Review of Last Lecture

- Sequential Logic
 - Latches and Flip-Flops
 - Timing Characteristics
 - Design of Latches and Flip-Flops
 - Setup and Hold Time Issues
Today’s Lecture

- Timing Issues
 - Critical Path
 - Timing Constraints

Pipelined Data path Circuit

- Flip flops synchronize data at each pipe stage start and finish
- Logic between them is combinational
- Since each stage begins and ends on a clock edge we can divide and conquer to determine the system timing
- This is called “timing analysis”
Timing Analysis

- Measure each path through the logic between FF’s
- We really only care about the longest path, called maximum delay for setup
- Similarly, we only care about the shortest path, called minimum delay (or contamination delay) for hold
- The path that gives the maximum delay on the whole chip is called “critical path”

Minimum Clock Period

- Don’t forget to consider delay of flip flops (setup, C2Q, and hold time) in maximum delay computation
- Example: Assuming that the setup time is 1ns, hold time is 1ns, and C2Q delay is 2ns, what is the minimum clock period? Why?
Clock Uncertainty

- **Clock skew**
 - Spatial variation in temporally equivalent clock edges; includes: deterministic + random

- **Clock jitter**
 - Temporal variations in consecutive edges of the clock signal; includes: modulation + random noise

![Diagram showing clock uncertainty factors: Power Supply, Interconnect, Capacitive Load, Temperature, Coupling to Adjacent Lines.]

Clock Skew and Setup Time Constraint

- **Worst case is when receiving edge arrives early (positive δ)**

- **Maximum delay is impacted since a clock cycle can be shorter than ideal**
 - Simply subtract the expected clock skew and jitter from the cycle time when designing
 - A failure here is not too bad: It means that you missed a setup time
 - The part is then “slow”—It will still work at a reduced clock rate

![Diagram showing clock skew and setup time constraint with combinational logic, minimum cycle time equation: T - δ = t_{c-q} + t_{su} + t_{logic} and δ = t_{CLK1} - t_{CLK2}.]
Clock Skew and Hold Time Constraint

- Worst case is when receiving edge arrives late, (positive δ)
- Minimum delay is impacted since a receiving clock edge can be later than ideal
- Means that the hold time at the receiving latch is more easily violated
- A failure here is pretty much catastrophic
- Since skew is built-in, there is nothing you can do post-silicon to fix it!
- It is generally worth-while to add more design guard-band (margin) to your min-delay timing!

\[
\begin{align*}
 &t_{c-q} + t_{\text{logic}, cd} > t_{\text{hold}} + \delta \\
 \delta &= t_{\text{CLK2}} - t_{\text{CLK1}}
\end{align*}
\]

Positive and Negative Skew

(a) Positive skew

(b) Negative skew
Example: Timing Constraints

How fast can the circuit in Fig. 8.23 be clocked if $t_{au} = 2$ ns, $t_{hold} = 3$ ns, $t_{logic} = 15$ ns, $t_{logic-ct} = 11$ ns, and $t_{eq} = 4$ ns.

$T > t_{eq} + t_{logic} + t_{au} = (4 + 15 + 2) \text{ns} = 21 \text{ns}$

$F_{max} = \frac{1}{T} = \frac{1}{21 \text{ns}} = 47.62 \text{ MHz}$

Another Example: Effect of Clock Skew

- Assume $t_{C2Q} = 350$ ps and $T_{hold} = 100$ ps. What happens?
- Assume $t_{C2Q} = 150$ ps and $T_{hold} = 100$ ps. What happens?