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Abstract

A system of Pocklington-type integro-differential equations
representing crossed cylinders has been studied by means of the
singularity expansion method. The numerical techniques used to
determine the natural frequencies and associated mode and coupling
vectors are discussed. These results are used to determine the
time domain response of the currents on the structures considered
and compared to results obtained earljer by more conventional
frequency analiysis and Fourier inversion.
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1. Intrdduction

Recently Baum [1] has discussed the singularity expan51on method and
its appllcablllty to general scattering eroblems. Using these techniques,
one can detetmine the natural or resoﬁant frequencies of a particular
structure ana:the current distributions associated with these resonances.
The time domain response of the structure is then obtained as a summation
of exponentially damped 51nusolds, the magnltude of each being determined
in a straight-forward manner. |

A Pocklington type E-field iﬁtegro—differential equation formulation
for the induced currents on the scatterer is cast intoxmatrix form by

means of the method of moments. (A comparison of the various formulations

and current expansions is made in order to estimate the rate of convergence

of the particular form used.) From the resultingvmatrix equation, the
poles or natural frequencies are found by a numerical search routine. The
modes associated with each frequency are determined by standard matrix
operations, and tﬁe aﬁplitude of each damped sinusoid is determined using
the derivative of the system matrix with respect to the complex frequency.
.The greatest advantage of the siﬁgularity expansion technique is that
one can separate and characterize,basic attributes of the structure only
once, and the time domain response for various types of excitation can be

easily determined from the structure's characteristic behavior.
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2. Formulation

The geometfies considéred in this study are shown in Figure 1.
Tesche [2] has studied the isolated cylinder using the SEM (singularity
expansion method) while others [3,4] have determined time domain responses
of the éylinder in the more conventional manner - namel& solving the
frequency domainAproblem and then performing a Fourier inversion into
the time domain. Also using the latter method, Taylor and Crow [4] have
previously studied the crossed cylinder problem.

The stafting point for this study is the Pocklington type integro-
differential equation for an N-wire system [5]. TFor a complex frequency,
s = 0 + jw |

-8 g4 4 Ei(Sn)

N / )2 9 A oA (
= I [ Insh) | =2 - 5= (s' -5 )| 6(s,s0)as! (1)
-1/ U™ %8 st 2 m "Sn) | 650, Sn)dS
m

The thin wire approximation is used, and the kernel G has the form

C - gst/c 2)
R
where
2, 297 |
R= [(s, -8 +a’] (3)
or
ok ‘ ~
R = [s§+sr;12+afl] m # n (4)
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To apply the SEM, (1) must be cast into matrix form and this may be

accomplished by choosing as basis functions

Ink(2z) = oy sin [—j% (zk+1 - z)]+ ) sin [—3% (z - zkil (5)

sin [—j%. (zk+1 - zkE]

where 2p £ 2 < Zgy] and z is the variable along any particular wire under
consideration. The double subscript, mk, on I implies the current oﬁ the
ml:b_ wire in the kth zope. Point matching is use& and done in such a manner
that for either geometry in Figure 1, the number of equations equals the
number of unknowns. As shown by Otto and Richmond [6], the integrals in

(1) reduce to algebraié expressions and (1) can be written as

I(s) I(s) = E(s) ‘ (6)

where the double line indicates a square‘ matrix and the single line a
colﬁmn matrix.

The natural frequencies are defined as those values bf s for which
the left side of (6) becomes zero and for which a non-trivial solution for

I(s) exists. Thus, at the natural frequencies, denoted by s, the

determinant of Ili(s) must be zero;

(7)
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It is from (8) that the sa's are determined. In (7), I(sa) is defined as

the mode vector and
o T 4
H(Sd) C(sa) =0 (9

=T =
defines the coupling vector where I is the transpose of II. Note that (7

and (9) determine I and C only to within multiplicative constants. Thus

solutions to (7) and (9) will now be written as C I(s ) and C~» C(s )
; . Ia o Cq o

where I and C are the "true" vectors. Baum [1] has shown that

— - T — Sut

i(t) = g U(t) l(sa) C(Sa) EE e (10)
s
a

for class 1 coupling coefficients with the normalization

T —
C(Sa) dan I(s ) =1 ' (11)
ds ‘

Note that (10) requires that no static response is possible. For the induced
charge a static response term should be included (see the appendix). Thus in

terms of solutions to (7) and (9), (10) is written as

= T

- —_ 8 t
i(t) = g U(t) CIu CCa I(sa) C(sa) Ey e O
CI CC .Sa
o o
and from (11)
C C~ C(s.) dn I(s ) =¢Cr C
Ia Ca o I o Ia' Ca
s=g
o

Therefore if the multiplicative constants are included in the solutions of
the mode and coupling vectors,

— T s, t
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and
T——_
C(s ) dn I(sy) = C; C
a ds > Ty Ca
s=8
o
(10) becomes
o T
- . — s,t
i(t) =1 U(L) I(sa) C(sa) E, e o
a -
e (12)
C(s ) dn I(s )
a’ —— a
ds
s=s
o

comcemoa
prasemommase

U(t) is a diagonal matrix with Heaviside fuﬁctions along the main diagénal
to take into account "turn-on" times and signal speeds, and E;7sa is the
excitation function for a step function thaf!turns on at t = 0 and its
singularity is included in an explicit fashion.

