Integration of EEG/MEG/fMRI

Outline

• fMRI/EEG data
• Three Approaches to integration/fusion
 • Prediction
 • Constraints
 • 2nd Level Fusion

EEG/ERP

Event-related Potentials (ERPs)

Blind EEG Source Separation → ICA

Spatial Source Filtering
ICA Applied to EEG Data

Activation of 2 different muscles
Eye movement
Muscle activity
Heart beating, digital watch
Faulty sensor
Breathing, bumps caused by overlearning

EEG Artifact Rejection

Figure 3: Samples of MEG signals, showing artifacts produced by blinking, saccades, hearing and cardiac (x-axis).
What does EEG tell us?

Identification of processing stages in millisecond precision:

BUT
- poor spatial resolution (inverse problem)

What does BOLD fMRI tell us?

Identification of involved areas with millimeter precision:

BUT
- poor temporal resolution (>1 sec)
 - Indirect measure of neural activity

Identification of processing stages in millisecond precision:

A B C D
Why EEG-fMRI Integration

EEG
- + high temporal resolution (~ ms)
 - poor spatial resolution (~ cm)

fMRI
- + high spatial resolution (~ mm)
 - low temporal resolution (~ seconds)

simultaneous acquisition

EEG and fMRI data reflect the same neuronal activity

BOLD and LFP (EEG) Signal result from same neuronal process

EEG-fMRI Integration: Two Inverse Problems
EEG: Inverse Problem in Space

Ill-posed Problem:
- 2-Dim Measurement: Electrode recordings on the skull
- 3-Dim Solution: Neuronal Activation in the Brain
- Infinite Number of Solutions
- Need for Priors

fMRI: Inverse Problem in Time

Metabolic & Vascular Response

EEG/IMRI integration: separate recordings

<table>
<thead>
<tr>
<th>Separate EEG/IMRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal quality</td>
</tr>
<tr>
<td>Sensory stimulation</td>
</tr>
<tr>
<td>Behavior</td>
</tr>
<tr>
<td>Subjective experience</td>
</tr>
</tbody>
</table>

EEG/IMRI integration: simultaneous recordings

<table>
<thead>
<tr>
<th>Separate EEG/IMRI</th>
<th>Simultaneous EEG/IMRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal quality</td>
<td>+</td>
</tr>
<tr>
<td>Sensory stimulation</td>
<td>-</td>
</tr>
<tr>
<td>Behavior</td>
<td>-</td>
</tr>
<tr>
<td>Subjective experience</td>
<td>-</td>
</tr>
</tbody>
</table>
Outline

• fMRI/EEG data
• Three Approaches to integration/fusion
 • Prediction
 • Constraints
 • 2nd Level Fusion
• Conclusions

Approaches to EEG-MRI data integration

Data Integration through:

(i) Prediction
• some features of EEG to predict fMRI responses

(ii) Constraints
• Spatial information from fMRI as Priors for Source Reconstruction

(iii) Fusion
• Common forward or generative model to explain EEG and fMRI data

Through Prediction: e.g. Epilepsy

Interictal Epileptiform Discharges predict fMRI response

Benar et al., NeuroImage 2002
EEG/MRI integration: EEG-informed fMRI analysis

How can simultaneously recorded data be integrated such that the direct coupling hypothesis can be tested?

... on a trial-by-trial basis:
 • Debaner et al., (2005, J. Neuroscience)
 • Bichele et al., (2005, PrAS)

Sample
N=12 subjects (age 22-29, 5 m)
EEG
30 channel EEG brainamps
0.1-250 Hz, 5 Hz A/D
fMRI:
Siemens Trio 3-Tesla, TR 2 sec,
22 slices, TE 30 ms
Stimulation:
visual projection

EEG/MRI integration: EEG-informed fMRI analysis

Shallow vs. deep interface

EEG/MRI integration: EEG-informed fMRI analysis

Shallow vs. deep interface

EEG/MRI integration: EEG-informed fMRI analysis

Shallow vs. deep interface
Through Prediction: Alpha Rhythm

- EEG can be recorded simultaneously with fMRI
- A reasonable EEG quality can be obtained
- ICA helps to disentangle otherwise overlapping EEG signals
- EEG-informed fMRI analysis supports direct coupling
Outline

- fMRI/EEG data
- Three Approaches to integration/fusion
 - Prediction
 - Constraints
 - 2nd Level Fusion
- Conclusions

Approaches to EEG-MRI data integration

Data Integration through:

(i) Prediction
some features of EEG to predict fMRI responses.

