus Noise Ratio (SINR), RMBS
i is the

users’ requested service data rate, hMBS
i reflects the user’s

channel gain to the MBS,
∑
j>i h

MBS/UAV
j P

MBS/UAV
j is

the interference considering the NOMA technique, and σ2 is
the variance of the noise power.

The parameters λi, µi ∈ (0, 1] express the user’s sensitivity
to the gains and losses of its actual utility yi(xi, xT ), respec-
tively. The risk seeking behavior of a user in losses and its
risk averse behavior in gains is reflected by small values of
the parameter λi. Small values of parameter µi imply higher
decrease of user’s prospect-theoretic utility for small values
of yi and close to the reference point y0,i. Without loss of
generality, we assume λi = µi. The loss aversion parameter
ki, ki ∈ [0,+∞) reflects the impact of losses compared to
gains on user’s prospect-theoretic utility. If ki > 1, the user i
weighs the losses more than the gains, while if 0 ≤ ki ≤ 1,
the user weighs more or equal the gains than the losses, thus
presenting an aggressive gain seeking behavior.

If the UAV’s bandwidth is not over-exploited (CPR sur-
vives), the user enjoys the utility (measured in energy-
efficiency units) of transmitting data to the MBS (first term
of Eq. 2) and the UAV (second term of Eq. 2) as follows.

yi(xi, xT ) = y0,i(1− xi) + EixiR(xT ) (2)

where Ei = BUAV /NUAV

PUAV
i

ln(1 + γUAVi ), BUAV is the UAV’s
bandwidth, NUAV is the number of users transmitting to
the UAV, and γUAVi = BUAV

RUAV
i

hUAV
i PUAV

i

σ2+
∑

j>i h
MBS/UAV
j P

MBS/UAV
k

reflects the user’s i SINR measured at the UAV. The function
R(xT ) represents the rate of return of the UAV-based commu-
nication to the users, which is a decreasing concave function
with respect to xT =

∑N
i=1 xi . For demonstration purposes,

the rate of return R(xT ) of the CPR is formulated as follows:

R(xT ) = 2− exT−1 (3)

The CPR has a probability of failure Pr(xT ) (CPR’s
fragility) to serve the users who transmit to the UAV, which is
increasing with respect to users’ aggregate power investment
xT . In the following, we consider Pr(xT ) = x2T and xT
is considered normalized. If the CPR survives, then each
user perceives an actual utility (Eq. 2) greater than the ref-
erence point (yi > y0,i). Via subtracting the reference point
y0,i from the actual utility (Eq. 2), and shaping the result
according to the first branch of Eq. 1, we have Ui(xi) =
xλi
i [EiR(xT )− y0,i]λi . For the simplicity of the notation, we

normalize the rate of return function, so that y0,i = 1, and
denote Ri(xT ) , (EiR(xT )−1)λi , where Ri(xT ) is concave,

decreasing, twice continuously differentiable and positive.
Thus, Ui(xi) = xλi

i Ri(xT ). On the other hand, if the UAV’s
bandwidth is over-exploited by the users’ transmissions, then
no user receives any satisfaction from its transmission to the
UAV. Thus, the second term of Eq. 2 becomes zero and the
users enjoy the transmission only to the MBS. In this case,
the actual utility is yi ≤ y0,i, thus, by subtracting the actual
utility from the reference point and reshaping the result based
on the second branch of Eq. 1, we have Ui(xi) = −kixλi

i .
Based on the previous analysis, the ground users’ prospect-

theoretic utility function (Eq. 1) can be rewritten as follows.

