RS e “‘1:“?1Uﬂ;

Mol 0

‘(“3

SC-M-70-724

RUNKUT: RUNGE-KUTTA INTEGRATOR OF SYSTEMS OF
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

. R. E. Jones
Mathematical Computing Services Division
Sandia Laboratories

Albuquerque, New Mexico
87115

Date published - November 1970

ABSTRACT

RUNKUT is a computer subroutine which
simultaneous first order differential equations, using a variable step

size dual-mesh Runge-Kutta method. It is programmed to allow maximum
flexibility of use, yet be reasonably easy to call.

integrates a system of n

Key words: routine, computing, mathematics

FOREWORD

The Sandia Laboratories Mathematical Program Library consists of
a number of dependable, high-quality, general-purpose mathematical com-
puting routines. The standards established for the library require that
‘these. routines be mathematically sound, effectively implemented, exten-
sively tested, and thoroughly documented. This report documents one
such routine. ~

The library emphasizes effective coverage of various distinct
mathematical areas with a minimum number of routines. Nevertheless, it
may contain other routines similar in nature but complementary to the one
described here. Additional information on Sandia's mathematical program
library, a description of the standard format for documenting these rou-

tines, and a guide to other routines in the library are contained in
SC-M-69-337.

» This report is also identified within Sandia Laboratories as
Computing Publication MLOO16/ALL. The routine was originally documented
in April 1969. This report and its corresponding library routine are
expected to be available from COSMIC shortly after publication.

T

v - T

ACKNOWLEDGMENT

The author wishes to thank Carl Bailey for his many helpful sug-
gestions during the process of arriving at this version of RUNKUT and
for his help in preparing this document. Edward Clark and William Gavin
read all or parts of the document and proffered suggestions; Mr. Clark
also provided a useful user's viewpoint of both this routine and its

predecessor RKINTA. H. A. Watts provided advice also. Wendell Smith
edited the final document.

4.
5.
6.

7.
8.

CONTENTS

Introduction ., e e e e e .

1.1 Background . . .

1.2 Applicable Progrémmiﬁg.Lénéuégés.aﬁd.

Computer ‘Systems . . e e e
1.3 Considerations Regarding Use . . .

Usage « + e e e e .

Entry .

Mathematical Methods

Statement of Problem . . .

3.2 Methods Used
3.3 Mathematical Range and Domain . . .
3.4 Equations and Discussion
3.5 Error Analysis, Bounds, and Estimate

Programming Methods
Space, Time, and Accuracy Considerations
Testing Methods

General . . o e e i

Remarks

Certification

APPENDIX A -~ The RUNKUT Listing

APPENDIX B -- Test Results for CDC

6600 ., .,

APPENDIX C -- Control Cards for Using RUNKUT

References v v v v v ..

A s g e s

.
.
.
. . . 3 . . .
S

6'1 - . . . L L] .
6.2 Kinds of Tests Used
6.3 Normal Cases Tested . . v .
6.4 Difficult Cases Tested
6.5 Range, Error, and Fault Checks Teste

.

2.2 Description of Arguments . . ., ., .,
2.3 Restrictions Between Arguments ., . . , .« e e e .
2.4 Principal Uses with Examples « o e e s
2.5 Library Routines Explicitly Required o o s ole .
2.6 User-Supplied Subroutines Required
2.7 Cautions and Restrictions . e e e e e e e e e
2.8 Error Conditionms, Messages, and Codes . . .,

. O

o o

.

.

e o o e @

e o o o
.

® o o o o

é L

e © o e & ¢ e o
. . . ¢ e L] . .

. . . L . . . 3

¢ & o o &

on the CDC 6600 .

'5-6

1r

RUNKUT: RUNGE=-KUTTA INTEGRATOR OF SYSTEMS OF
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

1. Introduction

1.1 Background

RUNKUT is based on the Sandia Mathematical Program Library routine
RKINTA which was written in April 1968. During the year following
RKINTA's introduction into the library, it became clear that RKINTA
lacked certain capabilities and desirable features. RUNKUT was written
to include these features and to be as easy to use as practicable.

1.2 Applicable Programming Languages and Computer Systems

RUNKUT is written in a relatively bland subset of FORTRAN IV. It .
is thought to conform to ANSI* FORTRAN except for two statements which are

noted in Appendix A. 1In particular, RUNKUT is written in Control Data
6600 FORTRAN. ; :

.The applicable computing system is the Control Data 6600 SCOPE,

In the Control Data 6600, RUNKUT is maintained for the convenience
of the user in a library file. It is accessible by control cards which
are described in Appendix C.

1.3 Consideration Regarding Use

RUNKUT is a flexible, general-purpose, variable step size, dual-
mesh Runge-Kutta routine for integration of systems of first order
ordinary differential equations with initial values. Most systems of
higher order differential equations can be written as (larger) systems
of first order equations and hence may be integrated with RUNKUT, al-
though this may not be the best way to treat such systems. Also, RUNKUT
will not produce satisfactory results on many systems of equations which
are inherently unstable. For such unstable systems no classical method
is likely to work. However, RUNKUT should be applicable for almost any
system of equations for which one would expect a classical method to be
appropriate. The version of RUNKUT that is maintained on a library file
is restricted to no more than 25 equations. Card decks of RUNKUT modi-
fied for larger systems are available.

*American National Standards Institute, formerly USASI, originally
ASA.

2. Usage

2.1 Entry
CALL RUNKUT (DERIV,YANS,NlD,NN,MPl,DELT,INIT,ERR,OPT,IERR,IP)

2.2 Description of Arguments

In the following discussfon wé“will refer to an argument which must
be defined in the calling program before the call to RUNKUT as an input
argument. An argument which will be defined or redefined by RUNKUT will
be called an output argument. The form of an argument which is input
only can be either a variable name, an array element name, a constant,
or an expression. All other arguments except DERIV must be variable
names, array element names, or array names, as appropriate.

DERIV -- This argument must be the external name of the subroutine
describing the system of equations to be integrated. The actual argument
must appear in an EXTERNAL statement in the calling program. The form of
the calling sequence of DERIV must be SUBROUTINE DERIV(Y,YP), where Y is
an input array of variable values and YP is the resulting array of deriv-
atives computed by DERIV. The order in which DERIV assumes the input
variables to be in the array Y establishes the order which must be com-
plied with in YP and in the array YANS. The only restriction is that the
NN dependent variables must be first, followed by the independent vari-
able (called "time") in Y(NN+1). The ordering of the variables used in
DERIV:will be called "standard," or "usual" order in the remainder of this
document. DERIV -must not alter the values in Y, and need not define
YP(NN+1). See the examples in Section 2.4.

YANS -- (real, input/output) YANS is the initial condition and out-
put array. It must be dimensioned exactly N1D by at least MM, where MM
is the larger of 2 and MPl. On each call to RUNKUT, the initial condi-
tions for the system of equations to be integrated must be in the first
column of YANS in the standard order (see DERIV). Upon return to the
calling program, YANS will contain the solution in one of two forms,
depending on the value of the mode parameter MPL.

NID -- (integer, input) NID must be the actual size of the first
dimension of YANS in the calling program. N1D must be at least NN+1.
(This parameter is provided-so that YANS need not be dimensioned exactly
N1 but can be larger if desired.)

NN -- (integer, input) NN is the number of equations to be inte-
rated. Thus, the total number of variables, including "time," is NN+1.
%Hence N1D must be at least NN+l). NN must be no larger than 25. How-
ever, versions of RUNKUT with larger limits are easily made. See
Appendix A.

MP1 -- (integer, input) MPl is the output mode parameter, which may
have any nonnegative value.

If MP1 = 0, then one dual-mesh Runge=-Kutta step (see
Section 4) is done in the direction indicated by DELT,
and of a size determined by RUNKUT according to the
specifications in the array OPT. Then the new values of
the variables are placed in column one of YANS in the
usual order, and the corresponding derivatives are placed
in column two, for the user's convenience. YANS(NN+1,2)
is set equal to the new time value. :

8 .

b}

ir

o,

If MP1 = 1, then the integration will normall roceed
until time'= YANS(NN+1,1) + DELT. Then the nprvalues
of the variables are Placed in column one of YANS in the
usual order, and the corresponding derivatives are placed
In column two. 1In this mode the user may optionally
provide a subroutine called RKCHK(Y,K) which will be
called at the end of each good dual-mesh Runge=-Kutta
step. The array Y will contain the current values of
all the variables, in the usual order. If K is set

to 1 in RKCHK, RUNKUT will immediately return control

to the calling program with the current set of vari-
able values (and derivatives) returned in YANS. (Thus
RKCHK can be used for special printing purposes or to
stop integration when some special condition occurs

or to modify the variables dynamically to accomplish
some special purpose.) If RKCHK modifies any element (s)
of Y and if K is not set to 1, integration will proceed
using these values. '

If MP1 2 2, then M = MPl-1 sets of answers are obtained
and returned in columns 2 to MPl of YANS, respec-
tively. The i-th column of answers will correspond to
time = YANS(NM+1,1) + (i-1)*DELT. Thus in this case
the initial conditions remain in column one.

DELT -- (real, input) DELT is the desired time interval between out-
put sets whenever MPl is greater than or equal to 1. When MP1 = 0, the
sign of DELT gives the direction of integration (see description of
OPT(1) also). DELT may be positive or negative, but may not be zero.

INIT -- (integer, input/output) INIT should be set to a nonzero
value for any call to RUNKUT which is not a continuation of integration.
(For a continuation of integration the initial conditions would be the
last set of answers obtained from the previous call to RUNKUT, INIT would
be 0, and all other parameters would have the same values as they had
upon exiting from RUNKUT.) RUNKUT will set INIT to zero if the input
parameters are acceptable, i.e., if IERR#3. Whenever INIT is set non-
zero, an initialization area of code is executed which checks for accept-
able, consistent input values, and defines certain elements of OPT.

ERR -~ (real, input/output) Normally ERR is the maximum relative
error allowed for any single equation at any step of the Runge-Kutta
procedure. See the description of OPT(4) to OPT(7). If the user has no
particular knowledge on which to base the choice of thg value of ERR, it
may be set to a negative value, say -1.0, and RUNKUT will set it equal
to 1.0 x 10-7. ‘ :

IERR -- (integer, output) IERR is the error status parameter.
IERR = 1 is the normal value. IERR = 2 means the integration was not
completed. IERR = 3 means the integration was not begun, due to invalid
input:. See Section 2.8,

IP -- (integer, output) IP gives the number og output sets, or
columns of computed answers, actually found. (IP is for use primarily
when MP1l is larger than 1 and IERR = 2.) Note that the value of IP does
not count the initial conditions as a column of answers.

| R i | I I

OPT -- (real, input/output) OPT must be an array of at least 23
locations. The first 16 elements of OPT are input values, described
below. The remaining seven elements are defined by RUNKUT and are used
for storage of values between calls to RUNKUT so that integration may
be restarted most efficiently. If the user wishes, he may set each of
the first 16 elements of OPT to a negative value, say =-1.0, and RUNKUT
will choose nominal values for them. Or, any subset of these 16 elements
may be otherwise defined by the user and RUNKUT will choose those which
are set negative. The "standard value" stated below for each element is
the value RUNKUT will choose for each parameter if it is set negative by
the user. These values are then actually placed in OPT. Do not use zeros

to fill up OPT. For ease of reference later on, each element in OPT is
here given a name.

