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ABSTRACT

This note describes a computer subroutine which generates the
h(l)(x), and h(z)

n n
well as their first derivatives. The use of the subroutine in gen-
erating tables of values of the functions and their derivatives is
outlined. Various methods of generating the functions and the
problems encountered are discussed.

spherical Bessel functions jn(x), yn(x), (x) as




I. INTRODUCTION

SBF is a computer subroutine written in FORTRAN IV for the
Control Data Corporation 6600 computer in the Air Force Weapons Labor-
atory at Kirtland Air Force Base. The spherical Bessel functions jn(x)

and yn(x) are generated from recurrence relationships, then the Hankel
(1)
n

the j and y functions. A separate subroutine computes the first derivatives

functions h " '(x) and h:lz)(x) are calculated from the relationship between
of the functions. An option is provided whereby another subroutine is called
for an accuracy check; this subroutine computes the Wronskian relationship

between jn(x) and yn(x).

In developing a technique to generate the spherical Bessel functions
several methods were tried, but computer round-off error was encountered
with most methods. A section of various algorithms which were tested is

included.
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II. OPERATION

General

SBF is used in conjunction with a main program or subroutine which
assigns values to the order and argument of the functions and calls the sub-
routine. Arrays of values for the functions and their derivatives are re-
turned by SBF to the calling routine through the formal parameter list and
must be typed and dimensioned in the calling routine. The value of the
order n must be greater than or equal to 1; if the functions of order 0 are
desired they may be obtained through the use of the labeled COMMON block
ZERO, to be described later. The argument x must be type REAL and its

absolute value be greater than or equal to .0001.

Calling Sequence

To use Subroutine SBF the calling routine must supply the standard
FORTRAN IV CALL statement,

CALL SBF (N, X,J,Y,JP,YP,H1,H2,H1P,H2P,IW)

The parameters N, X, and IW are supplied to SBF by the calling routine and

the rest of the parameters are returned to the calling routine by SBF.

Parameters
1. N TYPE INTEGER. This is the highest order
desired for the spherical Bessel functions
and their first derivatives. The subroutine
returns all the functions between 1 and N.
N must be 2 1.
2. X TYPE REAL. X is the argument of the

spherical Bessel functions and it must be

in the range -.0001 2 x >, 0001,
The next eight parameters are arrays of values for the functions and their
derivatives which are returned to the calling routine by SBF. They must

all be dimensioned by the calling routine. Since the arrays will return N




values of the functions, from n = 1 to n = N, they must each be dimensioned

for at least N storage locations. The arrays must also be of the same type,

that is, REAL or COMPLEX.

3. J TYPE REAL. This is an array of values
for jn(x), the spherical Bessel functions

of the first kind.

4. Y TYPE REAL. This array returns values
for the spherical Bessel functions of the
second kind, yn(x).

5. JP TYPE REAL. This is an array of values
for djn(x)/dx, the first derivative of the j
functions.

6. YP TYPE REAL. This is an array of values

for dyn(x)/ dx, returned by SBF.

7. HI1 TYPE COMPLEX. This is an array of
values for the spherical Bessel functions
of the third kind, h;l)
the spherical Hankel functions of the first
kind.

(x), also known as

8. H2 TYPE COMPLEX. This array returns values
for the spherical Bessel functions of the

fourth kind, hf)(x)' This function is also

the spherical Hankel functions of the second
kind.

9. HI1P TYPE COMPLEX. This is an array of
(1)

values for dhn (x)/dx.

10. H2P TYPE COMPLEX, This is an array of
values for dhilz)(x)/dx.

11, IwW TYPE INTEGER. This parameter is a flag
used to determine whether a separate sub-
routine is to be called from SBF. The sub-
routine computes the Wronskian for each
pair of jn(x) and yn(x) values, to be used as
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an accuracy criteria. If IW = 0 the sub-
routine will not be called. Any non-zero
integer number will cause the Wronskian
subroutine to be called.
The names given to the above parameters were chosen for illustrative pur-
poses and are formal parameters in the subroutine. The actual parameters

used by the calling routine need not agree in name, although they must agree

in type and number.




