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Abstract

This note describes a computer subroutine which calculates the
Incomplete Elliptic Integrals F(¢|m) and E(¢|m). The routine
accepts any value both positive and negative of the amplitude ¢.
The parameter m is restricted to O<m<1.




INTRODUCTION

Subroutine TEF is a computer code written in standard
ASA FORTRAN IV for the Control Data Corporation 6600 computer at
the Air Force Weapons Laboratory at Kirtland Air Force Base,
New Mexico. Two éompletely different methods are employed to
calculate the Incomplete Elliptic Integral of the First Kind F(¢ !m)
and the Second Kind E(¢ lm) depending upon the size of the parameter
m, Also listed is a routine to calculate the Complete Elliptic Integrals
K(m) and E(m).




The incomplete elliptic integrals of the First and Second
Kind are defined as follows:

9 L
F(¢|m) =of [l-msinz(e)] 2 de
| ¢ L
E(¢|m) f [1-msin®(e) ]2 ap (1)
o . L :

where ¢ is the amyplitude and m is the parameter, The complementary

parameter m_ is defined as

1

rn-l-m1 =1 | (2)

and m= sinz (@) ‘ - (3)

where a is the modula}r;angle.' It should be noted that the incomplete
elliptic integrals are written in several different forms. Dependence
on the parameter m is denoted by> a vertical stroke preceding the

' pararmeter as written above, Dependence on the modular angle ¢ is

denoted by a backward stroke preceding the modular angle as
F(\a). E(p\a) = (4)
Dependence on the modulus k is denoted in one of two ways as

F(¢,k), E(¢,k)

or

F(¢|x), E(¢|k) Y (5)




where .

and

= (k)2 | (8)

Several different forms are used in this note and these forms
are generally dictated by the references,

For the purpose of the routine gwen in this note the parameter
m is chosen for the 1nput to the subroutme The restr1ct;ons placed
upon m are | |

0<m<1 (7

The routine accepts amplitudes ¢ of any magnitude using the re1at'cionship1
F(srt ¢|m) = 26K + F(¢|m) | o ®

| Elsr $|m) = st:tE<¢|m) o

where the complete elliptic integrals K and E are defined as the incomplete
elhptlc integrals with the amphtude equal 1:072L as

z 1
9 -—
Km) =K =F&|m = [ [1-msm’ ()] 2 g (10)
(o)
and . . L g. , 1 |
E(m) = E = B(Z |m) =Of [1-msin? (9)] 2 do (11)

! Handbook of Mathematical Functions, AMS 55, M. Abramowitz and
I. A, Stegun, Editors, National Bureau of Standards, 1964, eqns, 17.4.3
and 17. 4. 4,




The following relatiohships are used for negative

amplitudes 2

i

-F(¢ | m)
-E(¢ |m) ‘ (12)

F(-¢| m)
E(-¢ | m)

n

The incomplete elliptic integral of the First Kindis'
difficult to calculate, especially for values of ¢ near -725 and m near
unity. For this reason TEF calculates F(¢ | m) using two methods
- depending upon the size of the parameter m. Consequently E(¢ |.m)
is also computed using two methods.

For values of m less than .5 the following infinite series3
. are used to calculate the incomplete elliptic integral of the First and

- -Second Kinds respectively
»
¢ 2 2
F(¢| m) = f [1-msin®(g)] 2 dg
, o A

= -Z-QK—sin(d»)cos (9) [—;-Azm+

1°3 2. 1:3+5 m3
24A4m +'§'——w~'é-A "1’..-] (13)
¢

=f [l—msm (6)]
o
1 2

- 2% 4 sin (¢) cos () [ 5 A,m+ zip Am

6
,1.
E(¢ l m) 2

2:4 "4

1-3 3
A3 4
+2-4-6 A6m + ] | (14)

2Reference 1, eqns, 17.4.1 and 17.4,2.