(The reader may profitably skip to Section 2.4 for some examples of
RUNKUT usage before finishing this section.)

OPT(1l) ~-- HMAX, the maximum step size to be used in the
Runge-Kutta process.

Restrictions: 0 < HMAX £ 0.5 * ABS(DELT)
~ Standard value: HMAX = 0.5 * ABS(DELT)

2. ~ Note that this restriction must be satisfied
- ez even when MPl = (.,

“TOPT(2) -- HMIN, the minimum step size.

R Restrictions: 0 < HMIN £ HMAX

- Standard value: HMIN = 0.001 * HO

. .OPT(3) -- HO, the initial, or starting, step size.
;é;:ré?;:m Restrictions: HMIN € HO < HMAX

o Standard Value: HO = 0.02 * HMAX

-7~ - Note: In RUNKUT, HO is chosen before HMIN is
7. chosen by setting it to 0.02 * HMAX unless

: ' HMIN has been set by the user to a larger value

than 0.02 * HMAX, in which case HO is set equal
- to HMIN.

OPT(4) =-- RMAX. RMAX times ERR gives the maximum rela-

tive error allowed for any single equation at
any step. See OPT(18).

Restrictions: O < RMAX (see Section 2.3 also)
Standard value: RMAX = 1.0
OPT(5) -- RMIN. RMIN times ERR gives the minimum rela-
: tive error desired. This is used for deter-
mining when the step size should be increased.
Restrictions: O < RMIN (see Section 2.3 also) .

Standard value: RMIN = 0.01 * RMAX

10

vl

r

[DEIRLE | N ERRSER A B

1 I i

OPT(6) =-=- AMAX. The total allowed error for any equation

OPT(7) ~--

| OPT(8) =--

OPT (9) --

at any step is RMAX times ERR times the value of
the variable, plus AMAX times ERR. Thus if RMAX
is set to zero, AMAX times ERR becomes the maxi-
mum absolute error allowed. ' See Section 3.5 also.

Restrictions: O < AMAX (see Section 2.3)
Standard value: AMAX =0

AMIN, plays a role analogous to AMAX, but for
the minimum absolute error desired. See Sec~-
tion 3.5. :

Restrictions: 0 < AMIN (see Section 2.3)
Standard value: AMIN =0
Note: If RMAX and RMIN are both set to zero, then

AMAX and AMIN should both be set positive by the
calling program.

CSNFAC. When RUNKUT determines that the step
size should be increased, the new step size used
is CSNFAC times the current step size (or HMAX,
if HMAX is smaller than that).

Restrictions: CSNFAC > 1.0

Standard value: CSNFAC = 2.0

REFFAC. When RUNKUT determines that the step
size should be decreased, the new step size used
is REFFAC times the current step size (or HMIN,
if HMIN is larger than that).

Reétrigtions: 0.0 < REFFAC < 1.0

Standard value: REFFAC = 0.5

OPT (10) =-- HMINB. When RUNKUT determines that it needs

a smaller step size, but the step size is

already equal to HMIN, then HMINB is con-
'sulted to see whether execution should be

terminated (if HMINB # 0.0) or if integration

should be continued at the minimum step size
- (if HMINB = 0.0). :

'~ Restrictions: None

Standard valuef HMINB = 1.0

12

OPT(11) -- EXTRAP. After each dual-mesh Runge-Kutta step

OPT(12) --

OPT(13) --

is performed, a Richardson extrapolation can
be performed, if desired, as a "mop-up" pro-
cedure which will normally produce more accu-
rate answers if ERR is reasonably small. If
EXTRAP is positive, the extrapolation is per-
formed. Otherwise, the extrapolation is not
performed, and the method remains the classical
Runge-Kutta.

Restrictions: None
Standard value: Negative (no extrapolation)

FIXHO, If FIXHO is set positive by the calling
program, the step size is fixed at HO and no
error checking is done. Interruption of the
step size in order to hit desired output points
exactly will still be performed if OPT(15) is
left at its standard value, but immediately
after each output point the step size will be
set back to HO. (Note that if FIXHO is positive,
the value of EXTRAP is ignored and no extrapola-

tion is done, since the double step answers which

are needed in the extrapolation are not computed.)
Restrictions: None
Standard value: Negative

NTIG. If NTG consecutive steps are "too good," the
step size will be increased on the next step (see
CSNFAC). A step is considered "too good" if the
estimated error for each equation is less than the
minimum desired error for that equation. See Sec-
tion 3.5. (NIG = 0 is allowed but RUNKUT performs
exactly as if NIG = 1 in that case.)

‘Restrictions: NTG > O

" Standard value: NTG = 3

OPT(14) --

HTOLF. If RUNKUT determines that the next dual~-
.mesh step will integrate to at least T-H*HTOLF
. (where T is the desired output point and H is the

current step size) then the step size for the next
dual-mesh step is adjusted so that it will actually

integrate exactly to that output point. This

happens only when OPT(15) ¥ 0. (If HTOLF is set
larger than 1.0, RUNKUT will reset it to 1.0.)

Restrictions: 0 < HTOLF =< 1.0
Standard value: HTOLF = 0.02

Ir

answers is stored in its appropriate column of
YANS. If HINTR is positive, the step size for
the next dual-mesh Step is altered so the inde-
pendent variable will hit the desired output
point-exactly, and this set of answers is stored
. 1N 1ts appropriate column of YANS. The step
Slze 1s then set back to the value it had before
this last step and integration continues. Errors
are checked as usual in either case.

Restrictions: None
Standard value: HINTR = 1.0

OPT(16) -- NEQCHK. This is the number of equations to be
checked for error. ‘Equations numbered 1 through
NEQCHK are checked, while the remainder are not.
In almost all applications this quantity should
be left at its standard value. (If NEQCHK is
set larger than NN, RUNKUT will reset it to NN.)

Restrictions: 1 < NEQCHK < NN.
33% Standard value: NEQCHK = NN

P Ndbé: The reméining quéntities are defined by
| , RUNKUT and need not be defined by the calling

AL pProgram.

OPT(1l7) =-- ITG. This quantity is the current number of"
consecutive steps for which all equations have
had less than the minimum desired error. It is
needed for step-size coarsening when MPLl = 0,

OPT(18) -- RELMAX. RELMAX = RMAX * ERR,

OPT(19) -- RELMIN. RELMIN = RMIN * ERR,

OPT(20) -- ABSMAX. ABSMAX = AMAX * ERR.

OPT(21) -=- ABSMIN. ABSMIN = AMIN * ERR.

OPT(ZZ)Y-; IEQB. Whenever'RUNKUT returns with IERR = 2,
this quantity will be the index of the earliest
equation which caused the difficulty. Other-

e wise IEQB will equal 0, . 4 .
h OPT(23) -- H. H is the value of the step size that was in

use just before RUNKUT returned to the calling
program. If HINTR is positive, H will not be
the value used in the last dual-mesh step but
the one used before the step-size interruption
~~ occurred. S : Tk -

td

2.3 Restrictions Between Arguments

Each argument which is defined or redefined by RUNKUT (i.e., YANS,
INIT, ERR, OPT, IERR, and IP) must be distinct from all other elements
of the calling sequence.

q 2YANS must be dimensioned exactly N1D by at least the larger of MPl
an . ‘

N1D must be at least NN+1.

The inequalities listed below relating elements of OPT must be
satisfied after any requested standard values are set by RUNKUT. If the
user uses nonstandard values for any of the elements of OPT, he must not
make them such that they conflict with the standard values of the other
elements. However, such conflicts are not likely if the values are set
at all reasonably (see Section 2.7). : :

0.0 < HMIN < HO < HMAX < 0.5 * ABS (DELT)
(ABS (DELT) means absolute value of DELT.)

RMIN = 0.0 T s
RMAX + RMIN + AMAX + AMIN > 0.0 ' DR

RMIN < RMAX if AMAX = AMIN

AMIN < AMAX if RMAX

NEQCHK < NN.

2.4 Principle Uses with Exémgles

Suppose we wish to integrate this system of differential equations,

y{E) = 2 £ y,(8) oL TEE AR

yh(e) = -2 £ 3y (8) LT TR
with initial conditions of
y1(0) =0
Yz(o) =1.

First we would write a subroutine, say DERIVA, "describing" the
system: ’ ‘)

SUBROUTINE DERIVA (Y,YP)
DIMENSION Y{(3),YP(3)

T = Y(3)

YP(1) = 2.0 * T * Y(2)
YP(2) = =2.0 * T * Y(1)
RE TURN

END

We must set up a driving program to call RUNKUT. The major factor in
the design of this program is the choice of the value of MP1. If we

14

1T

wish to print out the solution to the s: ‘ i
$ ystem at a number of points, sa
to the right of zero, we can use MP1l equal to some fairly 1a5ge nur;bery

a1 . -
?ﬁe ng %ggg?? do the whole integration in one call. For example (for

&
- PROGRAM ODF1(OUTPUT,TAPE6=OUTPUT)
- DIMENSION YANS(3,175),0PT(23)

EXTERNAL DERIVA
YANS(1,1) = 0.0

- YANS(2,1) = 1.0
YANS(3,1) = 0,9
INIT = -1
ERR = =1.0

DO 10 I = 1, 16
13 OPT(I) = -1.90
OPT(6) = N.01
CALL RUNKUT(DERIVA,YANS,3,2,101,0,
1NPY, IERR,IP) ’ T 0dr INTT, ERR,
WRITE (6,20) ((YANS(TI,J),I=1,3),J=1,101)

20 ESSMAT (1X,3HY1=,EZO.10,5*,3HY2=,E29-10,9X,2HT=,520.10)

If it is_not desirable to retain all computed values until the end of the
computation, we can use MP1l=l as in the following example, which would
produce exactly the same printout as in the previous example.