Ui(xi) =

{
xi
λiRi(xT ) if yi > y0,i
−kixλi

i otherwise
(4)

Given the CPR’s probability of failure Pr(xT ), the prob-
ability that the UAV’s bandwidth serves the users is (1 −
Pr(xT )). As a result, Eq. 4 can be written equivalently as:

Ui(xi) =

{
xi
λiRi(xT ) with prob. (1− Pr(xT ))

−kixλi
i with prob. Pr(xT )

(5)

III. SOLUTION VIA FRAGILE CPR GAMES

The sophisticated design of the prospect-theoretic utility
functions sufficiently represents real-life outcomes of ground
users’ operation in the UAV-assisted PSNs. In view of this
realization, user behavioral modeling and actions become
the key element for the self-optimization of the PSN. The
users incorporate multiple parameters in shaping their strategic
decision-making (e.g., QoS, transmission power, probability
of CPR failure, heterogeneous risk and gain perceptions etc.)
and define their expected prospect-theoretic utilities, under a
probabilistic perspective, as follows.

E(Ui) = xi
λiRi(xT )(1− Pr(xT ))− kixλi

i Pr(xT ) (6)

Subsequently, the optimization of the operation of the PSN
via the resource allocation and simultaneous risk management
is formulated as a distributed maximization problem:

maxE(Ui) = max{xλi
i fi(xT )}, ∀i ∈ N

s.t. xi ∈ [0, 1]
(7)

where fi(xT ) = Ri(xT )(1−Pr(xT ))−kiPr(xT ) corresponds
to the user’s effective rate of return. The above problem can
be treated and solved as a Fragile CPR game which captures
not only the rising opportunity of supporting the performance
of the PSN via the commonly shared bandwidth of the UAV,
but also the potential implications of resource fragility.

The commonly shared nature of the UAV’s bandwidth is
well aligned with the fundamental principles of CPR games,
since the latter refer to rivalrous and non excludable resources,
meaning that the competitive stance of each user aiming to
claim a substantial fraction of the provided bandwidth in order
to reach satisfactory QoS levels, limits the ability of other
users to optimize their own operation and transmission by con-
densing the returns obtained from the remaining bandwidth. A
Fragile CPR game is defined as Γ = [N, {Xi}i∈N , {Ui}i∈N ],



where each user’s strategy is Xi ∈ [0, 1]. In Fragile CPR
games, the probability of resource failure Pr(xT ) is consid-
ered convex, increasing and twice continuously differentiable
with respect to xT .
Pure Nash Equilibrium: The notion of Pure Nash Equilibrium
(PNE) provides a stable and predictable solution for the non-
cooperative game, under which no user has the incentive to
deviate from the concluded strategy, since its utility cannot
be improved by a unilateral strategy change, given that the
strategies of all other users remain unmodified. For game Γ,
the PNE is the optimal investment vector x∗ = {x∗i } such
that Ui(xi

∗, x∗−i) ≥ Ui(xi, x∗−i), ∀xi ∈Xi [12], under which
the UAV’s bandwidth does not collapse and the users enjoy
sufficient returns through their transmission to the UAV.
Best Response: bi is considered as the strategy of each
user providing the most favorable outcome given the ac-
tions of the other users, and is defined as, bi(x−i) =
argmaxE(Ui(xi,x−i)), bi : X −i ⇒ Xi, where X −i
represents aggregate investment space excluding user i. For
the game Γ, 0 < bi < 1 reflects a joint transmission scheme
to the MBS and the UAV, whereas bi = 1 indicates a failure
state of the UAV’s bandwidth, since all users transmitted their
data directly to the UAV.

Theorem 1: (Existence of PNE) There exists at least one
point % ∈Xi which is a maximum point E(Ui).