3He:r-bert Bristol Dwight, Tables of Integrals and Other Mathematical
Data, The MacMillan Company, 1965, p. 172, eqns, 775 and 771,
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where A2 = %—
A, = §§'Z + %sin2 (¢)
By = o g sin’ (4) +2sin () (15)
Ay = Toiies P S (8) + 5l sin® (9) + + 2 sin® (9)

with K and E the camplete elliptic integrals of the First and Second Kind,
This method although extremely fast requires many iterations,

that is, terms (one term per iteration) of the series to produce the required
degree of accuracy for m close to 1, For example, for ¢ = 85° and

m = sin (88 ) approximately 20, 000 iterations were required to make

‘the last term less than 10 14. Consequently a second method is employed
“to produce F(¢ | m) for values of m close to unity. To caleulate F(¢| m)
and E(¢ | m) the descending Landen transformation? is used. where ¢,

¢2, cees ¢ are successively determined from

b
by _
tan (¢n+1 - ¢n) = a——-—n tan (¢n), n=0, 1, 2,,..N (16)
where ¢o =0,

Then to the accuracy desired5

F($\a) = N_ | (17
2y

and
E($\a) = %F(‘ﬁ\g) *c, sin(4,) +c, sin (4,) +

.+ N sin (¢N) (18)

4Referemce 1, eqn. 17,6, 8,

®Reference 1, eqns. 17.6,9 and 17. 6. 10.




where a, and bn are determined by the process of the Arithmetic-
Geometric Meane. Starting with

a, = 1, bo = cos (a), c, = sin (o) (19)

an, bn, and cn can then be determined as

n-vl’ n-1
an = 2
1
bn = (an'_1 . bn-l) 2
= 1 .
°n T 3 (an-—l bn-l)

where 0<|c | <€ to the degree of accuracy € specified.

It might be noted'that E(¢ | m) can be accurately calculated
using any one of several methods 'including Gaussian Quadrature which
would essentially reproduce the tables of the incomplete elliptic integrals
in reference 1. However, since mos.t of the logic to compute E(¢ | m)
is contained in the logic for F(¢ |m) the rémaining logic was also added,

It can be shown that the summation given in equations 13 and
14 above and by the ratio test7 that

|2, |
IRnI s Ianl - |an+1'

(20)

This test is used to determine the number of terms ofbthe summation that

are to be added to achieve the desired degree of accuracy,

6Reference 1, egns, 17.6.1 and 17. 6‘.2,

7Wil'fred Kaplan, Advanced Calculus, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1952,
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The discrepancies between the values of F(¢ | m) and E(¢ |m)
given in reference 1 and the values returned from subroutine TEF are
given in Tables 1 and 2. All of the values differ by no more than 10’8.
The values of F(¢ |m) and E(¢ |m) were specially calculated by both
methods in subroutine TEF as a test of the numerical methods involved,
The series method and the method using the Landen transformation
returned the same values of F(¢ |m) and E(¢ |m) when run in double pre-
cision. This fact leads one to doubt the accuracy of the tables8 of the

incomplete elliptic integrals as given in the Handbook ‘g_f_ Mathematical

Functions. To avoid any error which might have been introduced by the
routine that returns the complete elliptic integrals, any value of K (m)
or E(m) that did not agree to 10.15 with the table in the AMS 55 was
explicitly entered, * | ”

Subroutine TEF tests for special values of the parameter m and
- the amplitude ¢ to avoid needless calculations. These special values and
the method9 by which they are computed are as follows

Fol 1 = 'm_[tan(;} +%>] , E(|1) = sin(¢) (@D
roloy =4 L EG|0) = ¢ (22)
FG |m) = K(m) , EG|m) = E(m) (23)
FG o = 10" () . EG|D = 1 (24)
FO o) =0 L, E(@@]0) =0 (25)

The subroutine TEK is called by TEF to compute the complete

. ' . -12
elliptic integrals E(m) and K(m) accurate to about 10 ~~, Two methods

8Refere:nce 1, pp. 613 - 618, Tables 17,5 and 17, 6.