PROGRAM ODE2{QUTPUTY,TAPER=0UTPUT)
DIMENSION YANS(3,2), OPT(23)

; ‘,% EXTERNAL DERIVA
N YANS(1,1) = 0.0
L | | YANS(2,1) = 1.]
b .) YANS(3,1) = 0.0
3 . INIT = -3

; ERR = ~=1.,0

NC 10 I =1, 16
10 OPT(D) = -1,0
o WRITE (6,20) (YANS(I,1),I=1,3)
2" FORMAT - (1X,3HY1=,520.10,5X,3HY2=,EZG .10,5X,2HT=,E2') «10)
DO 30 K = &, 100
CALL RUNKUT(DERIVA,YANSy35249150.1,INIT,ERR,0PT,IERR,IP)
PRINT 204(YANS(I,1),I=1,3)
30 CONTINUE
END

: Note that in both of the above examples ERR and all the elements of OPT
b but OPT(6) were left to their standard values. OPT(6) was set to a small
E positive value because the solutions will repeatedly pass through zero,
. and using purelative error in such cases will usually cause difficulties.
' Setting OPT(6) to some positive value will probably be one of the most
common nonstandard usages in most applicatioms. ‘

The case of MP1 = 0 would not usually be used when moderate to large
numbers of steps are required to produce the desired answers. Rather,
the MP1 = 0 option is meant for certain situations where it is desirdble

' to monitor the integrated values continuously, or to get the solution to
: \ a system of equations very near to a pole or other discontinuity in one
E 1%3 or more of the equations. For example, suppose

5

15

y'(€) = y2(t) + 1, y(©) =0 , ' D)

and we want the solution at t = 7/2. The true solution is y(t) = tan t,
so m/2 is a pole, and the followin program would allow integration up
to very near w/2. Note that OPT(2),HMIN, is set to a very small value,
and integration continues until acceptable error cannot be obtained with
this step size. : '

PROGRAM ODE3 (OUTPUT,TAPFE=0UTPUT)
DIMENSION YANS(3,2), OPT(23)
EXTERNAL DERIV

YANS(1,1) = €,
YANS(2,1) = 0.0
INIT = -4
ERR = -1.0

DO 10 I = 1,16
10 OPT(I) = -1,.0
OPT(2) = 1.0E=-1nN
15 CALL RUNKUT (DERIV’YANS,3,1,0,1.0,INIT,ERR,
10PT,IERR,IP)
IF (IERR.EQ.2) GO TO 5¢
WRITE (6,20) (YANS(I,i”I=1,2)
20 FORMAT (1Xy2HY=yE20e19,5X,2HT=,E20,10) .
GO TO 15 ' - T
50 CONTINUE o A o T T T
END) ' I

One can also do this type of operation or monitor the integrated
values continuously by using MP1 = 1 (see description in Section 2.2) and ,
supplying a special subroutine named RKCHK(Y,K). Normally a dummy version :}
of RKCHK is provided along with RUNKUT, but the user may supply his own P
1f desired. When MP1l = 1,RKCHK is called at the end of each good
(accepted) dual-mesh Runge-Kutta step. At that time the user may examine
the values of all the variables, including the independent variable, and
may decide to terminate integration. The following example program, using
the same subroutine DERIV as in the previous example (y'(t) = yZ(t) + 1,
y(0) = 0), would print one line giving the t and y values at the end o
the first dual-mesh Runge-Kutta step at which y becomes larger than 100,
PROGRAM ODEL (QUTPUT,TAPEG=0UTPUT)
DIMENSION YANS(2,2),0PT(23) - S - -
EXTERNAL DERIV ' '

YANS(1,1) = 0.0
YANS(2,1) = 0.1%
INIT = 1

ERR = =1,0

DO 10 I=1,16 ' I _ |
10 OPT(I) = =1,.0 :
OPT(2) = 1.0E-10

- CALL RUNKUT (DERIV,YANS,2,1,1,2.0,INIT,ERR, .
10PT,IERR,IP) ,
WRITE (6,20) (YANS(I,1),I=1,2) ,
2% FORMAT (1X,2HY=E20.10,5X,2HT=,E20.1C) .
END

SUBROUTINE RKCHK (Y,K)

DIMENSION Y (2)

IF (Y(1).6GT.1.0E6) K=1) T

" RETURN . . -
END)

16 | , |

QR s o e e . ’ - . . . X “r

B i ——

RKCHK can also be used for other purposes such as printi
K C the 8 printing resul
periodically or when certain conditions occur, or impos?ng spegial coggi-‘
tions on the yar;ables: For example, one may know a priori that the
dependent varlables_belng integrated must, say, add to 1.0, But due to

cumulative integration errors the variables ma i -hi
umy y drift away from this -
dition. RKCHK could be used to readjust slightly the valZes of one o;on

gration with the altered values (if K is not set to 1 Not 1
RKCHK could communicate with DERIV through COMMON, if)desireg.a S0 that

2.5 Library Routines Explicitly Required

The standard FORTRAN routines ABS, AMAX1 anﬂ‘SIGN are required
also the Sandia Mathematical Program Library ;outine ERRCHK.E antreds

2.6 User-Supplied Subroutines Required

The user must supply the subroutine DERIV, as described in Section
2.2. A given program would have at least one routine used as DERIV, and
might have several. It might be desirable to have one subroutine describe
several systems of equations by providing a switch through COMMON to tell
which system is currently in use. The name(s) of the routine(s) used
must appear in an EXTERNAL statement in the calling program. Also the
user may optionally provide the subroutine RKCHK.

2.7 Cautions_and Restrictioms

The version of RUNKUT which is maintained on a library file in each
system is limited to a maximum of 25 equations. Only two statements (three
lines) needs to be changed in RUNKUT to increase this limit.

Probébly the most common error made in”using such routines as RUNKUT
is the failure to include the name of the subroutine supplying the deriv-
atives in an EXTERNAL statement in the calling program. Beware.

The user should be aware that many systems of equations are unstable
and ordinary methods of integrating are not appropriate for their solu-
tion. (In fact, no numerical method may be appropriate.) When RUNKUT
appears not to be producing good answers (and if programming errors have
been ruled out as a cause) one should first check to see if OPT(1l) to

OPT(7) have reasonable values for the problem at hand--the standard

values are not always reasonable--and should then try a smaller value
for ERR. If this does not help, then RUNKUT may not be appropriate for
solving that particular system of equations.

2.8 Error Conditions, Messages, and Codes

If execution is completed normally, IERR is set to 1; IP is set to
MP1-1 if MP1 > 1, or to 1 if MP1 = 1 or O. : ,

If at some point in the integration process RQNKUT cannot satisfy
the specified error bounds with the minimum step size, and if HMINB is

positive (standard), then IERR is set to 2, IP is set to ?he numbgr.of
sets of answers thus far computed (not including the initial conditions),

and control is returned to the calling program.

17

If RUNKUT determines that one of the restrictions on argument values
stated in Sections 2.2 or 2.3 has been violated, then IERR is set to 3,
IP is set to 0, and ERRCHK is called to print the error message:

AN INPUT PARAMETER HAD AN ILLEGAL VALUE.

Normally, ERRCHK will cause program execution to terminate. To make this
condition nonfatal, ERRSET! (an entry point in ERRCHK) must be called be-
fore RUNKUT is called. For example, to make errors nonfatal and set a
maximum of 10 messages to be printed, the following call should be made:

CALL ERRSET (10,0)

If ERRSET is called in this way before a call to RUNKUT which detects an
IERR = 3 type error, then RUNKUT will return control to the user with no
integration done. Any values in ERR and OPT which RUNKUT had defined
before detecting the error will remain so defined.

3. Mathematical Methods

3.1 Statement of‘Problem :

The problem is to integrate a system of n simultaneous differential
equations given in the "canonical" form :

V1€ = £,(y15 Y5 «vvs v ©)

Yé(t) = fz(yl’ Jos cves yn: t)

...
.
.

y,;r(t) = fn(}']_’yz, coey yn: .t)‘ . . L S

(L

with the initial conditions
Yi(to) = ai, i = 1, 2’ esey Il
Equations written in the "resolved" form, i.e., the form
y(n)(t) = f(y; _y" yns y(n-l)) t)

can be rewritten in the canonical (see Reference 2).

For example, the system -

7(2)(t) =‘f(y, y's t)

can be written as
yi(8) = yo(t)

Yﬁ(t) = f(yl’ Yo t)

18

I

3.2 Methods Used

3.3 Mathematical Range and Domain

) Matbematically,.the domain is any set of e
z:;gtiﬁ in the canonical form (see Section 3.1)
€ 1nterval of interest. (Numerically, many such systems are im-

Possible or excessivel difficul i i
of the solutions ig ch real nzmﬁegg'lntegrate VR RUNKUT.) - The ranee

3.4 Equations and Discussion

For convenience in dealin i .
v with a s ion
vector notation, In particula%, let yerem of equations, we will e

V&) = (31(), y,(0), ..., ¥, (£))
and o : :
) = (5,30, 0, 5,30, o, e 5G(®),)

Then the classical fourth order Runge-Kut i i ‘ ‘
stated as (Reference 2, p. 66) ge-Rutta lntegrgtlon step can be

- —_ — — — — .
y(t + h) =F(t) + h(K; + 2§, + 2R3 + &) /6 (2)
where

IGw, v

=
[
[

=EG(t) + 0.5 %, t + 0.5h)

Rarj
[

. “(3)
@) +0.5%,, t + 0.5 h) @

. wN
[

- TG + Kj, t+h) .

.‘-\N
[

. Integration of a system of equations by this method from t = t, to

t = ty + At proceeds step by step, with the "t + h" on the left-hang side
of Equation 2 at one step becoming the "t" on the right-hand side at the
next step. The step size h is increased or decreased at appropriate times-
as determined by examining the error estimates. These estimates are ob-
tained by comparing the answers obtained by integrating from t to t+2h
by two steps of size h with those obtained by using one step of size 2h.

3.5 Error Anmalysis, Bounds, and Estimates

Assume that integration of a system of n equations has been carried

. out to some time t, and h is the step size most recently used. RUNKUT

then proceeds by first integrating from t to t+2h with one Runge=~-Kutta

19

step of size 2h, obtaining an estimate §i(t+2h) of the true solution at

t+2h. Next, RUNKUT integrates from t to t+2h again, but with two Runge-
Kutta steps of size h, thereby obtaining theoretically a better estimate,
?é(t+2h), of the true solution at t+2h. -The estimate of the error in-

curred in each of the two steps of size h is given by (Reference 2,
pPP. 242-243)

Ee,) = ¥y e +) -7, + 20)] . @)

Given reasonable assumptions, Equation 4 follows from the fact that the
Runge-Kutta technique used is fourth order. That is, the ratio of the
errors in the "2h" answers to the errors in the "h" answers should be
(2h/h)4 = 16. Thus the difference between the two answers for any of
the n equations should be 15 times as large as the error in the better
answer, or 30 times the error due to either one of the two steps used
in computing the better answer.

The error checking performed at the end of each dual-mesh step (as
described in the preceding paragraph) is done as follows. If for any
one of the n equations being integrated it is the case that

E;(t, h) > ERR (RMAX - y, (t + 2h) + AMAX) (5)
1

then h is replaced by REFFAC-h (usually 0.5 h) and the integration starts
over again from t with this smaller step size. If Equation 5 does not
hold for any equation in the system, then ¥ (t+2h) is accepted as the
true solution at t+2h. If for at least one equation it is the case that

Ei(t, h) 2 ERR (RMIN - Yo; (t + 2h) + AMIN) 6)

then a parameter called ITG is set to zero and the integrations proceed
forward. Otherwise (i.e., if all equations have less than the minimum
desired error) ITG is incremented by 1, and if ITG is then at least three
(or whatever nonstandard value for NTG the user sets) then h is replaced
b{ CSNFAC-h (usually 2.0 h) and integration proceeds with this new step
size.

4. Programming Methods

The main considerations in the coding of RUNKUT were straight-
forwardness (to simplify debugging and allow easy modification§ and
internal efficiency of execution. Where these two objectives sometimes
conflicted, the problem was dealt with if necessary by increasing the
length of the code.

