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The time dependent function f(t) given by the inversion
formula

@

£(t) = 1 | e ivt g, (1)

2T
. O

where F(w) is the Fourier transform of f(t), is frequently

difficult to determine by closed form integration. It then

becomes necessary to evaluate the integral in Equation (1)

numerically. The objective in this memorandum is to briefly

indicate a numerical procedure that yields an acceptable inverse.

1. Some Basic Relationships Between f(t) and F(w).

The following relationships between f(t) and F(w) are
useful relative to the numerical procedure to be discussed later. <:)

1) If £(t) is real then

F(w) = f(t)eiwt dt

-0

-] ©

=1 f(t) cos wt dt + i | f(t) sin wt dt (2)

-0 -0

= X(w) + i Y(w)

where X(w) and Y(w) are real.




2) If f(t) is real then f(t) is the sum of an even
function fe(t) and an odd function fo(t), where

fe(t) - f(t) + f(-t) , fo(t) = f(t) - f("t) (3)
2 -2

If £(t) is causal (i.e. f(t) = o for t > 0)) then
£(t) = 2f_(t) = 2fo(t) for t > o (4)

3) Let Fe(w) and Fo(w) be the Fourier transforms of
fe(t) and fo(t), respectively. Then

Fe(w) =f fe(t)eiwt dt = ZJ’fe(t) cos wt dt (5)
-0 (o)
F_ (w) =f £ (£)e'@t gt = Zij £ (t) sin wt dt (6)

™) o

Note that Fe(w) is real and even while Fo(w) is pure imaginary
and odd.

4) The function F(w) can be written

@

F (w) =[ £(t) el®t g¢

-C0

©

=f[fe(t) + fo(t)]ei"’t dt

-0

= Fo(w) + F_(w) ()




It follows from systems (7) and (2) that

Fo(w) = X(w) Fo(w) =i Y(w) (8)

5) In view of system (8) the real function f(t) can
be written

f(t)

fe(t) + fo(t)

é;f[Fe(w) + F_(w)]e™ 1t gy

o] ©
-1 Fe(w) cos wt dw - i Fo(w) sin wt dw
T T
o) o
-] [+ <]
-1 X(w) cos wt dw + 1 Y(w) sin wt dw (9)
T T
le) (o]

Similar reasoning applied when f(t) is causal yields

(<]

f(t) = 2fe(t) = EJX(w) cos wt dw (10)
4 o)
= 2f_(t) - Zj Y(w) sin ot dw (11)
m
(o]

6) The function F(w) corresponding to a real function
f(t) can be written




F (w) =f £(t)e’™ at = x(w) + 1 Y (w) (12)

-

Differentiation of this system twice with respect to w yields
the relations

[s¢]

-iF’ (w) =[ tf(t)ei‘"t dt = Y'(w) - i X' (w) (13)

—®

-F’ (w) =f t2f (t)el®t 4¢ = _x* (W - i Y (w) (14)

Equations (13) and (14) provide the Fourier transforms of the
functions tf(t) and t f(t) respectively. Thus,

o -

tE(t) = 1—f [Y'(w) - 1 X' (w)]e” 1t 44 (15)
2T

t28(t) = 2L | [X"(w) + 1 Y () ]e~i¢t g (16)
2T

It should be noted that X(w) is even only due to the
term cos wt while Y (w) is odd only due to the term sin wt. It

readily follows that X' (w) and Y’ (w) are odd and even, respectively,

while X" (w) and Y’ (w) are even and odd, respectively. 1In view of
this Equations (15) and (16) can be written

<]

T
o o

tf(t) = IY (w) cos wt dw - L X' (w) sin wt dw (17)
m




o <] @©

t2f (t) = :lf X’ (W) cos wt dw - -l-f Y (w) sin wt dw (18)
m
(o] (o]

7) If f£(t) is causal then tf(t) and tzf(t) are also
causal. Thus for f£(t) causal and t < 0 Equation (17) can be

written
© <] .
J'Y'(w) cos w|t|dw +jx’(w) sin wltldw = 0 (19)
(¢] (o]

It is immediate from Equation (19) that

@ @©

j Y'(w) cos wt dw = -Ix’(w) sin wt dw (20)

o o

for t > 0. It can be shown similarly from Equation (18) that
if £(t) is causal and t > O then