OReference 1, p. 594, eqns. 17.4,19, 17.4.21, 17.4.23 and 17. 4. 25,
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Table 1,

Comparison of values of F( ¢\ @) as given in the Handbook

of Mathematical Functions and values returned from subroutine TEF

F(¢\a) value listed computed value
F(5°\48°) 0.08732765 0.08732766
F(10°\ 58°) '0.17517260 - 0.17517259
F(10°\62°) 0. 17522690 0.17522691

- F(10°\86°) 0.17542143 0.17542142
F(15°\44°) 0.26324404 0.26324403
F(15°\46°) 0.26335019 0.26335020
F(20°\70°) ~ 0.35547959 0.35547958
F(20°\82°) 0.35622881 0.35622880
F(25°\28°) 0. 43932365 0.43932364
F(25°\48°) 0. 44404397 0. 44404396
F(25°\74°) 10, 44967538 0.44967539
F(30°\80°) 0. 54842535 0.54842534
F(35°\50°) " 0.63363947 0, 63363946
F(35°\52°) © 0.63511150 0.63511149
F(35°\64°) 0.64351521 0. 64351520
F(35°\78°) 0.65067415 0.65067414
F(35°\84°) - 0.65228622 0.65228621
F(50°\72°) ©0.99163507 0.99163506
F(55°\86°) 1.15261652 1.15261651
F(60°\50°) 1.16431637 1.16431636
F(60°\56°) 1.19275650 1.19275649
F(60°\60°) 1.21259661 1.21259662
F(60°\84°) 1.31117166 1.31117165
F(70°\56°) - 1.45726935 1. 45726934
F(75°\46°) 1.49668437 1.49668438
F(75°\82°) 1.97316666 1.97316665
F(80°\82°) 2.31643897 2.31642896
F(85°\56°) 1. 90143591 1. 90143590
F(85°\66°) 2. 13070052 2.13070051




Table 2.

Comparison of values of E(¢\a) as given in the Handbook of
Mathematical Functions and values returned from subroutine TEF

_E(d\a) value listed computed value
E(100\ 700) 0. 17375210 0. 17375209
E(150\ 680) 0.25924104 0.25924103
E(150\ 480) 0.26016110 0.26016109
E(200\ 740) 0.34256478 0.34256479
E(250\ 740) 0. 42368913 0. 42368914
E (300 \840) 0. 50026923 0. 50026922
E(300\740) 0. 50186633 0.50186634
E(350\ 720) 0. 57733641 0. 57733640
E(350\ 380) 0. 59723431 0.59723432
E(400\ 200) 0. 69206954 0. 69206953
E(450\ 480) 0.74409773 0.74409772
E(500\ 540) 0. 80601230 0.80601229
E(550\ 460 ) 0.89246858 0.89246857
E(600\ 640) 0. 90689460 0. 90689461
E(700\ 580 ) 1.03614663 1.03614664
E(750\820) 0. 97598331 0.97598330
E(750\ 760) 0. 99517606 0. 99517605
E(750\ 700) 1.02171634 1.02171633
E(800\ 300) 1.31605841 1.31605840
E(850\ 720 ) 1.07377505 1.07377504
E(850\ 60) 1.47970717 1.47970716
-10-




are used in the subroutine depending on the size of m. If O<m< (1 - 10~

10, 11

the following sequence is generated

L-k'
kr1 = TR
n

where the complement modulus k' is given by
1
o2 (1 -k 22 -
kn (1 kn) n“'" 0, 1, 2;..-1’

with r being determined from the relation
10”15
k. <10

Since kl;l* 0 as n— K(m) and E(m) can be obtained from

- . = T
Kn 2 ! En 2
. 2K =
K1 ° 1+k' * En-l (1 *kn—l)En
K = Ko |  E = EO
| 12

Subroutine TEK uses the series

1

%)

(26)

(27)

'
2k n-1
1+k'

n-~1

(28)

OJ’ . H. Flinchum and D, E. Amos, AFWL Library Package MATH 13,

llG. A. Korn and T. M. Korn, Mathematical Handbook for Scientists

and Engineers, McGraw-Hill, 1961, pp 711, eqns., 21,6-6(c).