Internal efficiency in RUNKUT is quite good; in an actual test
RUNKUT and a simple fixed step size Runge-Kutta-Gill routine were made
to perform equivalent integrations of a simple set of equations (yp(e) =

Yz(t), yb(t) = -Yl(t)’ yl(O) =0, y2(0) = 1) for 10,000 steps. RUNKUT
was the faster even though it had to perform more derivative evaluations

Plus error checking. (RUNKUT required more derivative evaluations because

20

1T

the fixed Step size used Was not obtained by using the Fr

option, but by settin HMA X
. X = = HO > 0.0
RUNKUT is of Course eéen fastesg}N HO. When FIXHO > 0.0 is usegq

One mea :

when using M;%rs gf Ege stralghtforwardness achieved ip RUNKUT i

in the " v ere are never any ”branch b k " 1s that’
step size ig required, acks” unless a decrease

appendices. Th,

Precise core requireme
he amount of

length of time over which the in i i

engt tegration is to be erformed;
d}fflcglty Presented by the particular set of equatgons. mThé igglgge
given in Appendix B glve a rough idea of how some of these variables

Accuracy is generally closely related to the values of RMAX
RMIN, AMAX, AMIN, and the length of integration. In cases wg§§é many’
s;epg\are performed in the integration, round-off error will limit the
obtainable accuracy. In most cases, though, the truncation error, which
is controlled by ERR, etc., will be the major determining factor in the
actual error obtained. :

6. ‘Testing Methods

6.1 General Discussion

the choice of a set of test problems (sets of equations) and an appro-
priate way of compiling the test results. These test problems should
include "normal" or nonpathological systems as well as a variety of

"difficult" or pathological systems.

6.2 Kinds of Tests Used

Seven systems of equations were chosen for testing RUNKUT. For each
system a single value of the independent variable was chosen at which .
errors were to be tabulated. (This value was chosen so as to be as typi-
cal as possible; in particular, such points as maxima or zeroes of the
dependent variables were avoided.) Each system of equations was then

integrated with various values of ERR, RMAX, and AMAX, and both with and
without the optional extrapolation. RMIN and AMIN were always set to
RMAX/100 and AMAX/100, respectively, '

Sample tables of the results of these tests are included in the
appendices. The system of equations to which each table corresponds is
given by a number assigned in Sections 6.3 and 6.4. Each table gives
the value of the independent variable to which the errors correspond,
the values of ERR, RMAX, and AMAX which were used, and the actual exe-
cution time for the integration. When extrapolation was used, this fact
is indicated at the bottom of the table.

Besides the tests which produced these tables, separate small-scale
tests were made using nonstandard values of HMIN, HO, CSNFAC, REFFAC,
HMINB, FIXHO, NTG, HTOLF, HINTR, and NEQCHK to check that RUNKUT per=-
formed predictably to changes in these quantities.

6.3 Normal Cases Tested

System No. 1

HE =@ Ly @ =10 L

1.0

]

y3(8) = y,(t) , y,00)

The solution is

et

It

Yz(t)
System No. 2
y'(t)

The solutionﬂis . ‘ \ Lo ‘

“2ty(t) , y(0) = 1.0

: A 2
y(t) = et
System No. 3

y1(6)

y2(t) 5 y,(0) =0

[/

y5(t) = =y (8) , y,(0) =1

The solution is

yl(t) = gin (t)

yz(t) = cos (t)

22

s e g o

Sy

I

System No. 4
y' () = -y)% , y©) = 1.0
The solution is ‘

ORE ==

6.4 Difficult Cases Tested

System No. 5
ype)

2t7,(6) 5 y,(0) = 0

y5(6) = 2631 (6) 4 y,(0) = 1

The solution is

yy(£) = sin (t?)

cos (t 2)

Yo (t)

‘System ' No., 6

{ 1 if [t] is even
y' ()
' =1 if [t] is odd .
where [t] is the "greétest integer not greater than t."
The soiution is o - '
e = [g] | 1f [t] is even
7 = “1 - (t - [t])’ if [t] is odd
System No. 7 . ' S
y'(t) = 100 y(t) - t2),y(0) = 0.0002
The solution is ' ‘ A
y(t) = 0.0002 + 0.02t + ¢2
System No. 5 becomes very oscillatory as t gets large. System No. 6
is a triangular function oscillating between +1 and -1, which will require

rapid step size refining and coarsening. System No. 7 is extremely un-
stable numerically. _ ‘

23

6.5 Range, Error, and Fault Checks Tested “)

Special tests were done violating the restrictions on argument
values and restrictions between arguments given in Sections 2.2 and 2.3
in order to determine whether the proper error message (Section 2.8) was
indeed printed. ‘

7. Remarks

In order to answer some questions which are likely to occur about
the use of RUNKUT, we present the following typical questions with their
answers.

Ql. When I called RUNKUT my‘program execution stopped. Why?

A. You probably forgot to load RUNKUT into memory from its resident
disk or tape file. Or, on some systems this might happen if you failed
to put the name of the subroutine which supplies the derivatives to
RUNKUT in an EXTERNAL statement.

Q2. When I call RUNKUT my program time limits. What's wrong?

A. If this program has not successfully run before, you probably
forgot to put the name of the derivative subroutine in an EXTERNAL state-
ment. If this program has run before, you are apparently asking for too
much accuracy or too long an integration in each call. Try using MP1 =1
with a fairly small DELT so you can see how far RUNKUT is getting, in- ‘ ,)
stead of asking for integration over a long interval in one call. _— >

Q3. When I called RUNKUT it printed the message indicating that I
had given it an invalid argument. Where should I look for my error?

A. If you used nonstandard values for more than one of the step
size criteria, OPT(l) to OPT(3), or more than one of the error criteria,
OPT(4) to OPT(7), your problem is probably in having these in the wrong
order or having them incompatible. Or, if you are using MP1 = 0, the
problem may be with the parameter DELT, which should in this case be set
to a value whose magnitude is twice the maximum step size you wish to
use, and whose sign is positive for integration forward and negative for
integration backwards. Also, if any one (or more) of NID, NN, DELT,
HMAX, HMIN, HO, or RMAX is zero, that could cause the problem.

Q4. I checked all those things and they all look good. What now?

A. Check to be sure that the calling sequence is in the right order
and that all arguments are present. A simple transposition of say, NID ‘
and NN could be the problem. 1If the calling sequence is all right, try :
calling ERLSET to make the error nonfatal (see Section 2.8) and print out
the contents of the array OPT when RUNKUT returns to your program.
Examining the contents of OPT should let you see how far RUNKUT had s
gotten in setting up the standard values, and this in turn will help pin
down more nearly where the problem is.

Q5. RUNKUT returns with IERR = 2. How do I get it to go ahead and
finish the integration?

24

T —

v A i ‘ I S

A. RUNKUT may have found an actual singularity in the solution, in
which case the routine cannot legitimately be made to complete the inte-
gration. If this is not thought to be the case, the problem may well be
that your error criteria are unreasonable for this problem. In partic=~
ular, if the solutions for one or more of the equations either start at
zero or later cross through zero, you need to set AMAX to some positive

relative to the nominal value of all the dependent variables. You may

Q6. I want to stop the integration in RUNKUT whenever one of the
dependent variables reaches a certain value. How do I do this?

A. You should use a subroutine RKCHK(Y,K), as shown in the fourth
example in Section 2.4. (Alternatively, you may use MP1 = 0, though
with a slight loss in efficiency.) vYou may find that the integration is
proceeding at such a large step size that the value you are looking for
i1s passed by an appreciable margin in a single dual-mesh step. In this
event, after RUNKUT returns control to the calling program you may wish
to reverse the direction of the integration and proceed, using a smaller
value of HMAX (and probably using MP1 = 0), until you cross back over the
critical point. This process can be repeated, using successively smaller
values of HMAX, until the desired value of the dependent variable is
found to the desired accuracy.

8. Certification

This routine was subjected to a wide variety of tests. The perform-
ance of the routine throughout the tests was checked carefully. The
nature of the tests, the reliability of the routine, the error analyses
conducted, and the observed variation in accuracy are reported in this
document. While it is believed that the facts recorded and the judgments
expressed regarding accuracy and reliability are strong indications of
the general quality and validity of the routine, the tests should not be
considered to be exhaustive. The use of this routine outside of the
stated range of application or in violation of stated restrictions may
produce unspecified results. The statements made in this document are
intended to apply only to those versions of the indicated routine which
are released by the Sandia Laboratories Mathematical Program Library
Project. :

The author wrote RUNKUT, tested it on the CDC 6600, and prepared
this document.

Sy e

25-26

AR
h

APPENDIX A

The RUNKUT Listing

APPENDIX A

The RUNKUT Listing

The listing of the CDC 6600 version of RUNKUT at the time of publi-

cation is given in this appendix. This version is limited to no more
than 25 equations. -

In order to modify RUNKUT for a larger maximum number of equations,
lines RNKTO0790, RNKT0800, and RNKT0920 must be changed. For example,

.o change .the maximum to 50 equations, these three lines would become

DIMENSION Y(51,),YP(51,A1(51),A2(51),A3 (51) ,A% (51)
1,DY1(51) ,DYA(51),DY2(51),¥Y1(31) ,YYA(51),¥¥3 (51) ,ERRX (51)

and o _ '
"=IF (NN.GT.SO) GO TO 520»

Statements RNKT0740 and RNKT0830 are known not to conform to ANST -
Standard FORTRAN. The first is nonstandard because, when MP1 > 2, more
columns of YANS are referenced than are dimensioned. The second is
nonstandard because of the long Hollerith string. With the exception of
these two statements, RUNKUT is believed to conform to ANSI standards.

29

AT g - I) . N =

R A A SO LR R A LI R N T GOS0 A At O L A i

P T N IR T S A B

SUBROUT INE RUNKUT(DERIV,YANStNlDoNNaMPloDELTyIN!T;ERR;OPT,IERRoIP)RNKTOOIO

"SANDIA MATHEMATICAL PROGRAM LIBRARY

MATHEMATICAL COMPUTING SERVICES DIVISION 9422
SANDIA LABORATCORIFS

Pe Os BOX 58n0 ‘

ALBUQUERQUE, NFw MEXICO 87115

WRITTEN BY RONDALL E JONES DIv 9422
CONTROL CATA 6600 VERSION

ABSTRACT
RUNKUT INTEGRATES A SYSTEM OF N SIMULTANEOUS FIRST ORDER
DIFFERENTIAL EQUATIONS USING A VARIABLE STEP SIZE DUAL-MESH
RUNGE-KUTTA METHOD. THREE OUTPUT MODES ARE PROVIDEDs

DESCRIPTION OF PARAMFTFRS
DERIV, N1Ds NN, MP1 AND DELT ARE INPUT ONLY
IERR AND P aARF OUTPUT ONLY
YANSs INITs FRR AND OPT ARE INPUT AND OUTPUT
NOTATION ~ LET NP1 = NN+1
DERIV. = FXTERNAL NAME OF SUBROUTINE PROVIDING DERIVATIVES
FORM MUST BE SUBROUTINE DERIV(YsYP)s WHERE Y IS THE
ARRAY OF VARIABLES, WITH THE INDEPENDENT VARIABLE
IN Y(NP1), AND YP IS THE RESULTING ARRAY OF
DERIVATIVESe YP(NP1) NEED NOT BF DEFINED.
YANS- - = INITIAL CONDITION AND OUTPUT ARRAY.
INITIAL CONDITIONS MUST BE IN COLUMN ONE WHEN RUNKUT
1S CALLEDs AND IN THE ORDER ESTABLISHED IN THE
SUBROUTINE DERIVe THE INITIAL VALUE OF THE
INDEPENDENT VARIABLE MUST BE IN YANS(NP1ls1l)e
ON RETURN, THE VALUES IN EACH COLUMN OF YANS
WILL BE IN SIMILAR ORDER.