Proof: An extremal point for E(Ui) can be identified by
applying the first order derivative criterion:

∂E(Ui)

∂xi
= xi

λi−1φ(xi) = 0 (8)

where φ(xi) = (xif
′
i(xT ) + λifi(xT )). Towards facilitating

the study of the above equation, we first study fi(xT ) and
its behavior. Since Ri(xT ) is decreasing and concave, then
fi(xT ) = Ri(xT )(1 − Pr(xT )) − kiPr(xT ) is proven to be
decreasing and concave for Ei > 1, λi < 0.5, i.e., ∂fi(xT )

∂(xT ) <

0, ∂
2fi(xT )
∂x2

T
< 0. By examining the monotonicity of fi(xT ), we

observe that it changes its sign from positive to negative within
(0, 1), hence there exists a unique value ξ ∈ (0, 1) such that
fi(ξ) = 0. By considering the above, from (8), φ(xi)|xi=0 > 0
and φ(xi)|xi=ξ < 0, since f ′i < 0,∀xi ∈ Xi and fi(ξ) = 0.
As a result, by applying and extending Bolzano’s theorem for
∂E(Ui)
∂xi

, there exists at least one extremal point % ∈ (0, ξ) for
E(Ui) such that ∂E(Ui)

∂xi
= 0.

Lemma 1: The extremal point % in the reduced strategy
space X ′

i = (0, ξ) is a local maximum point for E(Ui) and
is identified as a PNE of game Γ.

Proof: We apply the second order derivative criterion for
E(Ui), that is, ∂

2E(Ui)
∂x2

i
= λi(λi − 1)xi

λi−2fi(xT )

+ 2λixi
λi−1f ′i(xT ) +xi

λif ′′i (xT ). By tracking the sign of all
terms of the above equation, we observe that in the reduced
space X ′

i are negative, and hence E(Ui) is concave, that is
∂2E(Ui)
∂x2

i
< 0 and % is a local maximum of E(Ui).

Theorem 2: (Uniqueness of PNE) The point % ∈ X ′
i is a

unique PNE for the game Γ.

Proof: Since E(Ui) is concave, ∂E(Ui)
∂xi

is decreasing in
X ′
i . Hence, the point %, (∂E(Ui)

∂xi
|xi=% = 0) is unique due to

the monotonicity of ∂E(Ui)
∂xi

and % is a unique global maximum
point for E(Ui) and Γ admits a unique PNE.

Theorem 3: (Convergence to PNE) Convergence of game Γ
to its unique PNE is established if bi is decreasing in xT [13].

Proof: We determine optimal nonzero investment of a
player as I (xT ) = −λifi(xT )/f ′

i(xT ) for which I (bi(x−i) +
x−i) = bi(x−i), when bi(x−i) > 0. It is proven that
I ′(xT ) < 0, thus, I is decreasing. We assume x1 = bi(x−1),
x2 = bi(x−2), with x−1,x−2 ∈ X ′−i. If bi is increasing,
then for x2 > x1, then bi(x−2) > bi(x−1). However, due
to I being decreasing, for x2 > x1, I (bi(x−2) + x−2) =
bi(x−2) < bi(x−1) = I (bi(x−1) + x−1), which is a
contradiction. Hence, bi is decreasing in xT .

IV. DISTRIBUTED ALGORITHM

In this section, we introduce a low complexity and it-
erative Prospect-theoretic Autonomous Resource Investment
algorithm for public Safety (PARIS) which determines the PNE
of the game Γ. The primary novelty of the algorithm lies in the
multifaceted execution of different actions of distinct network
stakeholders during the investment and resource allocation
phases, allowing for decision decentralization which enables
the self-optimization dynamics of the network. Each user
interacts with the UAV and independently defines its invest-
ment to the UAV’s bandwidth, stemming from its prospect-
theoretic modeling, as decribed above. As the system evolves,
PARIS confirms the convergence of the UAV-assisted PSN to
a stable operational point, or announces the collapse of UAV’s
bandwidth due to excessive user resource demand.