12Referenc:e 3, eqgns. 773.3 and 774. 3.
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1 22 1 1-2
1232 [naq V3] -2 . 2 2
+ 7 my) 2] - 15 374 (™
24
-1
2 .2 2 1
1. 3% 5 p) ) 2 2 3
+22. 5 {1n[4(m1) ] "13 "33 6} m, +...
and
E=1+1 {1n[a 7] - L
z | Rty ,] 1TZ ™
413 In[4( )-'21'] -2 1 2
2 my 1.2 ~ 3.4 m
2% 4
2.2 . o y
L 1%.3%5 { ~ = 2 2 1 3
te— {Wampz) - Z . 2 ,v}m
22 2. 6 1 1°2 34 " 5.8 1
+e. (30)

for (1 - 10—5) < m < 1. However, when m is close to one the number of
significant bits lost in the subtraction (to obtain m, as m,= 1-m) can reach
the word length of the computer. Subsequently, subroutine TEK has been
written with the option of supplying m, directly to the routine thereby
avoiding this loss of significant bits, This procedure works provided of
course m, can be calculated in the calling routine other than by subtraction
~of m from 1. Tox exercise this option the variable ID is set non~zero and
m, is supplied to TEK instead of m through ’the variable RM. The para-
meters EK and E return the value of K(m) and E(m) as always. A listing

of subroutine TEK is given in Appendix B,

-12-

(29)




To use subroutine TEF the calling routine must furnish
the standard FORTRAN statement

CALL TEF (PHI, RM, CRIT, F, E) |

The first three parameters PHI, RM and CRIT are supplied
to TEF and the last two are returned to the calling routine, The
parameters and their uses are listed below,

1.  PHI TYPE REAL, This variable corresponds
to the amplitude ¢.

2. RM TYPE REAL. This variable represents
the parameter m,

3. CRIT TYPE REAL. This is the error criteria

for the calculations of F(¢| m) and E(¢ |m).
If m is less than . 75 then CRIT determines
the number of terms in the series such that
the remainder Rn of the series is less than
the criteria. If m is greater than .75 the
criteria is used to determine the accuracy
to which the arithmetic-geometric mean is
carried;

4. F  TYPE REAL., This variable contains the
| ‘ value of F(é|lm) that is returned to the
calling routine, |

5. E TYPE REAL. This variable contains the
value of E(¢|m) that is returned to the

calling routine,

-13-




Subroutine TEK is called from subroutine TEF as follows
CALL TEK (ID, RM, EK, E)

The first two parameters ID and RM are supplied to subroutine
TEK and the last two are returned to the calling routine. The use of

these parameters is described below.

1. ID TYPE INTEGER. This determines which
variable the subroutine expects to receive.
IfID=0 RMé¢»m. IfID#¥0 RM+om_.

1
2. RM REAL, Th»is variable represents the
- parameter m or its complement m,.
3. EK TYPE REAL. This variable contains the
value of K(m) that is returned to the calling O
routine,
4. E  TYPE REAL. This variable contains the

value E(m) that is returned to the calling

routine,

An output file is required by subroutine TEF and subroutine
TEK for the printed error message from the check on the size of m,
Core storage requirements for the two subroutines TEF and

TEK are approximately 12508 and 420_ respectively.