N1D - THE NUMBER OF ROWS IN THE ACTUAL ARRAY YANS IN THE

CALLING PROGRAMe (INTEGER! .
NN - THE NUMBER OF EQUATIONS BEING INTEGRATED. (INTEGER)
 MP1 ~ OUTPUT MODE PARAMETER (INTEGER)

=0 MEANS DO TwO RUNGE-KUTTA STEPS (OF EQUAL SIZE»
WITH THE SIZE BEING DETERMINED BY RUNKUT)»
RETURN ANSWERS IN COLUMN 1, DERIVATIVES IN

: COLUMN 2.

=1 MEANS INTEGRATE UNTIL INDEPENDENT VARIABLE =
"YANS(NP1s1) + DELTs RETURN ANSWERS AS IN MP1=0.

IF THE USER SUPPLIES THE ROUTINE RKCHK(YsK)s THEN.

INTEGRATION MAY BE TERMINATED AT ANY TIME (UP. TO
YANS(NP1s1)+DELT) BY SETTING K EQUAL TO 1.

e«GEe2 MEANS RETURN M SETS (COLUMNS) OF ANSWERSS
WHERE MP1=M+le THE INDEPENDENT VARIABLE
INCREMENT BETWEEN SETS IS DELTe INITIAL
CONDITIONS REMAIN IN COLUMN ONE WITH THE OUTPUT
IN COLUMNS 2 TO MP1l. - :

DELT = INDEPENDENT VARIABLE INCREMENT BETWEEN OUTPUT SETS»
WHENEVER MPleGEsle .DELT MAY BE NEGATIVEs IN WHICH

RNKT0020
RNKT0030
RNKT0040
RNKT0050
RNKT0060
RNKT0070
RNK TO080
RNKT0090
RNKT0100
RNKTO110
RNKT0120
RNKT0130
RNKT0140
RNKTO150
RNKTO160
RNKTO170
RNKT0180
RNKT0190
RNKT0200
RNKT0210
RNKT0220
RNKT0230
RNKT0240
RNKT0250
RNKT0260
RNKT0270
RNKT0280

RNKT0290 .

RNKT0300

RNKT0310 -

RNKT0320
RNKT0330
RNKT0340
RNKT0350

RNKTO0360 -

RNKT0370
RNKT0380
RNKT0390
RNKT0400

- RNKTO0410

RNKT0420
RNKT0430
RNKT0440
RNKT0450
RNKT0460
RNKT0470
RNKT0480
RNKT0490

- RNKT0500

RNKTO510
RNKT0520
RNKTQ0530
RNKT0540

B 7RV BHIE Y o e o

T I

T ———

:§ q CASE THE INTEGRATION PROCEDES TO SMALLER VALUES OF RNKT0550
e C THE INDEPENDENT VARIABLEs THUSs FOR ALL VALUES OF RNKT0560
C MP1, THE SIGN OF DELT GIVES THE DIRECTION OF RNKT0570

C INTEGRATION. RNKT0580

c INIT - SHOULD BE «NEs O FOR ALL CALLS EXCEPT THOSE FOR RNKT0590

C WHICH INTEGRATION IS MERELY PROCEEDING FURTHER. RNKT0600

C ~ INIT IS SET = 0 BY RUNKUT. (INTEGER) RNKT0610

C ERR ~ MAXIMUM RELATIVE ERROR, NORMALLY. RNKT0620

- c oPT ~ ARRAY OF STEP SIZE CONDITIONS, ERROR DISTRIBUTIONS, RNKT0630
C OPTIONS, AND STORAGE. OPT MUST CONTAIN AT LEAST 23 RNKT0640

C LOCATIONSs SEE THE OFFICIAL WRITE-UP ON RUNKUTe RNKT0650

c IERR =~ FRROR FLAG (INTEGER) RNKT0660

. c =1 IS NORMAL. RNKT0670
C =2 MEANS A SMALLER STEP SIZE THAN HMIN WAS NEEDEDe RNKT0680

C IP WILL CONTAIN THE NUMBER OF OUTPUT SETS OBTAINED.RNKT0550

c =3 MEANS AN INPUT PARAMFTER WAS IMPROPER. RNKTC700

< 1P ~ NUMBER OF OUTPUT SETS SUCCESSFULLY FOUNDSe RNKTO710

C , ‘ RNKT0720

DOUBLE PRECISION DXSTRTSsDDELTsDIP RNKTO730

DIMENSION YANS(N1Ds2),0PT(23) RNKTO740

C RNKT0O750

c TO USE N EQUATIONSs CHANGE 26 IN THE FOLLOWING STATEMENT TO N+1 RNKTO760

c AND CHANGE THE THIRD STATEMENT AFTER STATEMENT 1 ACCORDINGLY RNKTO770

p RNKT0780

DIMENSION Y(26)sYP(26)5A1(26)9A2(26)9A3(26)sA4L(26) RNKTO790
15sDY1(26)+DYA(26)sDY2(26)5YY1(26) sYYAL26)sYY2(26)sERRX(26) RNKT0O800

DIMENSION MFs3(6) RNKT0810

EQUIVALENCE (AlsYY1)s(A25DY2)s{A3,ERRX) RNKT0820

DATA (MES3(1)sI=156)/3541H AN INPUT PARAMETER HAD AN ILLEGAL VALUERNKT0830

le/ RNKT0840

c _ : RNKT0850

c INITIALIZATION AREA RNKT0860

c ; . RNKTO870

- S IF (INIT) 1,101 ‘ . RNKT0880
c; ‘ 1 CONTINUF RNKT0890
B IF (NIDelLTe21 GO TO 520 . RNKT0900
(' IF (NNeLTe1) GO TO 520 o RNKT0910
IF (NNeGT.25) GO TO 520 , . RNKT0920

IF (N1DeLTe(NN+1)) GO TO 520 . RNKT0930

IF (MP1.LTe0) GO TO 520 . RNKT0940

IF (DELTeEQens0) GO TO 520 RNKT0950

IF (ERReLE.0,0) ERR = 1.0E-7 ' ; . RNKT0960

PHDELT = 0+5#ABRS(DELT) , RNKT0970

IF (OPT(1)eLFeDe0) OPT(1) = PHDELT , RNKT0980

IF (OPT(3)elLFe0e0) OPT(3) = AMAX1(0e02%0PT(1},0PT(2)} RNKT0990

IF (OPT(2)eLFe040) OPT(2) = 04001%0PT(3) ’ ‘ RNKT1000

IF (OPT({1)eGT+PHDFLT) GO TO 520) . . RNKT1010

IF (OPT(3)eGT«OPT(1)) GO TO 520 RNKT1020

IF (OPT(2)«GT0PT(3)) GO TO 520 RNXT1030

IF (OPT(4)eLTe0e0) OPT(4) = 1.0 RNKT1040

IF (OPT(5)eLTe0e0) OPT(5) = 0.01%0PT(4) RNKT1050

IF (OPT(6)elLTe040) OPT(6) = 040 : RNKT1060

IF (OPT(7)eLTe0e0) OPT(7) = 0.0 RNKT1070

IF ((OPT(4)+0PT(5)+0PT(6)+0PT(7))eLE«DsO) GO TO 520 : i RNKT1080

NnNnnN

[aXaXa)

32

IR s

10

IF ((OPT(Q)-EQ.0.0).AND.(OPT(5)-E0.0.0).AND-(OPT(?).GT.OPT(G)))

1 GO

TO 520

IF ((0PT(6)oFQ.0.0)oAND-(OPT(7)oEQ.OoO)-AND.(OPT(S).GT.OPT(h)Y)

1 GO
IF
IF
IF
IF
IF
IF
IF
1F
IF
IF
IF
oPT
OPT
OPT
oPT
OPT
OoPT
OPT

INIT

TO 520
(OPT(8)eLFe0.0)
(OPT(9)elLFe0e0)
(OPT(8)elFeleO)
(OPT(9)eGFela0)

{OPT(13) e Te040)
(OPT(14) e Te0e0)
(OPT(14)4GTele0)
(OPT(15)etLTe0e0)
(OPT(16)elLTale0)
(OPT(16)eGT.NN)
(17) Oen

(18) OPT(4)*ERR
(19) OPT(5)*ERR
(20) OPT(6)*ERR
(21 OPT(7)*ERR
(22) 0
(23)

LI L | (I R T I T 71

v}

OPT(8)
OPT(9)
GO TO 520
GO TO 520
OPT(10)
OPT(13)
OPT(14)
OPT(14)
OPT(15)
CPT(16).
OPT(16)

L R L R O T I T /]

N
SIGN(OPT(3),DELT)

NON-INITIALIZATION ENTRY

N
NP1

NN
NN+1

FETCH CONSTANTS

HMAX = OPT(1)
=

HMIN

OPT(2)

CSNFAC= OPT(8)
"REFFAC= OPT(9)

HMINB = OPT(10)
EXTRAP= OPT(11)
FIXHO = OPT(12)
NTG = OPT(13)
HTOLF = OPT(14)
HINTR = OPT(15)
NEQCHK= OPT(16)
176 = OPT(17)

RELMAX= OPT(18)
RELMIN= OPT(19)
ABSMAX= OPT(20)
ABSMIN= OPT(21)

H = OPT(23)
HPH = H+H

HLFH = 0.5%H

PH = ABS(H)
HTOL = HTOLF*PH
HGO = PH+PH+HTOL

RNKT1090
RNKT1100
RNKT1110
RNKT1120
RNKT1130
RNKT1140
RNKT1150
RNKT1160
RNKT1170
RNKT1180
RNKT1190
RNKT1200
RNKT1210
RNKT1220
RNKT1230
RNKT1240
RNKT1250
RNKT1260
RNKT1270
RNKT1280
RNKT1290
RNKT1300
RNKT1310
RNKT1320
RNKT1330
RNKT1340
RNKT1350
RNKT1360
RNKT1370
RNKT1380
RNKT1390
RNKT1400
RNKT1410
RNKT1420
RNKT1430
RNKT1440
RNKT1450
RNKT1460
RNKT1470
RNKT1480
RNKT1490
RNKT1500
RNKT1510
RNKT1520
RNKT1530
RNKT1540
RNKT1550
RNKT1560
RNKT1570
RNKT1580
RNKT1590
RNKT1600
RNKT1610
RNKT1620

—t

[aXale!

