Review of Last Lecture

- Short Circuit Power Analysis
- Short Circuit Power Reduction Techniques
Today’s Lecture

- Leakage Current and Power

Leakage in MOSFETs

- MOSFET consists of two diodes connected back to back, one in forward and the other one in reverse bias.

- When the transistors are off, \(V_{GS} < V_T \), the reverse biased diode will draw current, which is called “leakage current” or “off current”.

- \(I_{OFF} \) is heavily dependent on threshold voltage. Higher threshold voltage results in lower leakage, but lower performance too.
Leakage in CMOS Inverter (V\text{in}=0)

- When the input of a CMOS inverter is at 0, PMOS is ON and can deliver any current.
- NMOS is OFF and will draw I_{OFFn} leakage from the power supply.
- The leakage power consumption in this case is equal to $I_{DC} \cdot V_{DD}$.

![Diagram of Leakage in CMOS Inverter (V\text{in}=0)](image)

Leakage in CMOS Inverter (V\text{in}=V_{DD})

- When the input of a CMOS inverter is at V_{DD}, NMOS is ON and can deliver any current.
- PMOS is OFF and will draw I_{OFFp} leakage from the power supply.
- The leakage power consumption in this case is equal to $I_{DC} \cdot V_{DD}$.

![Diagram of Leakage in CMOS Inverter (V\text{in}=V_{DD})](image)
Leakage Power in CMOS Inverter

- The amount of leakage power in a CMOS inverter is input dependent.
- Assuming that the probability of input being 0 and VDD is 50% each, then the average leakage power will be:

\[
P_{\text{leak}} = I_{\text{DC,av}}V_{\text{DD}} = (0.5*I_{\text{OFFn}}+0.5*I_{\text{OFFp}})V_{\text{DD}}
\]

- Sometimes, IOFF of a MOS transistor is normalized to the width of the transistor, W. In this case you need to multiply it by the width to get the actual current.

Example: Leakage Power in an Inverter

- Compute the average leakage power in a CMOS inverter, where (W/L)_n=10, (W/L)_p=15, I_{OFFn}=27nA/µm, and I_{OFFp}=32nA/µm. The inverter uses 1.2V supply voltage and is implemented in 65nm technology node.

\[
P_{\text{leak}} = I_{\text{DC,av}}V_{\text{DD}} = (0.5*I_{\text{OFFn}}+0.5*I_{\text{OFFp}})V_{\text{DD}}
\]

\[
P_{\text{leak}} = (0.5*27x10^{-9}*(10*65x10^{-3})+0.5*32x10^{-9}*(15*65x10^{-3}))\times1.2
\]

\[
P_{\text{leak}} = 29.25 \text{ nW}
\]

- If we have a design with effectively 200 million inverter, how much the total leakage power will be.

\[
P_{\text{leak, tot}} \approx 6 \text{ W}
\]
Minimum Leakage Power Design Techniques

- Prime choice: Threshold Voltage increase, or I_{OFF} reduction
 - This will impact the performance too (Check delay equation)
- Power supply reduction
- Smaller transistors (will increase delay)
- Higher V_t (will increase delay)