8
The time to calculate F(¢|m) and E(¢ |m) varies according to
the value of ¢ and m. However, as a guide to the time involved, the

tabless8 of F(#\a) and E(¢\a) in the Handbook of Mathematical Functions

AMS 55 can essentially be reproduced in approximately 6 seconds,

-14- O




SUMMARY

Subroutine TEF is a general purpose routine for computing
F(¢ |m) and E(¢|m) with a high degree of accuracy for a wide range
of ¢ with the parameter m in the range 0 <mg<1, Although not a long
routine there was an attempt to increase speed and accuracy at the
expense of space in the general trade off between core storage and
central processor time, Subroutine TEK is used in the computation
of F(¢|m) and E(¢|m) but can be used by itself as a general purpose

rout ine .
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Appendix A:

Listing of subroutine TEF
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10
15
20

25
30

35

40

45

50

55

60
65
70

75

80

85
90

SUBROUTINE TEF (PHl1sRMsSFGsTFTE)

DATA P10O4/, 785398163397“48/-T91/6.28318550717959l

DATA Pl0P102/3.1¢1592653589I9$29Bh026h3r091¢570796326’9“8966192L0/
DIMENSION AA(S50)y BB(50), CC(50), PSAVISO}

IF (ABS(RM~e5)=65) 1541545
PRINT 10y RM

FORMAT (S5XsGH##a%kaan%%y3X ) 3HLOOK QUT M =
RETURN

1F (PH1) 20925425

W==1le

PHe=PH1l

GO TO 30

W=1le

PHapPH1

RK=SQRT (RM)

N=PH/TPI

A=PH=FLOAT(N)#*TPI

B=A/P102

K=8

NQ=K+1

GO TO (350“0065950)0 NQ
NK=43#N

SIGNEM=1e

APsA

GO TO 55

NK=4#N+2

SIGNEM==1,

AP=pPl=A

GO TO 55

NKag#N+2

SIGNEM=14

AP=A-P]

GO TO 55

NK=s4*N+4

SIGNEM==].

AP=sTPI-A

CNK=NK

PHI=zAP

CALL TEK (OsRMIEKIEE)
PLUS=(NK*EK

PLUS1s CNK#*EE

1T=0

IF (ABS(PHI=PIO02)=1¢E~10) 60+60+65
1T=1

IF (ABS(RK=1eEOQO)™1eE~10) 70985485
1TelT+l

GO TO (75480)y 1IT

TFaW* (PLUS+SIGNEM*ALOG(TAN(PIQ4+PHI#*e5)))
TEuW* (PLUSL1+SIGNEM*®SIN(PHI ) )
RETURN

TFeW*)1eET5

TEaw* (PLUS1+SIGNEM)

RETURN

1F (ABS(RK)-I.E-IﬁJv90195995
TFaW* (PLUS+SIGNEM®PHI )

-18-
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95
100

105
110

115
120

125

130
135

140

TE'W*(PLU51+SIGNEM*PHI)
RETURN

ITalT+l

GO TO (1054100)y 1T

CALL TEK (OsRMIEKIEE)
TFaw* (PLUS+SIGNEM*EK)
TE‘W*(PLU51+SIGNEM*EE)
RETURN

IF (ABS(PHI)=14E~=50) 11091154115
TFaW#pPLUS

TE=aW#PLUS1

RETURN

IF (RM=e75) 12091404140
CALL TEK (09RMyEKHEE)
SaSIN{PHI)

C=COS(PHI)

SK=aRM

CEm2.%PHI/P]

TZaCE#EK

TlaCE#EE

A= eSEOQ

T=eSEO*A#SK

RaT

55a5#$

PSal.EOQ

H=e¢5

Fae5E0

PK=SK

Ul=10,

DO 130 1=24,20000

J=I#*2

D=FLOAT(J=1)

G=FLOAT(J=3)
Ex1e/FLOAT(J)

PS=SS*PS

A=E¥* (D*A+PS)

FaD*E*F

HaGQHE*H

PK=PK#*SK

UsFiA#PK

IF (U1#U1/(Ul=U)~SIG) 13591354125
Ulsy

TeU+T

R=H*¥A#PK+R '
TFaW* ((TZ=S*C#T)*SIGNEM+PLUS
TEawWk ({T1+SHCH#R)*SIGNEM+PLUS])
RETURN

ALPHAR=ASIN(RK)

AA(l)=1l,
88B(1)=COS(ALPHAR)

DO 145 1=2450

Il=]~-}

AA(T ) eoS*(AACTIT)4+BB(I]))
BB(I1)aSQRTIAACTIT)I*BB(I]))
CC(])'.5*(AA(I')-BB(II))
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145

150
155

160
165
170
175
180
185
190
195

200
205

210
215

220

IF (ABS(CC(I))=S1G) 15091454145
CONTINUE

1STOP=»50

GO TO 155

1STOP=]

P=PHI

P2=1.