[aNa¥a]

[a¥aXs]

[aXa¥a¥aRa¥a)

102

110

115

117

125

132
135

140

145

150

1P =
IPRINT=

0
0

FETCH INITIAL CONDITIONS

DO 102 1
Y(Ily) =
IF (MP1,
M =
DXSTRT=
DDELT =

COMPUTE

IPRINT=
1P

Dlp =

XPRINT=

Y=1,NP1
YANS(IYs1)
EQ.0) GO TO 125
MP1-1

Y(NPT)

DELT

NEXT *PRINT* POSITIONs ETC.

0

IP+1

]

DXSTRT + DIP*DDELT

PRINT CHECK

IF (HGO«LT+ARS(XPRINT-Y(NP1)}) G

IPRINT=

1

IF (HINTR) 125,125,117

HKEEP
HPH
H
HLFH
PH
HTOL
HGO

LR O R T T T 1]

H

XPRINT=Y (NP1}
O+ 5%HPH
Oe5%H

ABS{(H)
HTOLF*PH
PH+PH+HTOL

FHINH KRNI KRR
START OF INTEGRATION STEP

FIRST DO DOURLF-SIZE STEP

CALL DERIV (Y,YP}
IF (FIXHO) 122,132,155

DO 135 1
YYuen
YYL1{NPY)

=1sN
= Y(I) + H*YPI(I)
= Y{NP1) + H

CALL DERIV (YY1,A2)
- DO 140 I

YYun

=1sN
= Y(T) + H¥A2(1)

CALL DERIV (YY1,A3)

DO 145 1
YYuery
YY1(NP1)

=1sN
= Y(I) + HPH¥*A3(I])
= Y(NP1) + HPH

CALL DERIV (YY1l,A4)

DO 150 1
DYl(I)

=1sN

= HPH*(YP(I) + 2.0%(A2(11+A3(1])

DO TWO STEPS OF SIZE H

0 70 125

) + A4(1))/660

RNKT1630
RNKT1640
RNKT1650
RNKT1660
RNKT1670
RNKT1680

RNKT1690 °

RNKT1700
RNKT1710
RNKT1720
RNKT1730
RNKT1740
RNKT1750
RNKT1760
RNKT1770

RNKT1780 -

‘RNKT1790

RNKT1800
RNKT1810
RNKT1820
RNKT1830
RNKT1840
RNKT1850
RNKT1860
RNKT1870
RNKT1880
RNKT1890
RNKT1900

RNKT1910

RNKT1920
RNKT1930
RNKT1940
RNKT1950
RNKT1960
RNKT1970
RNKT1980
RNKT1990

RNKT2000°

RNKT2010
RNKT2020
RNKT2030
RNKT2040
RNKT2050
RNKT2060
RNKT2070
RNKT2080
RNKT2090
RNKT2100
RNKT2110
RNKT2120
RNKT2130
RNKT2140
RNKT2150
RNKT2160

33

D A N |

%7 e ST BRNTSS SR IS ST N S PO A S SN SO SO T -

” ¢ RNKT2170 i)

15% DO 160 I=1,N : RNKT2180
160 YYA(I) = Y(I) + HLFH*YP(I} , o RNKT2190
YYA(NP1)= Y(NP1) + HLFH ' RNKT2200
CALL DERIV (YYA,A2) RNKT2210
DO 165 I=14N _ RNKT2220
165 YYA(I) = Y(I) + HLFH*A2(1) ' , RNKT2230
CALL DERIV {YYA,A3) . RNKT2240
DO 170 I=1,N RNKT2250 §
170 YYA(I) = Y(I) + H¥A3(I) ' RNKT2260
YYA(NP1)= Y(NMP1) + H RNKT2270
CALL DERIV (YYA,A4) : RNKT2280
DO 175 I=1,N o RNKT2290)
DYALTY = H¥(YP(I) + 240%(A2(1)1+A3(I)) + A4(1))/6e0 » RNKT2300
175 YYACIY = Y(1) 4+ DYA(D) - RNKT2310
C. ' RNKT2320
, CALL DERIV (YYAsAl) o , | RNKT2330
, NO 180 I=1,N " RNKT2340
180 YY2(1) = YYA(I) + HLFH*AL(I) o RNKT2350 -
_YY2(NP1)= YYA(NP1) + HLFH " RNKT2360
CALL DERIV (YY2,A2) oRNKT2370
DO 185 I=1,N ' ‘ ' . . RNKT2380
185 YY2(I) = YYA(I) + HLFH*A2(1) . .. RNKT2390
CALL DERIV (YY2,A3)) " . RNKT2400
‘DO 150 I=1,N , s . RNKT2410
190 YY2(I) = YYA(I) + H¥A3(]) o " RNKT2420
: YY2(NP1l)= Y(NMP1) + HPH X . RNKT2430
CALL DERIV (YY2,A4) . L RNKT2440
DO 195.1I=1,N . : . ' RNKT2450
DY2(I) = DYA(I) + H¥(AL(I) + 2.0%(A2(1)+A3(I)) + A4(1))/640 RNKT2460
195 YY2(I) = Y(I) + DY2(I) ‘ RNKT2470
c e e e . 1 . s RNKT2480
C 36 36 3 26 I I I I W I3 WK I K X E K% . N . RNKT2490
C " STEP SIZE CONTROL AREA C : " RNKT2500 ‘i:)
- C : ‘ . . - . RNKT2510. p
C ESTIMATE ERRORS AND COMPARFE WITH ALLOWED ERRORS RNKT2520
C , . . RNKT2530
IF (FIXHO) 199,199,255 L oL RNKT2540
199 DO 205 I=1sNFQCHK , } RNKT2550
ERRX(I) = ABS(DYL(I)=DY2(1))/3040 o T RNKT2560
'IEQR = 1 - , . - RNKT2570
. IF (ERRX(I)eGTe (RELMAX®*ABS(YY2(])}+ABSMAX)) GO TO. 225 ' RNKT2580
205 CONTINUE _ "RNKT2590
' IF (PHeGE4HMAX) GO TO 248 o _ RNKT2600
DO 210 I=1sNFQCHK ' ' RNKT2610
IF (ERRX(I1)eGEs(RELMIN*ABS(YY2(I))+ABSMIN)) GO TO 248 RNKT2620
210 CONTINUE .. . RNKT2630
176 = 1TG+1 - - RNKT2640 -
IF (ITG«LT«NTG) GO TO 250 . - "RNKT2650
IF (IPRINT) 215,215,250 - RNKT2660
c. \) ; RNKT2670
4 COARSEN ' RNKT2680
¢ ‘ . L RNKT2690
215 ITG =0 ‘ ’ RNKT2700
34

Yo e e e b —— - I

o SR

[a¥aka

NNONAN

. 255

225

226
227

H = H*CSNFAC

IF (ABS(H)eGTeHMAX) H = SIGN{HMAX,DELT)
HLFH = 0+5%H

HPH = H+H

PH = ABS{H}

HTOL = HTOLF*PH

HGO = PH+PH+HTOL

GO TO 250

REFINE

176 =0

IF(PH-HMIN) 22642264227
IF (HMINB) 250,250,510

PH = PH*REFFAC

IF (PHeLToHMIN) PH = HMIN

H = SIGN(PHsDFLT)
_HEFH = 0.5%H

HPH = H+H

HTOL = HTOLF*PH

HGO = PH+PH+HTOL

IPRINT= 0

$ 228

230

. 248

250

© 260

< 265
270

N ANnN

275

300
310

IF (REFFACeNFe0e5) GO TO 230

DO 228 1=1,N

DYL(1)= DYA(T1)

IF (HINTR.GT,0.0) GO TO 155

IF (MPl+4EQe0) GO TO 155

IF (HGO+GE+ARS({XPRINT=Y(NP1)}) IPRINT = 1
GO TO 155

IF (HINTReGT.040) GO TO 132

IF (MP1.FQa0) GO TO 132

IF (HGO«GE+ARS(XPRINT-Y(NP1))) IPRINT =1
GO TO 132

AR I W HI I N NI K R

IF ERRORS ARF OsKes FfNISH THE BOOKEEPINGs ETCes FOR THIS STEP.

176 =0

IF (EXTRAP) 255,255,265
DO 260 I=1,sNP1

Yiry = yvya(r)

GO TO 275

DO 270 I=1sN

YUI) = YY2(T) + (DY2¢I)-DY1(I))/1540
CYINPL)= YY2(NPT)

CHECK FOR OUTPUT CONDITIONSs ETCe
IF (MPI-1) 300,325,350

DO 310 1Y=1,NP1
YANS{IYs1) = Y(IY)

RNKT2710
RNKT2720
RNKT2730
RNKT2740
RNKT2750
RNKT2760
RNKT2770
RNKT2780
RNKT2790
RNKT2800
RNKT2810
RNKT2829
RNKT2830

RNKT2840

RNKT2850
RNKT2860
RNKT2870
RNKT2880
RNKT2890
RNKT2900
RNKT2910
RNKT2920
RNKT2930
RNKT2940
RNKT2950
RNKT2960
RNKT2970
RNKT2980
RNKT2990
RNKT3000
RNKT3010
RNKT3020
RNKT3030
RNK T3040
RNKT3050
RNKT3060
RNKT3070
RNKT3080
RNKT30%0
RNKT3100
RNKT3110
RNKT3120
RNKT3130
RNKT3140

RNKT3150
RNKT3160

RNKT3170

‘RNKT3180

RNKT3190
RNKT3200
RNKT3210
RNKT3220
RNKT3230
RNKT3240

S

35

s e DU DO R O S W T MR | i R T ML | e

CALL DERIV (YsYANS(1,2)) RNKT3250 ")
YANS(NP1,2)= Y(NP]) RNKT3260 A
P =) RNKT3270
_ GO TO 600 RNKT3280
c RNKT3290
325 K = 0 RNKT3300
CALL RKCHK(Y,K} RNKT3310
IF (KeFQel) [PRINT=1 , RNKT3320 -
IF (IPRINT) 115,115,330 ' RNKT3330
330 DO 335 Iy=1,nP] RNKT3340
335 YANS(TY,1} = Y(IY) ’ RNKT3350
. CALL DFRIV (YsYANS(142)) . RNKT3360 .
YANS(NP1,2)= Y(NP1) , RNKT3370
TF (HINTR4GT.0.0) H = HKFFP RNKT3380
G0 TO 600 . _ } RNKT3390
C ’ RNKT3400
350 IF (IPRINT) 115,115,355 RNKT3410
355 IPP1 = IP+1 RNKT3420
DO 360 1Y=1,NP] . : RNKT3430
360 YANS(IYsIPP1) = Y(IY) ; RNKT3440
IF (HINTR) 370,370,365 - RNKT3450
365 H = HKEEP - , RNKT3460
HLFH = 0.5%n - RNKT3470
. HPH = H+H ’ . RNKT3480
PH = ABS(H) L . RNKT3490
©HTOL = HTOLF*PH , § : RNKT3500
. - HGO = PH+PH+HTOL - S . .- .~ RNKT3510
370 IF (IP=M) 110,600,600 RNKT3520
c . ' . RNKT3530
c “SET OUTPUT CODESsETCes CALL ERRCHK IF NEEDED, AND EXITe RNKT3540
c. .. . RNKT3550
. 510 IERR = 2 o . , . RNKT3560
IF (1P.GT.0) IP = [P-1 . RNKT3570 3
OPT(17) = Oeun ~ RNKT358¢ ;)
OPT(22) = IFnB L .. RNKT3590 N
OPT(23) = H ‘ , RNKT3600
" . RETURN - D _ ST . RNKT3610
c. RNKT3620
520 1ERR = 3 RNKT3630
1P =0 R v RNKT3640
_CALL ERRCHK(41,MES3) : _ N ~ RNKT3650
- RETURN _ . . RNKT3660
c . .. RNKT3670
600 TERR = 1 , RNKT3680
. OPT(1TY = ITm v P - . RNKT3690
OPT(22) = Oan S - RNKT3700
OPT(23) = H : RNKT3710
RETURN L RNKT3720
© FNDY) RNKT3730 .
"SUBROUTINE RKCHK{Y,K) ' . RNKT3740
J=0 RNKT3750
RETURN C RNKT3760
FND . RNKT3770
36

o

APPENDIX B

Test Results for CDC 6600

37-38

0 '!1WWW H ‘W{W ki

APPENDIX B

Test Results for CDC 6600

On _the CDC 6600 RUNKUT requires 2400g words of storage (when set
up for 25 equations).