IIl. ORGANIZATION

Subroutine SBF uses two additional subroutines which are called

from SBF, as well as several computer system functions.

Subroutines

PRIME

This subroutine is always called from SBF
in order to compute the first derivatives of
the spherical Bessel functions of all four
kinds. Communications between PRIME
and SBF is through a parameter list as well
as through the labeled COMMON block,
ZERO, which contains the functions of zero
order. PRIME uses as inputs N, X, J, Y,
H1l, and H2 and returns JP, YP, H1P, and
H2P. The parameters are the same as
described for Subroutine SBF. The calling
sequence is:

CALL PRIME (N,X,J,Y,JP,YP,H1,H2,H1P,H2P)

WRON

If the parameter IW in the argument list for
SBF is set to any non-zero integer number
this subroutine will be called. WRON cal-
culates the Wronskian relationship between
the j and y functions and their derivatives,
from values computed by SBF. After the
Wronskian is calculated it is divided by the
analytic value of the Wronskian. This allows
a comparison of this function against 1, the
desired value. The largest error is selected
from the calculations and a message similar
to the following is printed:

WITH THE ARGUMENT = 100. 0000, AND ORDER N = 1 THROUGH
N = 1150, THE WRONSKIAN CHECK SHOWS A MAXIMUM RELATIVE
ERROR OF 4.61853E-13, OCCURRING AT N = 98.

This message gives the relative error of the
normalized Wronskian against 1, and tells
where the maximum error occurs. Communi-
cation between WRON and SBF is through a
parameter list. The calling sequence is:

CALL WRON (N, X,J,Y,JP,YP)
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The parameters in the argument list are all
inputs to WRON; they are the same as des-
cribed for Subroutine SBF.

Functions

The following is a list of the external and intrinsic functions used
by SBF and its associated subroutines. These functions are supplied by

the CDC 6600 computer system itself,

SIN FLOAT
COsS CMPLX
ABS IFIX
MAXO MOD

Input/OQutput Files

Only an output file is required by SBF, due to the printed message
in WRON.




IV. GENERAL

Timing

The computation speed of this subroutine is very fast when used
with the CDC 6600 computer. For example, the entire set of tables for

the spherical Bessel functions contained in the Handbook of Mathematical

Functions, AMS 55, was calculated in 2. 4 seconds. In a typical run it
computed the arrays of values for one argument forn = 1 ton = 1000 in
approximately .1 seconds. In one call of the subroutine, therefore, each
order requires about 10-4 seconds of central processor time. Thig timing

will probably differ with other machines.

Accuracy

The functions generated by the routine were compared against tables
contained in the references at the end of this note and nb discrepancies were
noted for any of the values listed in the tables. For the argument x = 10000.0 O
and n ranging from n = 1 ton = 1150, the Wronskian check shows a maximum

error of .02 percent in the Wronskian relationship.

Range

The range of the argument x is limited for small absolute values.
Subroutine SBF was tested at x = 10_4 with good results, but smaller values
may cause problems due to the large absolute values of the y functions at
small arguments. Zero may not be used as an argument because division
by the argument occurs in the subroutine and this would cause computer
overflow problems. Large values of the argument were also tested with
good results. Values tested included x = 104; values larger than this were
not used, so the accuracy is undetermined for the larger values. The order
n was taken to n = 1150 with good results and values larger than this should
produce good results also. It should be mentioned here that at n > || the

absolute value of the j functions start decreasing and the absolute value of the O




y functions start increasing; after this point the functions are calculated

O only to the machine limits. That is, the j functions are calculated to the
point where ,jn(x)I = 10—308 and then the rest of the functions, to n =N,
are set to 0.0. Similarly, the y functions are calculated to the point where
\yn(x)‘ = 10308 and the rest of the functions are set to :|:10308, depending
on whether x is negative and the order is even or odd. These machine ,
limits, ilO308 and +10 308, are based on the CDC 6600 computer, but may
be different for other computers. The value of n at which point the functions
are set to 0 or machine infinity is stored in the variable ISAVE and may be
used, if desired, in the calling routine by use of the labeled COMMON block

RR.