V. NUMERICAL RESULTS

A. Experiment Setup and User Behavior Analysis

In this section, we provide an extensive numerical evaluation
of the operating features and the performance of the presented
prospect-theoretic framework in the UAV-assisted PSNs via
modeling and simulation. We consider a UAV-assisted PSN
topology with 20 ground users. The MBS-based network
covers an area of approximately 6km, whereas the UAV
hovers close to the users (from 0.2 to 1.5km) ensuring more
reliable connections and superior channel gain conditions, both
operating under the NOMA transmission technique. The total
available bandwidth is 4MHz, 70% of which is offered by
the MBS and the remaining fraction becomes available from
the UAV. We set PMax

i = 0.2Watts and the users request
emergency services, e.g., RUAVi = 64Kbps.

We examine the case where the UAV is located above a
homogeneous population with respect to the users’ risk pref-
erences and behaviors (λi = 0.1 and ki = 20). Specifically,
Fig. 1-a shows the users’ achieved data rate from the UAV
and MBS-based communication versus their distance from the
MBS. It is shown that only the users closer to the MBS manage
to achieve high data rates from the MBS, due to their good
channel gain conditions, taking advantage of the highly MBS’s
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Fig. 1: (a) Users’ data Rate vs Distance from the MBS, (b) Users’ Data rate and Power Investment vs Distance from the UAV,
and (c) Mean Transmission Power and Average CPR Energy-Efficiency vs Loss Aversion Parameter k.
Algorithm 1 PARIS: Prospect-theoretic Autonomous Re-
source Investment for public Safety

Require:
UAV, MBS, user coordinates & BMBS/UAV , ki, λi

1: step← 1; UAV (step)
fails ← 0; UAV (step)

active ← 0

2: Calculate hMBS/UAV
i , apply SIC, set random x

(step=1)
i

3: while UAV (step)
fails = 0 and UAV

(step)
active = 0 do

4: Calculate PMBS/UAV
i ; E(Ui)

(step);
5: for all xi ∈ [0, 1] do
6: x∗i =argmaxxi

E(Ui)
7: if E(Ui) > E(Ui)

(step) then
8: x

(step+1)
i ← x∗i and E(Ui)

(step+1) ← E(Ui)
9: end if

10: end for
11: if

∑
RUAVi > BUAV then

12: UAV
(step+1)
fails ← 1

13: end if
14: if x(step+1)

i − x(step)i < ε then
15: UAV

(step+1)
active ← 1

16: end if
17: step← step+ 1
18: end while
19: return

User investment xi and UAVfails if PSN has failed

under-exploited bandwidth, while the more distant ones do not
manage to transmit via the MBS at all. On the contrary, all the
users exchange data with the UAV, due to its close proximity
and superior communication channel gains. The impact from
the application of the Successive Interference Cancellation
technique in the NOMA communication environment is evi-
dent, with the users farthest away (deteriorated communication
channel conditions) to successfully operate due to the absence
of interference. Regarding the users’ investment to the UAV-
based communication, in Fig. 1-b it is shown that users
closer and farthest away from the UAV do not need to invest
heavily in the CPR since they achieve to obtain their target
data rates by taking advantage of the NOMA communication
environment. On the other hand, middle distant users from
the UAV, select to fully invest their transmission power in the

UAV-based communication, however they still do not reach
their target data rate since they are simultaneously impacted by
the high interference levels and the limited UAV’s bandwidth.

Following, we modify users’ behavior regarding their risk
aversion perception, reflected via ki = k. Fig. 1-c presents
users mean transmission power and energy-efficiency for in-
creasing values of k. For low values of k, users underestimate
the CPR’s probability to fail and transmit with maximum
power to communicate with the UAV, leading to the inevitable
collapse of the UAV’s bandwidth due to its over-exploitation,
thus, energy-efficiency is zero since users are practically
unable to communicate. With the gradual increase of k, users
become more conservative, thus, their transmission power
decreases and the CPR does not fail with energy-efficiency
reaching its highest average value, since the UAV bandwidth
is fully utilized. For even higher values of k, users further
reduce their investment to the CPR as they become more risk
averse and subsequently their energy-efficiency decreases.