@© @

f X" (w) cos wt dw =f Y (w) sin wt dw (21)

o o

It follows that for causal functions Equations (17) and (18)
reduce to

@©

tf(t) ng'(o.)) cos wt dw = ﬁjx’(w) sin wt dw (22)
m

m
o o
had @
tzf (t) = -_2_ X” (w) cos wt dw = .-_2 Y” (w) sin wt dw (23)
T T
o o

O




2. Numerical Inversion when F(w) has no Singularities.

The numerical determination of f(t) will be primarily
based on Equation (18) if f(t) is not causal and on Equation (23)
if £(t) is causal. It is assumed that the infinite integrals in
these equations can be approximated to the desired degree of
accuracy with a single finite interval frequency range R given
by wy S w s Wp 0 s Wy < wF,where Wy and Wy denote the initial
and final values of w to be considered. The values of Wy and
Wp are usually determined from the nature of X(w) and Y (w)
relative to mathematical and physical considerations. It is
also assumed that X(w) and Y(w) are sufficiently smooth and

do not possess singularities at zero or on the positive real
axis.

The functions X(w) and Y(w) are approximated in the
frequency range R by polygonal lines Lx and Ly, respectively,
that are defined as follows. Let the range R be divided into
subintervals by the set of points ) 0 <=n <N + 1, where

W T wI’ “ﬁ < “n+1? 0~N+1 T Wy (24)

Also let Rn’ n = 1 denote the frequency range Wh_q Sws Wy, -
The line segments Lﬁ, Li that approximate X(w), Y(w), respectively,
on Rn are given by

X(w, )l -w] - X)) lw_;-wl 25)

Lﬁ(w) =
“hT%n-1

LY ) - Y (w,_ 1)l -—w] - Y )le -l (26)

“h~%h-1
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The polygonal lines Lx and Ly can be specified as

N+1 N+1
= X = y
L, U L, U LY 27)
n=1 n=1

The relationship between Lx and X(w) over R is shown
schematically in Figure 1 for N = 4. The relationship between

Ly and Y(w) is schematically similar and thus is not shown here.

Figure 1. Polygonal Line Approximation to X(w).
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The first derivatives of Lﬁ and Lg on Rn are given

(L};)'= X(w)) - X(w,_1)

(28)
“n T Wy
Y (w) - Y(w. )
(1) - 2 Ty =
n = “n-1

These derivatives are the exact derivatives of L and Ly
on the open interval w n-1 < w< Wy and may be 1nterpreted as
right hand derivatives at Wh_1 and left hand derivatives at Wy, -

The first derivative that corresponds to the line LX
in Figure 1 is shown schematically in Figure 2. Note that in
general the first derivative will have a point of discontinuity

at Wy unless the line segments of the polygonal line corresponding
to R and R +1 form a single line segment .,

Figure 2. First Derivative of Polygonal Line Approximation.
9




In order to obtain the second derivative approximations
to X’ (w) andY'(w) the constants Cﬁ, Cﬁ, 1 <n <N are first
defined as

G- (1) - (1) - @o»
= (1) - (1)’ @)

The second derivative approximations to X" (w) and Y’ (w) can
be written

N
X" (W) ~ Z C’; 6(w—wn) (32)
n=1
N
Y (w) NZ Cﬁ 8 (w-w ) (33)
n=1

where 8 is the Dirac delta function. The second derivative
approximation corresponding to the schematic representations
in Figures 1 and 2 is shown in Figure 3.

Figure 3. Second Derivative of Polygonal Line Approximation.
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Rigorously speaking the derivative of the first
derivative of a polygonal line does not exist at the points
of discontinuity. The & function concept may be used however
in an approximate limiting sense. For further information on
the use of the & function to approximate derivatives see
References 1 and 2. |

The 6 function has the integration property that if a
function, say g(w), is continuous on the interval R and w, is
a point in R then

“F

g (w) 5(uhuh) dw = g(wn) (34)
wy

This integration property can subsequently be conveniently used
to determine the function f(t).

