
LTI Systems and Random Signals

Consider a LTI system with a transfer function H(s) which is excited with a WSS random signal X(t), with
mean µx, variance σ2

x, and ensemble ACF Rxx(τ). We will further assume that average power of the random
signal Pave = σ2

x < ∞ and that the random signal X(t) is continuous in the MS sense, i.e.,

lim
t→to

E{(X(t)−X(to))
2} = 0.

This in essence means that the expectation operator and the limit operator and hence an integral operator
can be interchanged.

Output Random Signal

Our goal in this section is to study the statistical characerestics of the output of the LTI system Y (t). We
begin by writing the ouput of the system via the convolution theorem:

Y (t) =
∫ ∞

−∞
h(τ)X(t− τ)dτ. (1)

This relation can again be interpreted in two ways:

1. the ith sample function of the output random process Y (t) is obtained by the convolution of the ith

sample function of the input random process X(t) with the impulse response of the LTI system h(τ).

2. the constituent random variables Y (t), t ∈ R of the output are obtained as a linear combination of the
constituent random variables X(t), t ∈ R of the input.

Henceforth, when we refer to the processing of a random signal via a LTI system or the filtering of a random
signal we will refer to either of these viewpoints.

Output Ensemble Statistics

The mean of the output random signal in either case is given by:

E(Y (t)) = E

{∫ ∞

−∞
h(τ)x(t− τ)dτ

}
= µx

∫ ∞

−∞
h(τ)dτ = µxH(0). (2)

This relation is significant in terms of its implication that the mean of the ouput process is also a constant.
For simplicity sake in our analysis let us further assume that the input signal has zero mean. The cross-
correlation function between the output Y (t) and the input X(t) is given by:

Ryx(τ) = E

{∫ ∞

−∞
h(σ)X(t− σ)dσX∗(t− τ)

}

Ryx(τ) =
∫ ∞

−∞
h(σ)Rxx(τ − σ)dσ = Rxx(τ) ∗ h(τ). (3)

The ACF of the output random process Y (t) is obtained via:

Ryy(τ) = E

{
Y (t)

∫ ∞

−∞
h∗(ρ)X∗(t− τ − ρ)dρ

}

Ryy(τ) =
∫ ∞

−∞
h∗(ρ)Ryx(τ + ρ)dρ = Ryx(τ) ∗ h∗(−τ). (4)

Relating the ACF of the output process Y (t), Ryy(τ) and the ACF of the input, Rxx(τ) we have:

Ryy(τ) = Rxx(τ) ∗ h(τ) ∗ h∗(−τ). (5)

These relations are significant because they imply that the ACF of the output random signal Y (t) is depen-
dent only on the difference between the sampling instants, i.e., the output random signal Y (t) is also WSS.
Note that this relation has a double convolution operation. Analytical evaluation of the double convolution
becomes cumbersome even in the simple cases.
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Output Power Spectra

Instead we seek to circumvent the convolutions by transforming the equations obtained to the frequency
domain. Taking the bilateral Laplace transform on both sides of Eq. (3) we have:

Pyx(s) = Pxx(s)H(s), s ∈ ROC1. (6)

Again taking the bilateral Laplace transform on both sides of Eq. (4):

Pyy(s) = Pxx(s)H(s)H∗(−s), s ∈ ROC2. (7)

Upon evaluating of the PSD Pyy(s) on the imaginary axis this relation reduces to:

Pyy(Ω) = Pxx(Ω)|H(Ω)|2, Ω ∈ R1. (8)

This relation is significant in that implies that the PSD of the output random signal is a spectrally shaped
version of the PSD of the input. Since we are looking at bilateral transforms, it becomes necessary to
associate a region of convergence (ROC) with the PSD to make the Laplace transformation unique.

Output Average Power

The average power of the output random signal can then be computed in the time-domain via:

E{Y 2(t)} = σ2
y = Ryy(0). (9)

From a frequency-domain perspective we can evaluate the ouput average power via:

P y
ave =

1
2π

∫ ∞

−∞
Pxx(Ω)|H(Ω)|2dΩ. (10)

This relation is significant from the viewpoint that the steady state average power of the output random
process can be computed in either the time-domain or the frequency-domain. In the time domain it is
evaluated as the ACF of the output process evaluated at the zero lag. In the frequency domain it is
evaluated as the area under the output PSD.

Non-zero Means

If the input random signal under consideration were not a zero mean random process then the ACF in the
analysis should be replaced with the auto-covariance function Cxx(τ) given by:

Cxx(τ) = Rxx(τ)− µ2
x. (11)

where the contribution of the nonzero mean has been subtracted off. In this case X(t) can be written as

X(t) = Xo(t) + µx, (12)

where Xo(t) is the zero mean part of X(t). The ACF of the non-zero mean signal X(t) can be written as :

Rxx(τ) = Rxoxo(τ) + µ2
x. (13)

The PSD of the X(t) can be written as:

Pxx(Ω) = Pxoxo(Ω) + 2πµ2
xδ(Ω). (14)

Design of optimal filters will require, as we will see, rational power spectra and the presence of impulsive
components will complicate things.

2


