Use the built-in Matlab random number generator (the Matlab command is \texttt{rand}) to generate samples of an exponentially-distributed random variable \(Z \). Namely, we want to generate random numbers that are mutually independent and each of them is distributed according to the probability density function \(f_Z(z) = \mu^{-1} \exp(-z/\mu)u(z) \). Note that you can use \texttt{rand}(k,l) to generate a \(k \times l \) array of independent \([0, 1]\)-valued uniformly distributed r.v.’s at once.

1. Show that if \(X \) is a uniformly-distributed r.v. in \([0, 1]\), then the new r.v. \(Z \) defined by \[Z = -\mu \log(1 - X) \]
is an exponentially-distributed r.v. with parameter \(\mu \).

2. Assuming that \(\mu = 1 \), use the result in (a) to generate \(n = 1000 \) samples of \(f_Z \). Let \(Z = [Z_1, Z_2, \ldots, Z_n] \) denote the array of identically-distributed and mutually independent samples.

3. Compute \(\max_{1 \leq i \leq n}(Z_i) \), \(\min_{1 \leq i \leq n}(Z_i) \), and the arithmetic mean \(\bar{Z} \) of \(Z_1, \ldots, Z_n \). (Use the Matlab functions \texttt{max}, \texttt{min} and \texttt{mean}).

4. Use the histogram generation capability of Matlab to generate an empirical estimate of the density function \(f_Z \) using the above 1000 samples. To achieve this task, follow the procedure outlined below.

(a) Generate the bin array \(B = [0, B_1, \ldots, B_m] \), where \(m = 100 \) is the total number of bins. Use the uniform spacing \(B_{i+1} - B_i = \delta \), where \(\delta = \max_{1 \leq i \leq n}(Z_i)/m. \) (You may use the syntax \(B = [0 : \delta : \max(Z)] \).)

(b) Perform \(H = \texttt{hist}(Z, B) \). Now \(H \) is a histogram array of the array \(Z \) using \(m \) bins, and the \(i \)th bin is centered at \(B_i \). Type \texttt{help hist} to become more familiar with generating histograms in Matlab.

(c) Define \(\hat{f}_Z \triangleq H/(\delta n) \) as an empirical estimate of \(f_Z \).

5. Plot \(\hat{f}_Z \) and \(f_Z \) as functions of the array \(B \). Comment on your results.

6. Now extend the definition of \(\hat{f}_Z \) to the entire real line by assuming that it maintains a constant value over each bin. Note that \(\hat{f}_Z \), as a function of the continuous real variable \(x \), is a piece-wise constant function. Give a rough sketch of \(\hat{f}_Z \) as a function of \(x \).

7. Argue that \[\int_{-\infty}^{\infty} \hat{f}_Z(x) \, dx = \sum_{i=1}^{m} \hat{f}_Z(B_i)\delta = 1, \]
and hence, \(\hat{f}_Z \) is a valid probability density density

8. Give a concise summary of what you learned from this problem.