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ABSTRACT

This note describes computer subroutines which are based
on the Choleski method for the solution of a system of simul-
taneous linear equations of the form A¥X = b, where A is
symmetric, by triangular decomposition.
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I. INTRODUCTION

In certain classes of EMP investigations the problem is formulated
into a system of simultaneous linear equations. The solution is then
obtained by some matrix inversion technique. In many cases the matrix
which is formed is symmetric about the main diagonal. One may take
advantage of the symmetry properties in the matrix by utilizing special
methods in order to increase the speed of the solution calculations. This

note describes one such method,




II. OPERATION

General

The subroutines CDCSM (Choleski's Decomposition of a Complex
Symmetric Matrix) and SCL (Solution) are called by a main program or
subprogram which fill the matrix array with the coefficients of the system
of equations to be' solved, CDCSM will return to the calling program the
decomposed matrix. SOL is fhen called by the c'alling program with the
vector b in

| AX=T | (1)

and the solution vector X is returned.

Many different b vectors may be used once A has been decomposed,
Since A is symmetric, only the lower triangular half plus the diagonal
need to be filled in the array containing the elements of A, The arrays
whieh contain A, ¥, and b must be typed COMPLEX and dimensioned in

the calling routine.

Calling Sequence

To use subroutines CDCSM and SOL, the calling routine must
supply the standard FORTRAN IV CALL statements,
CALL CDCSM (A, L, N, DETER)

and
CALL SOL (A, I, N, B)




Parameters

The following are parameters for CDCSM

1. A
2. L
3. N

4, DETER

TYPE COMPLEX, This is a two~dimensional complex
array containing the elements of the matrix. The first
dimension relates to the row position and the second to
the column position. Thus the matrix element Aj; is
contained in A(L, J). CDCSM returns the decomposed
matrix in A,

"TYPE INTEGER. This integer is supplied to the sub-

routine and must be the same number as that used in
the dimension statement where A is dimensioned in

the calling routine, That is, if the dimension statement
is

DIMENSION A(45, 45)
then I. must be 45.

TYPE INTEGER. The order of the system to be
solved, N < L.

TYPE COMPLEX, The determinant of the system,
returned by CDCSM.,

The following are parameters for SOL

1 A
2. L
3. N
4, B

TYPE COMPLEX, Same as for CDCSM, This is an
input for SOL and is the decomposed matrix returned
by CDCSM.

TYPE INTEGER. Same as for CDCSM.
TYPE INTEGER. Same as for CDCSM.
TYPE COMPLEX, An array dimensioned N, this is

the © vector in AX = b. The solution vector ¥ is re-
turned in B by SOL.




Names given the above parameters were chosen for illustrative
purposes. These are formal parameters in the subroutines. The actual
paramete;‘s used by the calling routine need not agree in name, but they

must agree in type and number,




III. GENERAL

Accuracy

These subroutines were tested on the Control Data Corporation 6600
at Kirtland Air Force Base, New Mexico, which can carry floating point
numbers to 14 or 15 significant places. Symmetric matrices were gener-
ated with random numbers forthe complex elements. These random num-
bers ranged between -100 and +100, The b vector was selected such that

the X would have 1 in each element, that is,
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This provides a quick check for accuracy since the X vector should

contain all ones. A root mean square difference of the form

(3)

was used to see what errors the routines generated. For a 5 x 5 matrix,

13

o was in the order of 2 x 10"14 For a 50 x 50, 0 was ~2 x 10~ and
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for a 150 x 150, ¢ ~1x 10 As with any matrix routines, much




depends on the conditioning of the matrix. Since the properties of a sym-
metric matrix are being used one cannot employ pivoting to reduce error
since that would destroy symmetry properties. Many references exist 1,2

which discuss in detail the error analysis of such calculations.

Time

CDCSM decomposed random symmetric matrices of various sizes
from 5 x 5 to 150 x 150, For a 5 x 5 it took roughly . 003 seconds; for a
50 x 50 about .5 seconds, and for a 150 x 150 about 11,3 seconds., So,
if a matrix is of size n x n a very rough estimate of the time it will take
to decompose is . 0004:n2 seconds.

This is not an exact figure énd serves only as a guideline., Of
course the speed of the calculations varies greatly with different com-

puters. The SOL routine returned an answer vector with ~, 0000 ln2

seconds elapsed time.

Storage

Subroutine CDCSM takes 251, words of storage and SOL takes

8

1758 on the CDC 6600,

Checks

There are no checks in the subroutines. The user should be famil-
iar enough with the system of equations to ensure non-singularity. In

addition, inaccuracies may result because of an ill-conditioned matrix,




or if the matrix or its elements are large in absolute value, roundoff

, e -294 ~322
error may result. Also, values beyond machine limits (£10 to £10
in the CDC 6600) may be generated. These problems are the same with

any matrix inversion scheme, but may be worse with this one since

pivoting cannot be used.

Q




IV, ALGORITHM

Choleski Scheme

The algorithm is that of Choleski and is a variation of Gaussian
elimination. It is also called the square root method.

In regular triangular decomposition the matrix A is decomposed
into an upper triangular and lower triangular matrix U and L such that
the elements of the diagonal in L are all ones, and the product of U and

L is A, that is,
A= LU | (4)
In L, the elements above the diagonal are all zero, and similarly in U

the elements below the diagonal are zero.