B. UAV Positioning

In this subsection we examine impact of UAV’s positioning
on the overall system performance, by allowing UAV to re-
position itself above the users towards improving the commu-
nication efficiency of the PSN. Specifically, in Fig. 2-a, we
study users’ average power investment and average data rates
for increasing average distance of the UAV from the users.
We conclude that when the UAV has greater proximity to the
examined population, the users invest less power to their UAV-
based communication, since their favorable channel conditions
ensure that they can sufficiently communicate with the UAV.
However, as the UAV moves away (especially when the
average distance surpasses 1km), the users’ power investment
xi increases rapidly, while the average attainable data rates
significantly decrease. The same hold true in Fig. 2-b as well,
where we observe that the average energy-efficiency of all
users to significantly deteriorates with the increase of the
distance of the UAV from the users, since the average energy-
efficiency decreases by 67.27% at 1.5km when compared to
an average distance of 0.7km.

C. Freshness of Information

When considering special multimedia services during the
public safety events, e.g., geolocation data collection, evac-
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Fig. 2: (a) Average Data Rate and Power Investment, and (b)
Energy-efficiency, vs UAV’s Average Distance from the Users.
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Fig. 3: Users’ Power Investment and Perceived CPR Utility as
a function of the Freshness of Information Parameter t.

uee coordinates report, etc., the freshness of the transmitted
information to the UAV or the MBS becomes of high crit-
icality. Given that the UAV is located close to the users,
the latter are attracted to transmit their data to the UAV,
since in addition to the significantly better channel conditions,
the information may arrive to the UAV much faster, when
compared to the MBS that is located far away from the
ground users, resulting in high transmission and propagation
delays. To capture the impact of the information freshness,
we introduce the parameter ti, ti ∈ [0,+∞), in the CPR’s
rate of return (Eq. 3), which is reformulated accordingly as
follows: R(xT ) = ti(2 − exT−1). If ti = 1, this means that
the freshness of information is not critical for the ground user
i, while if ti > 1, the user enjoys superior satisfaction from
sending its data to the UAV in a fast manner. Fig. 3 shows that
when the parameter ti = t, ∀i ∈ N representing that the PSN
importance of information freshness increases, the average
user perceived utility from the UAV-based communication
(first term of Eq. 6) as well as the users’ power investment
to the UAV increase. As a result, users have the incentive to
invest more in the UAV-based communication not only due
to the more favorable channel conditions, but also due to the
importance of the data from this transmission. However, as
the value of the parameter t further increases, this can lead to
the imminent collapse of the UAV’s bandwidth, since users’
aggregate investment surpasses the capacity of the UAV to
meet total demand.

VI. CONCLUSION

In this paper, a risk-aware transmission power control
framework is proposed, considering an UAV-assisted PSN,
where the ground users can invest their transmission power
towards transmitting data to either the UAV and/or the MBS.
Due to its inherent characteristice, the UAV-based commu-

nication is considered as a Common Pool of Resources,
where the users compete with each other for the UAV’s
limited bandwidth, while the MBS-based communication acts
as the safe resource. The users’ risk-aware behavior in the
created competitive communication environment is captured
in representative utility functions adopting the concepts of
Prospect Theory and the Tragedy of the Commons. A non-
cooperative power control game is formulated among the
users, who aim to maximize their prospect-theoretic utility
in an autonomous manner. The existence and uniqueness of
a Pure Nash Equilibrium point is shown and a distributed
algorithm is introduced to converge to the PNE point. Finally,
the performance of our proposed framework in terms of several
metrics is examined via modeling and simulation, while ac-
counting for users’ realistic behavioral scenarios. Our current
and future work contains the extension of the introduced
framework and users’ realistic behavior modeling, in several
other emerging communication systems within the 5G and
Internet of Things (IoT) era, including mobile edge computing
(MEC), where the users decide their optimal data offloading
to the MEC server and/or processing the data locally.
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