Sample tables of the tests described in Section 6 are included in
this appendix. The value MPl = 2 was used in obtaining these tables,
so the values of DELT can be obtained from the starting and ending time
(independent variable) values given at the beginning of each table.
The step size criteria were left at their standard values except for
System No. 4 of Section 6 (for which HMIN = 10=6 and HO = 0.01) and
System No. 6 (for which HMIN = 10-10 in the top half of its table). The
first half of each of these tables is for a nominal value of ERR(10-8)
with various values of RMAX and AMAX. The second half is for fixed
values of RMAX and AMAX with various values of ERR. Blank lines indi-
cate that RUNKUT could not finish the integration (i.e., RUNKUT returned
with IERR = 2). :

The first seven tables are for each of the seven systems of equa-
tions given in Sections 6.3 and 6.4 using pure relative error (AMAX = 0.0)
in the second half of each table. ‘ ‘

Tables III and V are good examples of the fact that, when integrating
systems of equations which have zero crossings in some of their variables,
a significant amount of execution time can be saved with little loss of
accuracy by using a positive value for AMAX. Table IV illustrates how
RUNKUT can greatly coarsen the integration step size when the system
being integrated is very stable. Table VI shows the difficulty with
using pure relative error control with an equation which sometimes lingers
near zero. Table VII demonstrates that RUNKUT is simply incapable of
accurately integrating some systems of equations. This innocent-looking
equation, y'(t) = 100(y(t) - t2), is actually extremely unstable mathe- '
matically as well as being particularly subject to numerical inaccuracy,
so that no classical integration technique will solve it. ’

Table VIII is like Table III except that the optional Richardson
extrapolation was used. Note that for larger values of ERR the extrap-
olation did not consistently help the accuracy and in some cases actually .
hurt the accuracy. For small values of ERR, however, the extrapolation
definitely did help, giving up to one full extra correct significant
figure. .

: Table IX is for System No. 5 with a positive value of AMAX. This
Table is given to show that the behavior of the error with decreasing
value of ERR when a combination of relative and absolute error is used
is similar in character to the behavior when just relative error is used.

(

We note here that the ratio AMAX/RMAX gives the ordinate value at
which the error control process switches from being essentially relative
exror (for large ordinates) to being essentially absolute error (for
smaller ordinates). Thus, when using a positive value for AMAX to avoid
excessive refinements near zero crossings, this ratio should be picked
SO as to be small relative to all the nominal variable values. This

choice will make the error control process use essentially relative
error except at the zero crossing.

Data for System of Equations Number 1

INTEGRATION BEGAN AT T=
VALUES OF THE ERROR AT T=

ERR = 1,000E-08

RMAX AMAX
1.00 0.00
«S9 .01
«G0 .10
«50 .50

IN THE FOLLOWING RMAX=1.00

ERR
-1.00E~02
1.00E-03
1+00E~04
1.00E-05

1.00E-06

1000E‘07
1.00€-08
1.00€-09
1.00E-10

'TABLE T

-1.0
S.0 ARE GIVEN,
Yi Y2
REL ERR ABS ERR REL ERR ABS ERR
5.43E-07 6.70E-11 =5.00E-07 ~-4.,05E-03 TIME=
5.43E-G7 6.70E-11 “5400E~07 =-4,.05€~-03 TIME=
SeL3E-G7 6.70FE-11 “5.00E=07 =4.05€~03 TIrE=
S5e43E-07 6.70E~-11 ~5.00E~07 -4,05E-03 TIME=
» AND AMAX=0.00
Y1 Y2
REL ERR ABS ERR REL ERR ABS ERR
2+41E-83 2,97E-07 “1.24€-03 -1,00E+01 TIME=
2.41€-03 2,97E-07 -1.24E-03 ~1.00E+01 TIME=
1.4BE~04 1.80FE=Q8 -1.04E-04 -8.47E-01 TIME=
1.46E-04 1.80E-08 “1.04E-04 ~B.4L7E-Q1 TIVE=
9.06E-06 1.12E-09 =7+67E-06 -6.,21E~02 TIME=
S.06E=06 1.12E-0¢ “T7+67E-06 ~6.21E-02 TIMES=
5.43E-07 6.706-11 ~5400E~07 -4, 05E-03 TIME=
3.32E-08 4,.10€-12 -3+19E-08 -2,.58E-04 TIME=
3.32E-08 4,10E-12 -3.19E-08I-2.565-0h ' TIME=
TABLE ‘II
Data for System of Equations Number 2
INTEGRATION BEGAN AT T= 0.0
VALUES OF THE ERRCR AT T= 5.0 ARE GIVEN,
ERR = 1,.000E-08
S SO ,
RMAX AMAX REL ERR ABS ERR
1.00 5.00 1.54€E-06 2.09E-17 TIME= «147 SEC.
«99 .01 3.52E-02 4.88E-13 TIME= «069 SEC.
«90 .10 8e4BE=02 1.1B8E-12 TIME= «058 SEC.,
«50 .50 9+.33E-02 1.30E~-12 TIME= +«04t SEC.
IN THE FOLLOWING RMAX=1,00 , AND AMAX=0.00
Y1
ERR REL ERR ABS ERR) .
1.00E-02 Lo34E-02 6.03E-13 TIME= «018 SEC.
1.00€-03 3.02E-03 1.25E-13 TIME= «021 SEC.
1.00E-04 1.32E~03 1.83E-14 TIME= «033 SEC.
1.00E-05 3.38E-04 4,70E-15 TIME= «044 SEC,
" 1.00E-06 be16E=-05 5.78E~16 TIME= «0€8 SEC,
1.00E-07 7.31E-06 L1.J1E-16 TIME= 105 SEC,.
1.00E-08 1.51E~-06 2.09E-17 TIME= »147 SEC.
1.00€-09 1.72E-07 2+39E-18 TIME= +252 SEC.
1.00E-10 3.08E-08 4.28E-19 TIME=

«399 SEC.

«+068 SEC,
«068 SEC.
<067 SEC,
«068 SEC.

+012 SEC,
<013 SEC.
+018 SEC,
020 SEC.
«034 SEC.
033 SEC.
067 SEC.
<133 SEC.
«133 SEC.

41

1T

TABLE III

Data for System of Equations Number 3

INTEGRATION BEGAN AT T= 2.0
VALUES OF THE ERROR AT T= -5.0 ARE GIVEN,
ERR = 1.,0G0E-08 : =
|
Y1 . Ye
RMAX AMAX REL ERR ABS ERR REL ERR ABS ERR N
1.00 0.00 1.83E-08 t1.76E-08 ~2.3LE-07 -65.65E-08 TIVE= +088 SEC.
«99 ,L01 1.93E-08 1.90E-08 =-2.54E~-07 -7.19E-08 TIME= «081 SEC.
«93 .10 2.33E-08 2.24E-08 -2,98E~07 ~-8.46E-08 TIME= <068 SEC.
«59 050 2'338‘03 202‘05"08 ‘2098E'07 *8.‘465-08 TI"E: +069 SECO |
IN THE FOLLOWING RMAX=1.,00 , ANC AMAX=0.00
Y1 : \ &4
ERR REL ERR ABS ERR REL ERR ABS ERR
1.00E-02 “5.08E-04 =4487E=-04 -1.01E-02 -2.88E-03 TIME= +010 SEC.
1.00€E-03 1.67E-05 1.60E-05 -1.,02E~-03 -2.89E-04 TIME= «013 SEC.
1.00E-04 8.74E-06 BL.38E-0E ~beWBE-O04 =-1.27E-D4 TIME= «017 SEC.
1.00€-95 2.81E-06 2.6%E-0€ =“5.45E-05. -1 ,54E-05 TINME= « 024 SEC.
1.00E-06 2.83€E-C7 2.71E-07 ~“4.09E-06 ~1.1€E~-06 TIME= +042 SEC.
1.00€E-07 1.70E-07 1.63E~07 ~2.45E~-06 -6.95E-07 TIME= +058 SEC.
1.00€-08 - 1.83€E-08 1.7€E-08" =2.34E-07 ~-6.65E-08 TIME= «088 SEC.
1.00E-03 1.46E~-0¢ 1.40E-0¢ <1.76E-08 =-5,00E-09 TIME= «+145 SEC.
1.00E-10 9.53E~10 9.14E-10 ~1.15E-08 -3.26E-09 TIME= «19S SEC.
' TABLE IV
“Data for System of Equations Number &
‘INTEGRATICN BEGAN AT T= 0.0 - L
VALUES OF THE ERRCR AT T= 1000000.0 ARE GIVEN.
ERR = 1.000E-08
Y- ;
T RMAX AMAX REL ERR ABS. ERR
1.00 0.00 1.81E-08 1.81E-14 TIME=" +147 SEC.
»99 « 01 2-67E"06 2067E‘12 TIME= «099 SEC.
"e80 .10 7.15E~-06 7.15E-312 TIME= +081 SEC.
«50 .50 8.20E-06 8.,20€E-12 TIME= «068 SEC.
IN THE FOLLOWING RMAX=1.00 , AND AMAX=0.00 -
Yt
ERR REL ERR ABS ERR:
1.00€~-02 8.77E=-06 8.,77E-12 TIME= «03€ SEC. -
1.00E-03 B.77E-06 B8,77E-12 TIME= «03€& SEC.
1.00€-04 5¢11E-06 35.11E-12 TIME= «041 SEC.
1.00E~05 1.,72E-06 1.72E-12 TIME= «053 SEC.
1.00E-06 4,06E-07 4L.0EE~-13 TIME=" +071 SEC.
1.00€=-07 3.98E~-08 B8.98E-14 TIME= - .102 SEC.
" 1.00€-03 1.81E-08 1.81E-14 TIME= " 147 SEC.
-1.00€-09 J.20E~-09 3.20E-15 TIME= - 4225 SEC. ‘)
{ 1.00E-10 6.32E-10 6.32E-16 TIME= o344 SEC. .
42

IR EEIET A

TABLE V

Data for System of Equations Number 5

INTEGRATION BEGAN AT T= 0.0
VALUES OF THE ERROR AT T= 10.0 ARE GIVEN,

ERR = 1,000E-08

Y1 Y2
RMAX AMAX REL ERR ABS ERR REL ERR ABS ERR .
1.03 0.60 1.86E-06 =9,40E-07 ~6499E-07 -6.03E-07 TIME= 1.320 SEC.
«93 .01 1.91E-06 ~9.6€E-07 =7+18E-07 -6.19E-07 TIME= 1.261 SEC.
«80 .19 2425€-06 =-1,15E-06 =B451E~07 ~7.34E=D7 TINME= 1.164 SEC.

