Mathematics Notes
Note 11
February 1970
v CMLR
A Subroutine to Solve M Linear Complex Equations in N Unknowns

Richard W. Sassman
Northrop Corporate Laboratories
Pasadena, California

ABSTRACT

This note describes a computer subroutine that solves a system of M
linear complex equations in N unknowns. The matrix of coefficients is reduced
to upper triangular form by a series of unitary transformations thereby
preserving the condition of the matrix in the reduction. After an initial

solution is obtained an improved solution is obtained by iteration.

CMLR

A Subroutine to Solve M Linear Complex Equations in N Unknowns

INTRODUCTION

The present note describes a computer subroutine CMLR that solves a
system of M simultaneous linear equations with complex coefficients in N
unknowns. The system of equations can be represented by the matrix equation
Ax = y

where A is a matrix of M rows and N columns (M = N) containing the coefficients
of the unknowns. x is a column vector of N rows containing the unknowns,

and y is a column vector of M rows containing the right-hand sides of the

1y, A_1 being

equations. It is desired to calculate the components of x = A
the inverse of A. The subroutine is written in Fortran IV for the CDC 6600
computer. The matrix of coefficients of the M simultaneous equations is
reduced to upper triangular form by a series of unitary transformations.

Since the transformations are unitary, the condition of the matrix is
preserved in the reduction. Once the matrix is triangularized the solution
for any number of right-hand sides can be obtained by back-solving.

To increase the accuracy of the solution an iteration procedure is used
which involves substituting a solution back into the original equations and
using the difference between the result and the right-hand side as a new
right-hand side to calculate a correction for the previous solution. By this
means an accuracy of fifteen significant figures in the largest element of

the solution is assured.

In the case of a square matrix, n square roots n divisions and

(n - 1)(2n2 +5n +9)/3~ 2n3/3 multiplications are required in the reduction.
Inversion of the reduced matrix requires (n ; 2) + 2n2 multiplications and

2n divisions for each iteration. For n = 100 the time required is about 13.5

seconds.

ALGORITHM
Let

ak = the kth column of the matrix A

= ya¥* .
“x g A
V. = - g

Al e -l

K the kth column of the identity matrix

]
1]

aﬁ = the complex transpose of a,
uk } -ak + akvk
% o
/Zak(ak + v ak)

then

(a1 + alvl)* . al(a1 + ulvl)

a, - = - a,v
% . 4
1 o0y +v§ - a)) 11

that is, if one subtracts from each column k of the matrix A
* , .
(a, +oyv, a (a; + alvl)/[al(ul tvio-ap]

the result is that the first column of the transformed matrix is zero except
for the first element. One continues after suppressing the first column and
first row of the transformed matrix and after n - 1 steps the matrix A is

triangularized. The transformation is unitary because it is formed from the

unit vector Uy and the identity matrix I.

USE OF CMLR
The subroutine CMLR is used in conjunction with a main program which

calls CMLR using a call statement of the form

CALL CMLR(M,N,ISW)
and a common statement of the form

COMMON /A/ A(M,N),B(M,N),X(N),Y(M),R(M),W(N),V(N)
where

M - an integer variable, is the number of rows in the matrix A.

The numerical value of this variable must be assigned by the

main program prior to calling CMLR.

N -

ISw -

an integer variable, is the number of columns in the matrix

A. The numerical_value of this variable must be assigned by
the main program prior to calling CMLR. N must be less than
or equal to M.

an integer variable, is the parameter of a COMPUTED GO TO
statement in CMLR and may be used in the same manner in the
main program. Prior to the first call to CMLR, ISW must be
assigned the value 1 by the main program. Upon return from
CMLR to the main program, ISW will have been assigned the
value 2 if a solution has been obtained and the value 3 if

a singular matrix was detected. TIf ISW has the value 2

upon return from CMLR and a subsequent call is made to CMLR
without changing ISW, the matrix reduction process will be
skipped. Thus solutions can be obtained for additional right-
hand sides without the necessity of reducing the matrix each time.
a complex array, is the matrix to be inverted. The numerical
values of this array must be assigned by the main program
prior to calling CMLR.

a complex array. On return from CMLR, Bij contains the unitary
transformation for j < i and contains the reduced matrix less
the diagonal for j > i.

a complex array. On return from CMLR, X contains the solution
to the equations.

a complex array, is the right-hand side of the equations.