Functions of Zero Order

Communication between SBF and PRIME takes place through a param-

eter list and through the labeled COMMON block ZERO. This COMMON
block may be used by the calling program after SBF has been called if the
O functions of zero order and their derivatives are desired. The elements of
the COMMON block are as follows, in order.
1. JO TYPE REAL. This is jo(x).
2. YO TYPE REAL. This is yo(x).
3. JPO TYPE REAL. This is dj _(x)/dx.
4. YPO TYPE REAL. This is dyo(x)/dx.
5. H10 TYPE COMPLEX. This is hf)l)(x).
6. H20 TYPE COMPLEX. This is h(()z)(x).
7. H1PO TYPE COMPLEX. This is dh(()l)(x)/dx.
O 8. H2PO TYPE COMPLEX. This is dhf)z)(x)/dx.
9



Storage Requirements

The storage requirements needed to execute SBF and its associated
subroutines with a main program depend primarily on the value of N, and
the user will have to determine this, On the CDC 6600 the number of stor-
age locations required for the three subroutines is approximately 1000

8
locations.
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V. ALGORITHMS

Algorithm for the jn(x) Function

The spherical Bessel functions of the first kind were the most dif-
ficult to generate. This is because the absolute value of the functions de-
crease rapidly after n > |x| Forward recurrence techniques introduced
large machine round-off errors after this point. Several rhethods of gen-
erating the jn(x) were attempted. A section later in this note will sum-
marize these methods. The method which was used by SBF, finally, was
a backward recurrence formula. This method produced excellent results
over a very large range of n and x. In initializing the recurrence relation-
ship, the subroutine determines the larger of the two quantities, |x| + 50
and ISAVE + 10. ISAVE is the value of n, either at n = N or at the point
where the yn(x) function goes to machine infinity. If Nis smaller than the
order at which yn(x) goes infinite then ISAVE will take on the value for N.
If N is larger than the order for which yn(x) goes infinite, ISAVE will take
on that value, as explained earlier. Once the larger of the two quantities
mentioned above is determined, the value is stored in the variable IM.
Then the function jIM(x) is set to 0, and the function jIM_l(x) is set to 10_75.

The backward recurrence formula

(2n + 3) .

X Jn+1(X)

jn(X) = - j‘n+2(x) (1)
is then carried out to n = 1. The calculated value for n = 1 is divided by the
analytic value of jl(x) and this ratio is used to multiply all the calculated
values to n = ISAVE. The proper relationship between the functions is es-
tablished by the backward recurrence formula and the multiplication by the
ratio between the artificially calculated n = 1 function and its exact value

produces the actual functions.
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Algorithm for the yn(x) Function

The spherical Bessel functions of the second kind are calculated
from a forward recurrence formula. First, the yl(x) and y2(x) are found
from analytic formulas and then the recurrence relation
_(2n-1) ¢

- (), (2)

fn(x) n-2

where fn(x) = yn(X) ,
is applied for the rest of the functions until n = N or the function approaches
the machine limit. These functions are calculated by SBF prior to the cal-

culation of the jn(x).

Algorithm for the Hankel Functions

The spherical Hankel functions are established as follows O
(1) . :
= +
h &) =] &) +1iy (x) , (3)
and
()., _. .
h (x) = Jn(X) 1yn(>;) (4)

Algorithm for the Derivatives of the Functions

The first derivatives for the spherical Bessel functions of all four
kinds are computed from the following relationship

(X)__(n_t_llf
X

f' (x) =1
n n-

1 S (5)

where fn(x) may be any of the four kinds of functions.
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All of the above relationships are taken from Reference 1, the

National Bureau of Standards, AMS 55, Handbook of Mathematical Func-
tions.