Let f(t) be causal. If the approximations for X’ (w)
and Y’ (w) as given in relations (32) and (33) are substituted
appropriately into system (23) the result is

1))
F N
t2£ (t) ~ =2 Z CX 6 (ww ) cos wt duw (35)
™ n=1
Wy
F oy
~ =2 z cy 8 (w-w,) sin wt do (36)
m n=1
Wy

The integration property of the & function indicated
by Equation (34) can be applied to the approximations (35) and
(36) to obtain

11
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N
tzf(t) ~ :z-z: c® cos w t (37)
T n n
n=1

N
-2 .
At — E Cz sin w t (38)

T n=1

The numerical approximation to f(t) relative to a given frequency
range R becomes better as N is increased.

3. Numerical Inversion when F(w) has Singularities.

It may happen that the function F(w) corresponding to
a real function f(t) has singularities on the non-negative
w-axis. The procedure outlined in the preceding section may
become numerically inadequate in the vicinity of the singularities.
It then becomes necessary to obtain the numerical inversion of
F(w) by another numerical procedure that avoids the numerical
difficulties encountered near the singularities._ Some of these
difficulties can be avoided by using the following procedure.

Let w =V + ie. Suppose further that the function
F(w) to be inverted has all its poles below the line W=V + ia,
where it is assumed here without loss of generality that a > 0,
The function F(w) may in general have a branch cut along the
negative real axis with a branch point at zero. Let C be the
contour selected relative to F(w) as indicated schematically
in Figure 4,

12




Figure 4. Contour C and Poles of F(w) in w-plane.

It is interesting to examine the image of the contour
C in the S-plane, where S = x + iy, relative to the mapping
S = h(w) = -iw. The mapping h preserves magnitudes but is a
rotation through the angle -7/2. The image C’ of C and the
images of the poles of F(w) under the mapping h are shown
schematically in Figure 5.

13
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Figure 5. Contour C’' and Poles of G(S) in S-plane.

The function G(S) in the S-plane corresponding to
F(w) in the w-plane is given by

@

G(S) = F(iS) =f £(t)e~St g¢ (39)

pot.e ]

If £(t) is a causal function then

-]

G(S) =J £(t)e St gt (40)

o

It is apparent from system (40) that when f(t) is
causal G(S) may be regarded as the Laplace transform of f(t).

14
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The contour C’ in Figure 5 may be regarded as the Bromwich
contour associated with the inverse Laplace transformation of
G(S) and the causal function f(t) as given by

a+i®
£(t) = 4 | G(s) &St gs | (41)
271
a=-ji®

provided a is sufficiently large so that all the poles of G(S)
lie to the left of the line x = a. In the present context it
was assumed that a > 0 without loss of any generality.

Equation (41) can be placed in the w-plane context by
transforming the integral to its equivalent in the w-plane.

Noting that dS = -idw Equation (41) can be written
-o+1ia
£(t) = =L F(we t@t g4 (42)
2T
®+ia

Since dw = dv + ida = dv on the line w = VvV + ia Equation (42)
can be written '

£(t) = l—f FOv + ia)e @-iV)t 4
27T

©

at .
e F(v + ia)e‘th dv (43)
2T

-0

Note that if a = 0 the integral in Equation (43) is
the Fourier integral to be evaluated on the real axis. This
integration can usually be performed adequately by numerical

15




integration if F(V) is sufficiently smooth on the real axis.

If F(V) has a singularity on the real axis it is desirable to
evaluate the right side of Equation (43) using a > 0 and
consider this result an approximation to the function f(t) that
would be obtained with a = 0. Such an approximation could be
made as good as desired from an analytical point of view since
a can be made arbitrarily close to zero.

Let A(Q,a,t) denote the numerical approximation to
£(t) in Equation (43), where a > 0 and Q is the set of points
Vn’ 0O =n<N+1, on the line Vv + ia, that specifies the
frequency range of integration and the subdivision used on
this range. A very small nonzero value of a does not provide
a good approximation A(Q,a,t) due to the numerical difficulties
encountered in the vicinity of the singularity on the real
axis. This remains true even though the span, position and
number of points in the set Q are modified. It can be noted,
however, that the only restriction on a in Equation (43) is
1 > O,a2 >’0
and a, # a5, Equation (43) will yield the same result from an

that a > 0; it is otherwise arbitrary. Thus, for a

analytical point of view, However, from a numerical point of
view A(Q,al,t) may not equal A(Q,az,t) for the same set Q. This
is due to the fact that F(v + ial) may be numerically more
suitable on the line Vv + ia1 than F(v + iaz) is on the line

v o+ iaz, or vice versa. It appears then that the objective is
to find a value of a, large or small, that provides a good
numerical approximation A(Q,a,t) to f(t), the goodness of the
approximation being determined by a criteria to be mentioned
later.