The numerical values of this array must be assigned by the
main program prior to calling CMLR.

a complex array. On return from CMLR, R contains the residual
vector Y - AX,

a complex array. On return from CMLR, W contains the diagonal
of the reduced matrix.

a complex array. On return from CMLR, Vk contains

).

- %
ak(ak + v a

k k

REFERENCE

A. S. Householder, "Unitary Triangularization of a Non Symmetric Matrix,"

Journal of the Association for Computing Machinery, Oct. 1958.

APPENDIX - PROGRAM LISTING
SUBROUTINE CMLR (M,N,ISW)
COMMON /A/ A(20,20),B(20,20),X(20),Y(20),R(20),W(20),V(20)
DOUBLE RDR,RDI
COMPLEX A, B, X, Y, R, W, V, S, RD

INTEGER P

GO TO (1,2), ISw
c BEGIN TRIANGULARIZATION
C MOVE MATRIX A TO B

1 DO10I-=1,M
DO 10 J = I,N
10 B(I,J) = A(L,J)
DO 60 J = 1,N
Q = 0.
C CALCULATE NORM SQUARED OF COLUMN J
DO 20 K = J,M
20 Q = Q + REAL(B(K,J))**2 + AIMAG(B(K,J))#*%2
IF (Q. GT. 0.) GO TO 21
o IF THE NORM IS ZERO THE MATRIX IS SINGULAR
ISW = 3
PRINT 9
9 FORMAT (23HOTHE MATRIX IS SINGULAR)
RETURN
C CALCULATE THE DIAGONAL ELEMENT OF MATRIX T. (W(J))
CALCULATE THE DIAGONAL ELEMENT OF MATRIX U. (B(J,J))
C CALCULATE THE ELEMENT OF VECTOR V.
21 BSQ = REAL(B(J,J))*%2 + AIMAG(B(J,J))#*2
IF (BSQ. EQ. 0.)W(J) = SQRT(Q)
IF(BSQ. GT.0.)W(J) = SQRT(Q/BSQ)*B(J,J)
B(J,J) = B(J,J) + W(J)

V(J) = - B(J,J)*CONJG(W(J))
IF (J. EQ. N) GO TO 60
IB=J+1

30

40
50
60

70

80

90

100
110

DO 50 I
S = 0.
DO 30 K = J,M

S = S + B(K,I)*CONJG(B(K,J))

S = S/V(J)

DO 40 K = J,M

B(K,I) = B(K,I) + S%B(K,J)
CONTINUE

CONTINUE

BEGIN ITERATION

MOVE VECTOR Y TO R

DO 70 I = 1,M

R(I) = Y(I)

ZERO VECTOR X

DO 80 I = I,N

X(I) = 0.

TEST = 1.E+300

OPERATE ON R WITH THE MATRIX U
DO 110 J = 1,N

S = 0.

DO 90 K = J,M

S = S + R(K)*CONJG(B(K,J))

S = S/V(J)

DO 100 K = J,M

R(K) = R(K) + S*B(K,J)
CONTINUE

BACKSOLVE MATRIX FOR INCREMENT IN X
DO 130 J = 1,N

K=N+1-1J

R(K) = R(K)/W(K)

IF (J. EQ. N) GO TO 130
IB=J+ 1

DO 120 I = IB,N

P=N+1-1

IB,N

]

LR H Pl

BSERIRL : ql PR

120
130

140

150
160

170

R(P) = R(P) + B(P,K)*R(K)

CONTINUE

DO 140 J = 1,N

X(J) = X(J) - RQJ)

CALCULATE RESIDUAL VECTOR

DO 160 I = 1,M

RDR = - REAL(Y(I))

RDI = - AIMAG(Y(I))

DO 150 J = 1,N

RDR = RDR + REAL(A(I,J))*REAL(X(J)) - AIMAG(A(I,J))*AIMAG(X(J))
RDI = RDI + REAL(A(T,J))*AIMAG(X(J)) + AIMAG(A(I,J))*REAL(X(J))
R(I) = - CMPLX(RDR,RDI)

CALCULATE NORM SQUARED OF RESIDUAL

RSQ = 0.

DO 170 I = 1,M

R5Q = RSQ + REAL(R(I))*%2 + AIMAG(R(I))#*%2
TEST FOR IMPROVEMENT

IF (RSQ. GE. TEST) GO TO 4

TEST = RSQ

GO TO 3

SET SWITCH TO SKIP THE TRIANGULIZATION STEP
ISW = 2

RETURN

END

I