The Wronskian Check

When the Subroutine WRON is called, the following relationship is
calculated

W = jn(x) y'n(x) - j'n(X) yn(X) . ‘ (6)

The analytic value of the Wronskian is x-z, so W is multiplied by x2 in order
to normalize the calculated value. The normalized value should be exactly

1.0, so this provides a convenient check for the accuracy of the functions and

their derivatives.
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VI. OTHER ALGORITHMS

Initially the calculation of the functions was done by solving for

(1 1 .
1 )(x) and h; )(x) analytically and applying the recurrence formula of

(1)

Eq. (2) where fn(x) = hn (x). The initial values used were

h

2 X 2 X
X X

h(ll)(g) _ sin(x) cos(x) i[cos(x) N sin(x)] )

and

X X

h;l)(x) - (f-g ; }l{)sin(x) - —312 cos(x) + i (;-g + —}-lc)cos(x) -2 sinta)|  (8)

The idea was to separate the real and imaginary parts of the Hankel functions
to obtain the j and y functions in one process. The imaginary part, or y
functions, agreed exactly with tables found in books, but the real part, the
j functions, were not correct in many instances. Upon further investigation
it was noted that the error was introduced at n 2 |x| because the j functions
start decreasing in absolute magnitude after this point and computer round-
off error becomes significant. After several orders are computed beyond
this point the round-off error causes the functions to be off by several orders
of magnitude.

The recurrence formula of Eq. (2) was.tried again, but this time the

initial values which were used were

h(ll)(x) - (X ’;1) oi* (9)
X
and
(1) “ix? + 3x + 3i\ ix
hy (%) = - X 3" e (10)
X
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The results were the same as with the case above. The jn(x) were also
generated alone with Eq. (2), with similar results. The conclusion drawn
from the above was that the jn(x) could be generated by a forward recur-

rence technique only to the point where n = |x ; beyond this, for larger n,

this method was useless.
Clearly, other methods were needed for the generation of the j (x).
n

The Handbook of Mathematical Functions, AMS 55 (Reference 1), contains

various formulas which were used and are outlined below.

Equation 10.1.2 of Reference 1 is

1 2 1 2
. X 7% 2 *
Jn<x)—1.3.5... (2n + 1) 1- 1!(2n+3)+2!(2n+3)(2n+5)- el A

This formula works very well when n > |x

; consequently, only small argu-
ments are practical. When |x| is larger than n, round-off error is introduced
in the infinite sum inside the brackets of Eq. (11). This method is also very
time consumming, as far as computer time is concerned. The companion

formula, 10.1. 3, for yn(x),

2
1.2 25
0 1+3-5-+-(2n-1) 2 2
) = ) L"Tia-zm "o - 2B - 2w (12)

X

was tested also. This behaved similar to Eq. (11), in that round-off error is
signiﬁcant if |x| is large in comparison with n.

Equations 10.1.8 and 10. 1.9 in Reference 1 are the formulas for
jn(x) and yn(x), respectively, expressed as representations by elementary
functions. A subroutine based on this method (Reference 4) was tested in
order to compare the numerical results. In testing it, results were similar
to those obtained by the forward recurrence technique. That is, for the
jn(X) atn 2 ‘X‘ round-off error is introduced. The yn(x) generated by this

method are accurate, however. Another formula tested was Eq. 10.1,13 in
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AMS 55. This is the Poisson Integral representation,

T
;—ﬁ_}fl—: [cos(x cos9)sin2n+16 dé. (13)
- n! ,

n
jn(x) =

(o]

The numerical results were excellent for this method over the range of n
and x that were tested. But, the computer time necessary for the computa-
tions was quite large when compared with other methods.

Before developing the technique used by SBF, one more method was

tested. This was the formula of Eq. 10.1.16 in AMS 55. Here the jn(x)
(1)

and yn(x) were to be calculated simultaneously by calculating hn (x) and
separating the real and imaginary parts.
~n-1 . n
1y, , _i n ix . -k (n+ k)
hn (x) = e k§0 (-2ix) K T@m -k £ 1) (14)

This equation produced similar results to most of the other methods; that is,
the round-off error was significant for the jn(x) beyond the point where
n 2 |x|.