In order to determine A({,a,t) efficiently it is
necessary to examine some of the basic properties that relate
F(v + ia) and f(t) on the line w = Vv + ia. Suppose f(t) is
causal. Then

16




F(w)

F(Vv + ie) =

oo}

f(t)e_et cos Vvt dt + i

o=}

o

= X(v,e) + i¥(v,¢)

f(t)e_et e

ivt

dt

£(t)e” Y sin vt gt

(o]

(44)

It is readily apparent from system (44) that the real valued
functions X(v,€¢) and the pure imaginary function iY(v,e) are

even and odd, respectively, relative to the variable v,

The approximate inverse f(t) of F(w) on the line v + ia

can be written

f(t)

as

eat

2T

at
e

KA

at

T

=]
[X(v,a) + iY(V,a)]e-in dv
eat. .
X(v,a) cos vt dv - - iY(v,a) sin vt dv
T
o (6)
o] [o0]
eat
X(v,a) cos vVt dt + — | Y(v,a) sin vt dv (45)
T
o o

Since f(t) is causal Equation (45) can be written

f(t)

©

2eat
X(v,a) cos vt dv
T
o
[>]
2eat
Y(v,a) sin vt dv
T
o

17
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Here Equations (46) and (47) were obtained using the
same kind of reasoning that was used to obtain Equation (20).

The numerical framework used in deriving system (37)
can be slightly modified to obtain the appropriate numerical
counterparts of the right sides of Equations (46) and (47).
The modifications are relatively simple and thus only final
results are presented. In particular, for a > 0 the numerical
counterparts of Equations (46) and (47) are written

N
2eat X
£(t) ~ A@,a,t) = - 22 3" ¥ cos vt (48)
n=1
2eat a A2
- - = ch sin v _t (49)
Tt n=1

where the coefficients Ci and Ci are now evaluated relative to
the point w, = Vn + ia.

A computer program was written to determine f(t) based
on the relationships indicated in systems (48) and (49). This
program is called INVERT and is written in Fortran IV for
operation on the CDC 6400 computer. At present the program

performs the numerical integration relative to the frequency
k k

10 1 v = 10 2, where k1 and k2 are integers that are part

of the required input. The number N determines the number of
k
points in this range the convention being that vl = 10 1,
k
VN =10 2. The values of Vo and VN+1 are appropriately adjusted
internally in INVERT relative to the numerical procedure used.

The value of a in INVERT is incremented by a uniform
increment Aa so that a good approximation can be found. The

18
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approximation A(Q,a,t) is considered good if the right side

of system (48) equals the right side of Equation (49) to a
desired degree of accuracy in the time range of interest. The
minimum degree of accuracy required in the practical applica-
tions considered to date was agreement to three significant
digits. |

In the practical applications considered the frequency
range of interest was taken as 10-10 =V = 109. The capability
for prescribing the number of increments to be used for a fre-
quency cycle in the range of interest was incorporated into
INVERT. It was found that fifty increments/cycle was adequate
to yield an acceptable approximation f(t) provided a was made
sufficiently large. Here the practical time range of interest
was taken as 10-9 =t =< 10_5, where t is measured in seconds.
It was noticed that at low values of a, e.g., a = ,50or a =10,
that undesirable oscillation was obtained at very early times.
This oscillation was significantly removed when a was assigned
values like 1000 or 10,000. The general pattern observed so
far was that A(Q,a,t) became better as a was increased, it being

assumed that Q remains unchanged. It does not necessarily mean

that this pattern will hold for all functions F(v+ia) encountered

in practical applications. The incremental capability on a in
INVERT is designed to help select a satisfactory value of a
that will yield an acceptable inverse.
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4. Some Specific Numerical Inversions

Among the functions that were inverted was the function
F(w) that represents the inverse of the transfer impedance of
a buried insulated cable. Let r, and ry denote the radii of
the cable conductor and insulator, respectively. Also, let

2 2
ky = 18w
2 _ 2 .
ky = Hgtow” + i0uyw (50)

where the subscripts 1 and 2 signify quantities associated
with the insulated medium and surrounding medium, respectively.
Here the kj denotes propagation factors, w denotes frequency,

O denotes conductivity of the surrounding medium, and ej,u.