«50 .50 5.99£+06 -3.03E-06 =2.28E-06 -1.97E-06 TIME= «89C SEC.

IN THE FOLLOWING RMAX=1.30 , ANC AMAX=0.00

Y1 Y2
ERR . REL ERR AES ERR REL ERR ABS ERR

1.00E-02 -1.10E=01 -5.57E-02 ~1.91E-01 -1.65E-01 TIME= «066 SEC.

1.00E-03 1.46E402 =7.40E-03 <1.00E-02 -8.64E-03 TIME= «133 SEC.

1.00E-04 2.14E<03 ~1,08E-03 =1.13E-03 -9,77E-04 TIVE= «217 SEC.

1.00€E-D05 - 3e37E-04 -1.71E-04 ~1.54E-04 -1.30E~04 TIME= «33€ SEC.

1.00E~06 - . T+D1E-<05 -3.55€-05 - =2.94E-05 -2.53E-05 TIME= «540 SEC.

1.00E-07 1.10E405 -5.55E~08 . ~4.30E-06 -3.71E-08 TIME= «838 SEC.

1.00€-08 1.REE-0€ =-9,40E-07 ~6499E~07 -6.,03E-07 TIME= 1,320 SEC.
::1+00€E-09 3.77E<07 ~1.91E-07 =1.37E-07 ~1.18E-07 TIME= 1.993 SEC.

1.00E~10 L.,97€E-(B8 -2.51E-08 =1.77E-08 -1.53E-08 TIME= 3.154 SEC.

TABLE VI

Data for System of Equations Number 6
INTEGRATION BEGAN AT T= 0.0
VALUES OF THE ERROR AT T= 3.0 ARE GIVEN,
ERR = 1.000E-08 : f‘

Y1

RMAX AMAX REL ERR ABS ERR

1.00 0.00 ' : ,
«99 +01 ~1.28E-07 -1.28E~-07 TIME= «138 SEC.
99 10 ‘1.375‘07 -1.37E-07 TIME= «128 SEC.

«50 +50 =1¢65E~07 ~1.6SE~-07 TIME= +123 SEC.

IN THE FOLLOWING RMAX=1.00 , ANC AMAX=0.00

Y1
ERR REL ERR ABS ERR
. 1.00E-02 -1.00€-02 -1.00E-02 TIME= «011 SEC.
1.00E-03: 1.28E-02 1.28E-D2 TIME= «032 SEC.
1.00E-04
1.00€-05
1.00E-06;
1.00€E-07.
1.00€E~-08:

1.00E-09

@ 1.00€E-10

43

T

RMAX AMAX
1.00 0.00
«99 .01
+90 .10
«50 50

ERR
1,00€E-02
1.00E-03
1.00E-00

1.00E-06
1.00E-07
1400€-08
1.00€E-09
1.00€-10

44

1.00€-05

TABLE VII

Data for System of Equations Number 7

INTEGRATION BEGAN AT T= 0.0 _
VALUES OF THE ERROR AT T= 1.0 ARE GIVEN.

ERR = 1.000E-08

RMAX AMAX
1.00 0.08
«99 .01
«90 .10
«50 .50

ERR
1.00E~-02
1.00E-03
1.00€E-04
1.00E-05
1.00E-06
1.00E-07
1.00E~08
1.00E-09
1.00E-10

Data

INTEGRATION BEGAN AT T=
VALUES OF THE ERRCR AT T=

ERR = 1.000€E-0%

Y1
REL ERR
2.14€E-09
2.33€E-09
2.76E-09
2.76E-09

IN THE FOLLOWING RMAX=1,.00

Yt
REL ERR .
1.33g-03
7.43E-05
3.12E-05
1.99€E-06
7.53E-08
4e41E-03
2.14E=-09
8.01E-11
S.08E-11

EXTRAPOLATION WAS USED IN A

Y1
REL ERR ABS ERR
-8+12E+32 -8.2BE+32 TIME= +850
“1.26E+34 ~1,28E+34 TIME= «836
~1.26E434 =-1,28E+34 TIME= b1
~1.89€E+35 -1,92E+35 TIME= 811

IN THE FOLLOWING RMAX=1.00 , AND AMAX=0.00

Y1
REL ERR ABS ERR

=2.23E+37 -2.27€E+37 TIME= +0380
=2+54E+36 -2.60E+36 TIME= «063
=2+15E435 =2.1GE+35 TIME= 118
-1.89E+35 -1,92E+35 TIME= 0222
~1.27E434 ~1,29E+34 TIME= +236
~1413E+433 -1,15€E+33 TIME= dhly
=8+12E432 -8,28E+432 TIME= +852
=5423E+31 -5.33E+31 TIME= «915
~4+90E+30 -5,00E+30 TIME= 1.736
TABLE VIII

for System of Equations Number 3

2.0 '
=-5.0 ARE GIVEN.

Y2
ABS ERR REL ERR ABS ERR
2.0€E-09 1.80E-09 5.10E-10
2423E-09 1.95€-09 G5.53E-10
2.€4LE-09 2.31E-09 6.54E-10
2.64E-09 2.31€E-09 6.54E-10
y AND AMAX=0.00
Y2
ABS ERR REL ERR ABS ERR
1.27€-03 =2.02E-03 =-5.72E-04
7.13€E-05 =1.80€E-05 -5.11E~06
2.99€E-05 -6.66E-06 -1.89E-06
1.91E-08 7.37E=-07 2.09E-07
7.22E-08 " 5.10E-08 1.u45E-08
4.235-08 3.00E-08 8.52E-09
2.06E-09 1.80E-09 5.10E~10
7.68E-11 7.47E-11 2.12E-11%

4.87E-11 4.83E-11 1.37E-11

LL THE ABOVE.

SEC.
SEC.
SEC.
SEC.

SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.

Tive=
TIME=
TIME=
TIME=

TIME=
TIME=
TIME=
TIME=
TIME=
TIME=
TIME=
TIME=
TIME=

«08%
«082
«069
068

«009
« 014
«019
«02€
o 0l
«062
« 092
«155
«201

SEC.
SEC.
SEC.
SEC.

SEC.

SEC.

SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.

TABLE IX

Data for System of Equations Number 5

INTEGRATION BEGAN AT T=
VALUES OF THE ERROR AT T=

ERR = 1.000E-08
RMAX aMAX REL ERR
1.00 0.00 1.86E-06
«29 +01 14915‘06
«90 .10 2.26E=-06
«50 .50

5.99€-06

IN THE FOLLOWING RMAX= «30

Y1

ERR REL ERR
1.00€-02 1.15€-01
1.00E-03 3.03E-02
1.00€E-04 3.57€-03
1.00E-05 S.98E-04
1.002-06 1-11E-Oh
1.00€-07 1.39€-05
1.00€-08 2.26€E-06
1.00€-09 4.52E-07
1.00€E-10 6.03E-08

Y1

0.0

10.0

ABS ERR
-9.40E-Q7
~9.6EE~07
-1.15E~-06
~3.03E-06

ARE GIVEN,

Y

REL ERR
~6.99E-07
~7.18€-07
-8.51E-07
~2.28E~06

» AND AMAX= .10

ABS ERR
“5.84E-02
=1.53E-02
“1.81E-03

-3.03E-04 .

-5.60E-05
~7.06E-06
‘1-155'06
~2.29E-07
=-3.05€~-08

Y

REL ERR
=3.79E-21
-2.32E-02
'1'95E’03
‘2.798’0“
~bLe66E~DS
~S.46E-06
~8451E~-07
~1.65E=07
~2+.16E-~08

2

ABS ERR
-6.03E-07
=6419E-07
~7«34E-07
-1+97E~-06

2

ABS ERR
=3.27E-01
-2.,00E-02
~1.68E~-03
=2+ 40E-04
=4.02E-05
-4.71E~06
=7.34E-07
“1.42E-0Q7
~1.86E-08

TIME=
TIrE=
TIME=
TIME=

TIME=
TIME=
TIME=
TIME=
TIME=
TIME=
TIME=
TIME=

 TIME=

1.324

1.263:

1.164
«889

«053
<098

0175

«287
«707
1.164
1.735
2e74€

+ SEC.
SEC.
SEC.
SEC,

SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.
SEC.

45-46

Prie

b

APPENDIX C

Control Cards for Using RUNKUT on the CDC 6600

47-48

APPENDIX C

Control Cards for Using RUNKUT on the CDC 6600

RUNKUT is maintained in a library file for the convenience of the

Control Data 6600 users at Sandia Laboratories, Albuquerque, New Mexico.

The name of the file is MATHLIB, Questions concerning the availability
of RUNKUT on the Control Data 6600 at Sandia Laboratories, Livermore,
~California, should be directed to the Numerical Applications Division

Two control cards, ATTACH and COLLECT, are required for using the
mathematical library file. The ATTACH card is required prior to using
COLLECT. The COLLECT processor operates on one relocatable binary file
and from one to six library files. The library files are searched for

routines which contain entry points matching unsatisfied external refer- -

ences in the relocatable binary file. Such routines are added to the
relocatable binary file,

A complete typical example follows:

JOB CARD

ACCOUNT CARD

FUN,S.
ATTACH,MATHLIB,MATHLIB.
COLLECT,LGO ,MATHLIB.
LGO

7/8/9 punch in column 1
Program

7/8/9 punch in column 1
Data

6/7/8/9 punch in column 1

In the above example, external references in LGO are satisfied, if pos-
sible, by selectivel: adding routines to LGO from MATHLIB. Additional
information on the CKLLECT processor with examples is contained in
UR0004 /6600 . 3 ‘

49

1T

References

C. B. Bailey, A Guide to the Sandia Mathematical Program Library,

SC-%-69-337, Sandia Laboratories, Albuquerque, New Mexico, January
1970. |

F. Ceschino and J. Kuntzman, Numerical Solution of Initial Value
Problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

P. A. Lemke, Auxiliary Library Routines PREP and COLLECT; Sandia
Computing Pubiication UR0004/6600, Sandia Laboratories, Albuquerque,

‘New Mexico; June 1969.