The backward recurrence method of generating jn(x) proved to be the
most accurate of all the methods that were tested. In most cases it was also

the one which took less time to compute on the CDC 6600 computer.
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VII. SUMMARY

Subroutine SBF can be used to generate the spherical Bessel func-
tions of all four kinds and their derivatives with a high degree of accuracy.
The accuracy has been verified through the use of tables in the references
below and by the Wronskian relationship. The order n is limited to positive
values greater than or equal to 1, and the argument x must be in the range
-.0001 2 x 2,0001. All of the formulas used were directly from or derived
from AMS 55. |
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APPENDIX
PROGRAM LISTING
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10
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40

50

SUBROUTINE SBF (N,X,J,Y,JP,YP,H1,H2,H1P,H2P, IW) SBF

SBF
CALCULATE THE SPHERICAL BESSEL FUNCTIONS. SBF
THE J FUNCTIONS ARE CALCULATED FROM A BACKWARD RECURRENCE RELATIONSBF
THE Y FUNCTIONS ARE CALCULATED FROM A FORWARD RECURRENCE RELATION SBF

SBF

REAL J(N),Y(N),JP(N),YP(N),J0,Jl1,JP0,dT1,JT2,dT o SBF
COMPLEX H1(N),H2(N),HIP(N),H2P(N),H10,H20,H1P0,H2P0 - SBF
COMMON /ZERO/ JO,YO,JPO,YPO,H10,H20, HlPO,HZPO SBF
COMMON /RR/ ISAVE SBF
=X ‘ SBF
$=SIN(Z) SBF
C=C0S(Z) SBF
RZ=1./Z , SBF
CALCULATE FUNCTIONS FOR THE N=0 AND N=1 ORDERS. SBF
JO=RZ*S SBF
Y0=-RZ*C ‘ SBF
J(1)=RZ*(J0-C) ‘ - SBF
Y(1)=RZ*(Y0-S) ' SBF
IF (N.LT.2) GO TO 80 SBF
CALCULATE FUNCTIONS FOR THE N=2 ORDER. SBF
J(2)=3.%RZ*J(1)-RZ*S SBF
Y(2)=3,.%RZ*Y(1)+RZ=C . SBF
IF (N.LT.3) GO TO 80 SBF
CALCULATE THE Y FUNCTIONS. SBF
DO 10 1=3,N A . SBF
Y(1)=FLOAT(2%1-1)*RZ*Y(1-1)-Y(1-2) SBF
I SAVE=1 : SBF
CHECK Y AGAINST MACHINE LIMITS. . ; SBF
IF (ABSCY(1))-1.E308) 10, 20,20 ; SBF
CONTINUE SBF
GO TO 40 : SBF
DO 30 K=ISAVE,N SBF
J(K)=0, SBF

Y(K)=-1.E308 SBF
IF (Z.LT.0. .AND.(MOD(K, 2).EQ.0)) Y(K)= 1.E308 SBF
INITIALIZE BACKWARD RECURRENCE FOR J FUN 1 ONS. SBF
J1=J(1) SBF .
N1=1SAVE+1 SBF
IM=MAXOC I FIXCABS(Z))+50, | SAVE+10) SBF
JT1=0, : SBF
JT2=1.E-75 SBF
IND=1M-1SAVE+1 SBF
DO 50 1=2,IND . : SBF
K=1M-| SBF
JT=FLOAT(2#K+3)*RZ»JT2-JT1 SBF
JT1=JT2 , . SBF
JT2=JT SBF
J(1SAVE)=JT1 SBF
J(I1SAVE-1)=JT2 o . - . SBF
DO LOOP TO OBTAIN BACKWARD RECURRENCE FUNCTIONS. : . " SBF
DO 60 1=3,1SAVE SBF

K=N1-1 SBF
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J(K)=FLOAT(2#K+3)#RZ*J(K+1)-J(K+2)

FIND RATIO OF EXACT VALUE AT N=1 TO CALCULATED VALUE.
R=J1/J(1)

MULTIPLY CALCULATED VALUES BY RATIO R.