The solution is then found by solving the system

Ly=b (5)
and then
Ux =7y (6)
since
A¥ = LUR = Ly=D (7)

Now, when A is symmetric it may be written as,

A= LLT (8)

where LT is the transpose of L, if the decomposition is modified to pro-

duce two triangular matrices in which the diagonal elements of L. and U




are the same. The algorithm as given in Ref. 1 and 2 is
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Note that the elements of A above the diagonal are not involved due to the
symmetry.

The determinant of the matrix is found by multiplying the diagonal
elements of L. with each other then squaring the results. This is derived

from

DET(A) = DET(L)DET(U) = DET(L)DET(LT) = DETZ(L) (11)

Since L is a lower triangular matrix, its deterrﬁinant is simply the
product of the diagonal elements. LT is an upper triangular matrix with
the same diagonal elements. So, the determinant of A will be the square
of the product of the diagonal elements of the decomposed matrix, Since
no row interchanges occur, we need not keep track of sign changes in the
determinant.,

In CDCSM the array A is decomposed by formulas 9 and 10 and the
L matrix is stored in A, so, the original matrix is destroyed. LT is not
stored anywhere since in the solution subroutine all one has to do is trans-

pose the indices of L to obtain the elements of LT.
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SOL is called next in order to solve the system of equations. Now

we solve for a temporary vector . From formula 5, LY = b we see that

so that

Next we solve in a similar manner
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so that

- L - X Vper " (ynunnun, n-1 '
*n-1" ; = y (15)
n-1,n-1 n-1, n-1

etc.

This is our solution and is returned to the calling program by SOL in the

B array.

General

On page 32 of Ref. 1 it is stated that a proof has been made that no
general system of linear algebraic equations can be so‘lved in fewer opera-
tions than are required by Gaussian elimination. In our decomposition we
have further taken advantage of symmetry by deleting the computation of
a'U matrix, On page 115 of Ref. 1 it further states that because of the
symmetry of A it is necessary to store only n(n+1)/2 elements resulting
in savings of storage. A relatively complicated subscripting scheme is
usually necessary, with conséquent loss of time. In this note we did not
attempt to save storage. It is possible that the user may do this with the
subroutines by adapting them to his particular problem.m

It s’hould be noted that REAL rather than COMPLEX variables may
be used only if the matrix is positive definite since square roots are

involved,
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V. SUMMARY

Subroutines CDCSM and SOL may be used to solve a éystem of
simultaneous lihear equations if the matrix formed by the system is sym-
metric, and the coefficients are complex. The algorithm used is a varia-
tion of Gaussian Elimination and is called Choleski's method, It should
be one of the fastest routines for solving such a system. Samples of
accuracy and timing have been given. It was pointed out that care be
given to the conditioning of the matrix, since ill-conditioned and singular

matrices will return erroneous results.
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APPENDIX
PROGRAM LISTING
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SUBROUTINE CDCSM(A, L, N, DETER)

THIS SUBROUTINE DECOMPOSES A COMPLEX SYMMETRIC
MATRIX INTO A LOWER TRIANGULAR MATRIX BY CHOLESKI'S
METHOD. IT ALSO CALCULATES THE DETERMINANT OF THE

Q oo

[9)]

MATRIX,
COMPLEX A(L, N), SUM, DETER

A(1, 1)=CSQRT(A(1, 1))
DO 1 K=2,N _

A(K, 1)=A(K, 1)/A(1, 1)
DETER=A(1, 1)

DO 4 J=2,N

SUM=(0,, 0.)

M=J-1

DO 2 K=1,M
SUM=SUMH+A(J, K)**2
A(J, J)=CSQRT(A(J, J)-SUM)
DETER=DETER*A(J, J)
IP=J+1

IF(IP. GT.N)GO TO 5

DO 4 I=IP, N

SUM=(0., 0,)

DO 3 K=1, M
SUM=SUM+A(I, K)*A(J, K)
A(I, J)=(A(1, J)-SUM)/A(J, J)
CONTINUE
DETER=DETER*DETER
RETURN

END
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SUBROUTINE SOL(A, L, N, B)

THIS SUBROUTINE SOLVES A SYSTEM OF LINEAR EQUATIONS
WHEN THE MATRIX IS SYMMETRIC AND COMPLEX. THE SYS-
TEM IS SOLVED BY BACK SUBSTITUTION WITH A LOWER
TRIANGULAR MATRIX, WHICH IS RETURNED BY CDCSM AND
IS THE DECOMPOSITION OF THE MATRIX FORMED BY THE

SYSTEM.,

COMPLEX A(L, N), B(N), SUM

DO 2 I=1, N
B(I)=B(I)/A(L, 1)
IP1=I+1

IF(IP1,GT.N) GO TO 2
DO 1 J=IP1, N
B(J)=B(J)-A(J, I)*B(I)
CONTINUE

DO 4 K=1,N

I=N-K+1

SUM=(0., 0.)

IP1=I+1

IF(IP1.GT.N) GO TO 4
DO 3 J=IP1, N
SUM=SUM+A(J, 1)*B(J)
B(I)=(B(I)-SUM)/A(L I)
RETURN

END
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