J
denote the permittivity and permeability of the jth medium.

The transfer function F(w) that was inverted can now be

written
Fl(w)
F(w) = (51)
Fz(w) + F3(w)F4(w)
where
Fl(w) = -8
kjryjw pom
F. (w) = [? (K, )Y, (kory) = J. (k.r,)Y. (k.r )]H M k. r.)
2 01707111 117170 1%0’ | Po 271
k. (0-iue,)
Fglw) = 21— 2
1k2€1w

F4(w) = [Jo(klrl)YO(klro) - Jo(ker)YO(klrl)]Ho(l)(kzrl)

20
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The functionth,Yn,n = 0,1, are the Bessel functions of the
first and second kind, respectively. The Bessel function
Ho(l) is the Hankel function of order zero.
The transfer function F(w) specified in Equation (51)
was inverted using the following input data.
2 2 -4

0o~ 1.794 x 10~ r, = 3.588 x 10~ 0 =10

H
|

u; = My = 1.257 x 1076 €] = €, = 3.540 x 10711

A plot showing graphically the real and imaginary parts of
F(w) when w is real is shown in Figure 6 for 1074 < w S 108.
It is apparent from this figure that F(w) is becoming quite
large as w approaches zero. For small w, F(w) behaves as 1/w.
Due to this singularity at w = 0, the inversion of F(w) could

not be satisfactorily performed on the real axis.

The inverse of F(w) was obtained by performing the
numericalrintegration on the lines w = V+ia, where 10'10 E AV 1010
and a had the values 10000 and 20000. The number of increments
used per decade on V was fifty. The inverse f(t), which is
the response to a delta function driving pulse, is shown

graphically in Figure 7 for 10~° < t < 1075,

The criteria for an acceptable inverse was that the
right sides of systems (48) and (49) be nearly equal relative
to the numerical framework used. Let fl(t), fz(t) denote the
inverses obtained using the right sides of systems (48), (49),
respectivély. Table I shows the results obtained at some times
of practical interest. It also provides a comparison between
results obtained for a = 10000 and a = 20000.
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TABLE I

RESPONSE OF A BURIED CABLE TO A
DELTA FUNCTION DRIVING FIELD

a = 10000‘ a = 20000
t £ (t) fo(t) . (t) f,(t)
(sec) 1 (amps ) 2 1 (amps) 2
1079 1,400 x 10°  1.398 x 10°  1.400 x 10°  1.398 x 10°
10® 9,096 x 10°  9.096 x 10°  9.095 x 10°  9.096 x 10°
1077 6.663 x 10°  6.663 x 10°  6.661 x 10°  6.663 x 10°
100 5,570 x 105  5.571 x 10°  5.569 x 10°  5.571 x 10°
107°  4.947 x 10> 4.948 x 10>  4.945 x 10>  4.947 x 10°
It should be noted that the difference in results at
t = 1072 for £, (t) and f,(t) disappeared significantly at
t =2 x 10—9. The results at t = 2 x 10_9 were fl(t) = fz(t) =
1.216 x 106 for both values of a. Additional differences in
the results for this time are not known since the results of
Program INVERT are presently printed in exponential form with
only three digits shown to the right of the decimal point.
The inverse f(t), 1009 < ¢ < 10_5, of the function
H(w) = E(w)F(w) was also determined, where
E(w) = P - o (52)

(iw - o) (iw - B)

and F(w) is the function specified in Equation (51).

of o and B were 4 x 106

24

and 4.8 x 108, respectively.

The values
The




numerical inversion was performed on the lines w =V + ia,

where a = 10000, 20000 and 10"10 SV = 1010. The inversion on
each line was done using fifty increments per decade. Since
E(w) is the Fourier transform of e %' - ¢=Bt {16 time dependent
response of the function h(w) is referred to as the e-at - e'Bt
response in Figure 7. The numerical inversion on each line
considered was quite adequate relative to the numerical criteria
used for determining an acceptable inverse.
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