NQ=a1l

105al

M2P=0Q

14=0

ORELER=14E25

OR=14E25

DO 215 1=141STOP

PSAV(1)=p

P2=P2*2.
BO=TAN(PI*BB([)/AA(])
BF=ATAN(BD)

INS=SIGN(1e9BF)

IF (IOS*¥INS) 16541704170
NQ=NQ+1

IF (NQOﬁQ.S) N0=1

GO TO (17541905190+195)s NO
IF (14) 180s1854+180

14=0

M2PaM2P+1
BE=BF+FLOAT(M2P)*TP]

GO T0 200

BE=BF+PI+FLOAT (M2P)*TPI

GO TO 200
BE=BF+TPI+FLOAT(M2P)*TP1

1431

J0S=INS

PR=P/BE

RELER=ABS(OR~PR)/ (PR+OR)

IF (ORELER~RELER) 20592109210
[05=~10S

GO TO 160

P=BE+P

OR=PR

ORELER=RELER

TFaW* (PLUS+SIGNEM#(P/(P2*AA(ISTOP) ) ))
CALL TEK (QOsRM$EKIEE)
SUMEM=0.

00 220 1IK=2,]STOP
SUMEM=SUMEM+CC(TK)*SIN(PSAV(IK))
TE=wi (PLUS1+STGNEM* (EE/EK*TF+SUMEM))

RETURN
END

-20-

111
112
113
114
115
ll6
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
128
13¢
140
141
142
143
144
145
l46
147
148
149
150
151
152
153
154
155
156
157
158
159~
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Appendix B;

Listing of subroutine TEK
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10
15

20
25
30

35
40

45

50

55
%0

65
70

75

SUBROUTINE TEK (IDsRMsEK
DIMFNSION RKP(60)

IF (ID) 6045460

1F (RM=1ls) 30420910

PRINT 159 RM

FORMAT (SXsQH* % %M 49%4%,3X
RETURN

EKeleETS

E=1,

RETURN
EK=1657079632679489

E=EK

IF (RM) 109251935

IF (RM~4999) 40440465
RKN=SQRT(RM)

DO 45 1=1460
RKP(I)=SQRT(1e~RKNH*RKN)
RKN2(1e=RKP(I))/(1e+RKP (]
IF (1 eGEe2eAND«RKNaLTolsE
CONTINUE '

1260

N=I=-1

DO 55 J=1¢N
Tlmle+RKP(]I~=J) .
EK=2 e #EK/T1
E=TI*E-EK#RKP(I1=J)
RETURN

RPK=5QRT (RM)

GO YO 70
RPK=SQRT(le=RM}
PK2=RPK#*RPK

PKP=PK2
GOL=ALOG(44/RPK)
GK=GOL~1+

FK=.25

FE=e25

EKsGOL+FK#GK#PKP
E=le+e5%(GOL—95) #PKP
GE=GK

DO 85 1=2+2000
R=FLOAT{I+])

D=R~1.

PKP=PKP*PK?2

C=D/R

FK=FK*D*D/ (R*R)

FE=FE*C

H=1le/(D*R)
GK=GK=14/(D*FLLOAT(]))
GE=6GE=H

Tl=FK*GK*PKP

EK=T14EK

T2=FEX*GE*PKP

E=T2+F :
IF (T1=1eE~15) 75,75,80
IF (T2+~14E~=15) 90,90,80

213H LOOK OUT M =oFBe393XsGHknMkuENNRN)

|
~20) GO TO 50
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85
90

FEaFE®*C
GE=GE~H
RETURN
END

K
LLY
TK
TK

56
57
58
59=