(ii) Constraints
Spatial Information from fMRI as Priors for Source Reconstruction

(iii) Fusion
Common forward or generative model to explain EEG and fMRI data

(ii) Constraints: fMRI Priors help EEG Analysis

Without fMRI priors

With fMRI priors

Dale & Halgren, Curr Opin Neurobiol. 2001

Approaches to EEG-MRI data integration

Data integration/fusion: Previous Work
Data Fusion vs. Data Integration

- Definitions [Savopol ISPRS 2004]
 - Data Integration: The use of another data-type to improve the geometry or other information reconstructed from the first data-type (e.g. MRI constrained EEG).
 - Data Fusion: Images analyzed jointly, hence allowing them to influence one another, to reveal inter-relationships between data-types.

Possible approaches for joint analyses

- Point-based
 - Correlation [Resnick 2002]
 - Straightforward, but difficult to visualize

- Region-based
 - Interregional correlation [Haxby et al., 2002, Mathalon, et al., 2003]
 - Structural equation modeling or dynamic causal modeling [McIntosh and Bookstein, et al., 1996]
 - Useful for model testing, does not take into account all brain regions/time

- Transformation-based
 - A natural set of tools for this problem include those that transform from one modality separately
 - Singular value decomposition [Friston et al., 1993; Friston et al., 1996]
 - Independent Component Analysis [Beckmann, et al., 2002]
 - Canonical Variates Analysis [Strother et al., 1995]
 - Partial Least Squares [McIntosh, Bookstein, et al., 1996], et al., 1996]
 - Interregional correlation [Horovitz, et al., 2002, Mathalon, et al., 2003]

Separate vs. Joint Estimation

Linear mixtures with shared mixing parameter

\[x^{(1)} = \sum_{i=1}^{n} a_i s_i^{(1)} \quad \text{and} \quad x^{(2)} = \sum_{i=1}^{n} a_i s_i^{(2)} \]

In a non-joint analysis, we maximize the likelihood functions for each modality separately...

Resulting in two unmixing parameters, that then have to somehow be fused together

In contrast: for a joint analysis we maximize the joint likelihood parameters, that then have to somehow be fused together

\[w^j = \arg \max p(x^{(1)}, x^{(2)}, w) \]

Joint ICA Approach

Mixing Model: \(X^{(i)} = A S^{(i)} \) and \(X^{(j)} = A S^{(j)} \)

For two sources: \(X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix}, \) where \(m = \{E,F\} \)

Shared mixing matrix: \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \)

The mixing equations are:

\[x^{(1)} = a_{11} s_1^{(1)} + a_{12} s_2^{(1)} \]
\[x^{(2)} = a_{21} s_1^{(2)} + a_{22} s_2^{(2)} \]

Update equation: \(AW = \begin{bmatrix} 1 - 2y^T y & 2y^T \\ 2y & 1 \end{bmatrix} W \)

where \(y = g(w^m) \) and \(g(x) = 1/(1 + e^{-x}) \)
Auditory Oddball Task

Group Averaged fMRI/ERP Features

Preprocess
Feature Extraction
fMRI
EEG
Normalize
Noise Removal
jICA
Subject 1
Subject 2
Subject N

FMRI Snapshots (movie)

ERP (temporal) Components: \(T = [t_1 \ldots t_x] \)
FMRI (spatial) Components: \(S = [s_1 \ldots s_x] \)
FMRI Image Snapshot: \(M_f(t) = T' \cdot S(t) \)
ERP Snapshot: \(M_e(t) = T \cdot [S(t)] \)
Parallel ICA

- Impose additional inter-modality correlation to improve ability to identify connections between EEG and fMRI

\[\Delta \mathbf{W} = \eta \{ \mathbf{I} - 2 \mathbf{y}_{\mathbf{EF}}(\mathbf{u}_{\mathbf{EF}}) \mathbf{T} \} \mathbf{W}, \] where \(\mathbf{y}_{\mathbf{EF}} = \mathbf{g}(\mathbf{u}_{\mathbf{EF}}) \) and \(\mathbf{g}(x) = \frac{1}{1+e^{-x}} \) is the nonlinearity in the neural network…
Fusion ICA Toolbox (FIT)