Review of Last Lecture

- Timing Issues
 - Critical Path
 - Timing Constraints
Today’s Lecture

- Static Random-Access Memory (SRAM)
 - SRAM cell
 - SRAM architecture
 - Sense amplifier

SRAM Cell

- SRAM cell is quite similar to flip-flop without any protective circuitry
- Therefore, reliable operation imposes transistor sizing constraints.
- Cell is selected by word line (WL=1) and read and write are often differential
Memory Read and Write Timing

- Memory timing parameters include: read-access time, write-access time, read-cycle time, and write-cycle time.

![Diagram of Memory Read and Write Timing](image)

6-T SRAM Cell

- SRAM cell consists of 6 transistors (6T cell) with differential BL.
- When reading, BLs are at VDD and have high capacitance:
 - This is essentially a short to VDD for both side of the cell.
 - The side at logic one is unaffected, e.g., Q at VDD and BL at VDD.
 - Node Q is pulled up by the voltage divider of two NMOS transistors.

![Diagram of 6-T SRAM Cell](image)
SRAM Layout

- Layout must be symmetric to reduce process variation

Real SRAM Cell

- Real cells will have extensive corner rounding and layer misalignment
 - Hence the cell will not be symmetric in reality
 - Note rounding and misalignment!
- Since there are a lot of statistics in a large SRAM, e.g., 1MB L2 has nearly 10M cells (including ECC) so random variation will work against full yield
 - This can be partly made up by redundancy
 - But solid cell design is essential
 - Worst case process corners must be used
SRAM Read - Sensing

- The simplest reading is an inverter sense
 - This is slow unless the BL is very short
- Generally, we want to use a sense amplifier
 - Smaller swing on BLs (only about 50mv is necessary)
 - The SRAM cell transistors are small and weak and BL has high capacitance. Therefore, BL swing is very slow. Faster operation requires smaller swing.
 - Smaller swing saves power (as long as we don't drive the BLs with the sense amplifier) by limiting swing on the BLs

Sense Amplifier: Static

- A simple OPAMP can be used as sense amplifier
 - Unfortunately in practice, it is very slow to respond
 - This is static, since the output is only as a function of input
- This circuit has serious CMRR problems, particularly when both inputs are near the VDD rail