DO 70 I1=1,SAVE

J(1)=J(1)=*R

HANKEL FUNCTIONS OF FIRST AND SECOND KINDS FOR ALL ORDERS.
H10=CMPLX(J0,Y0)

H20=CMPLX(J0, -Y0)

DO 90 I=1,N

H1(1)=CMPLX(J(1),Y(l))

H2(1)=CMPLX(J(1),=Y(1))

CALL SUBROUTINE TO CALCULATE FIRST DER!VATIVES.

CALL PRIME (N,Z,J,Y,JP,YP,H1,H2,H1P, H2P)

CALL SUBROUTINE TO CALCULATE WRONSKIANS.

IF_ (IW.NE.0) CALL WRON (N,Z,J,Y,JP,YP)

RETURN

END
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SUBROUTINE PRIME (N,Z,J,Y,JP,YP,H1,H2,H1P, H2P)

THIS SUBROUTINE CALCULATES THE FIR

BESSEL FUNCTIONS.

REAL J(N),Y(N),JP(N),YP(N),J0,JPO
COMPLEX H1(N),H2(N),H1P(N),H2P(N),6 H10,H20,H1PO, H2P0
COMMON /ZERO/ J0,Y0,JP0,YPO,H10,H20, H1PO, H2PO

RZ=1./1
TRZ=2.*RZ

CALCULATE DERIVATIVES FOR N=0 AND N=1 ORDERS.

JPO=-J(1)

YPO=-Y(1)

H1P0=-H1(1)

H2P0=-H2(1)
YP(1)=Y0-TRZ*Y(1)
JP(1)=J0-TRZ*J(1)
H1P(1)=H10-TRZ+*H1(1)
H2P(1)=H20-TRZ*H2(1)

IF (N.LT.2) RETURN

DO LOOP OVER THE ORDERS.
RECURRENCE RELATIONSHIP,
DO 10 1=2,N

H=1-1

FRZ=FLOAT(1+1)*RZ
YPCI)=Y(I1)-FRZ*Y(1I)
JPCI)=J(11)=-FRZ*J(1)
H1P(1)=H1(11)~-FRZ*H1(1)
H2P(1)=H2(11)-FRZ*H2(1)
RETURN

END

DERIVATIVES ARE CALCULATED BY A
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20
30

40

SUBROUTINE WRON (N,Z,J,Y,JP, YP) WRO

WRO
THIS SUBROUTINE COMPUTES THE WRONSKIAN RELATIONSHIP BETWEEN THE  WRO
J AND Y FUNCTIONS, AND COMPUTES A RELATIVE ERROR. WRO

WRO
REAL J(N),Y(N),JP(N), YP(N) WRO
SAVE=0. WRO
722Z+Z WRO
DO LOOP OVER THE ORDERS. WRO
DO 20 M=1,N . WRO
IF (J(M).EQ.0.) GO TO 30 WRO
COMPUTE THE WRONSKIAN. WRO
W=J (M) *YP(M)=JP(M)*Y (M) _ WRO
NORMALIZE BY THE ANALYTICAL VALUE OF THE WRONSKIAN. WRO
WalWez 2 WRO
COMPARE AGAINST 1.0. WRO
AERR=ABS (W-1.) WRO
SELECT LARGEST ERROR IN ARRAY. WRO
IF (AERR-SAVE) 20, 20,10 WRO
SAVE=AERR WRO
MSAVE=M WRO
CONTINUE WRO
PRINT 40, Z,N,AERR,MSAVE WRO
RETURN WRO

WRO

FORMAT (20H WITH THE ARGUMENT =,F12.5,29H, AND ORDER N = 1 THROUGHWRO
1N =,15,21H, THE WRONSKIAN CHECK/34H SHOWS A MAXIMUM RELATIVE ERROWRO
2R OF,E12.5,19H, OCCURRING AT N = ,15) wsg

END
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