Part I. From the text: Chapter 1: Problems 7, 12, 15, 36 and 37

Part II. Additional exercises:

Exercise 1.
Let \mathcal{B} be the collection of all Borel sets in \mathbb{R}. For any such Borel set U, define $\mathcal{B} \cap U$ as the collection of all intersections between U and the members of \mathcal{B}, that is $\mathcal{B} \cap U = \{B \cap U : B \in \mathcal{B}\}$. Show that $\mathcal{B} \cap U$ is a σ-algebra in U.

Exercise 2.
Recall the “dart” experiment discussed in the notes and class. Let (Ω, \mathcal{F}) be the corresponding measurable space. Consider the random variable X_2 defined as by

$$X_2(\omega) = \begin{cases} 2 & \text{if } \omega \in D_s \\ 1 & \text{if } \omega \in D \setminus D_s \\ 0 & \text{if } \omega = \text{miss} \end{cases}$$

where $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and $D_s = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1/4\}$.

Describe the σ-algebra generated by X, i.e., what is $\sigma(X)$?

Exercise 3.
Let P be a probability measure defined on (Ω, \mathcal{F}). We proved in the notes that if $A_1 \subset A_2 \subset A_3 \ldots \in \mathcal{F}$, then $\lim_{n \to \infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$. Use this fact to show that if $A_1 \supset A_2 \supset A_3 \ldots$, then $\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n)$. (Hint: Use set complementation.)

Exercise 4.
Consider a probability space (Ω, \mathcal{F}, P) and a random variable X defined on it. We define the distribution of X, denoted by μ_X, as a function on the set of Borel sets \mathcal{B} as follows: $\mu_X(B) = P(X^{-1}(B))$, $B \in \mathcal{B}$. Show that μ_X defines a probability measure on \mathcal{B}.

Exercise 5.
Show that X is a random variable if and only if $X^{-1}([r, \infty)) \in \mathcal{F}$ for every $r \in \mathbb{R}$.

Exercise 6.
Show that X is a random variable if and only if $X^{-1}((r, \infty)) \in \mathcal{F}$ for every $r \in \mathbb{R}$.

Exercise 7.
Consider a probability space (Ω, \mathcal{F}, P) and a random variable X defined on it. Show that the collection of subsets $\{X^{-1}(B) : B \in \mathcal{B}\}$ is a sub σ-algebra of \mathcal{F}.