An expression analogous to (12) is derived in the appehdix for computing
the induced axial charge distribution.

3. NUMERICAL METHODS

A. Determination of Pole Locationms

To determine the natural frequencies‘for a given geometry it is necessary
to form'i.and solve (8) for the values of S,+ The particular numerical
technique used in this work is Muller's method [7]. The advantages of this
method are that multiple roots can be found, conjugate réots can be found,

and no special formulation is needed to apply this to complex equations.

.

In Muller's method the derivative of I is not used. While it is true that
dﬁ/ds is used in calculating the contribution of each sinusoid, it is cal-
culated only once at the pole location and not several times as it would be
in an iterative process; Approximate pole locations are not needed, though
in practice having good estimates of pole locations will considerably reduce

the number of iterations required to find the various roots,




In Muller's method, three approximations Xys X515 X;_o are made to a
root of the equation, f(x) = 0. The next approximation.is found as a zero
of the parabola which goes through the three points (%3, £(x1)), (x4-1» £(x;_1)),

and (x;_,, £(x;_5)). Following Conte's development [7], define
and

'fEci, xi-;J = £ - £,

X1 7 *i-1

X T %42

The function p(x)
p(x) = £, + £ [xi, xi_l] (x - x;)
+ fE{i, X515 %49 (x - xq) (x - xi-l)

is the unique parabola that passes through these three points. The roots

of p(x) = 0 are determined from the quadratic formula. Writing p(x) as
' _ 2
p(x) = ap + ajx + asx

The roots are

x = 2 a,

—a,t (a2- %
aq*(ay 4aoa2)
In Muller's method the sign is chosen such that the magnitude of the de-
nominator is largest. This value of x is now taken as the approximation

8
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Xi41 for the root. The process is repeated for Xj41s X4» X595 etc. This

is done until some criteria are met and the iteration sfopped: e.g.

*i+1 < e (13)

and/or

£(x541)

< € : (14)

In the SEM, ’ﬁ

= 0 is the equation to be solved and any three starting
values for s caﬁ be used. However, the closef Eo a root one starts the
fewer iterations willvbe fequired. To find the second root of the
determinant, the function is deflated or a new function is defined as

//Qs - sa) (s - s:)

where s, 1s the first root and, since in these SEM problems, S, (complex

i

*

o is included. For real roots

conjugate = *) is:also a root the term s - s
the (s-s:) factor is omitted. As successive roots are found the function is
similarly deflated. For a determinant formed from exﬁonential functions as
one has using sine functions as pasis functions in this formulation, the
number of roots to be found must bg specified.
B. Calculation of Mode and Coupling Vectors

To calculate the modg vector associated with a particular Sy2 E-is
evaluated at s = 843 the maximum pivot element is located and, if necessary,
row and column interchanges are performed to move this element to the (1,1)

position. By means of the GauSS—Jordan,Réduction_Technique with maximum

pivot element the matrix is now upper triangulérized. While it is true that

«
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the root will likely never be found exactly by numerical means, it is true
that by setting ¢ small ( 16_6) iﬁ (13) [or (14)] the 1last diagonal element
in the triaﬁgularjmatrix is usually five to seven orders of magnitude

smaller than‘fhe'other diagonal elements. This smallest element is set

equal to zero, the last element of the mode vector is set equal to real

one, and the femaining elements can now be calculated by the usual methods

of linear.algebraic equations. At this stage the mode vector components

can be renormalized in any desired fashion. For example, Tesche [2]
normalizes the mode vector such that the element having the largest magnitﬁde
is éet equal to real one. In a like manner, the coupling vector is cal-

T
culated from H(sa) .

C. Coupling CoefficieﬁtS'for the Exponentiaiiy Damped Sinusoids

Baum [1,8] ﬁas outlined the means bf which one can determine the con-
tribution due to each damped sinusoid. In section 2 of this report these
procedures are qutlined, énd (12) is the final result of the maniﬁulations.
Actually i(t) has been determined by two methods - that outlined in section
2 of this report and also by means 6f a limiting process such as equation

(3.41) in [1]. Excellent agreement is found between the two methods.

4. Numerical Results
As a means of establishing the accuracy of the results obtained from

the SEM, a study was made to determine the effects of zoning, types of current
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expansions used,'and the integral equation formulation employed on the

values of thg currents that are calculated at the center of the antenna

in the frequént& domain. The following summarizes these computations., All
results are for a simple dipole (diameter/total length = d/L) excited by

a monochromatic plane wave, incident broad-side, having a value such that

kL = 27. The first capital letter in the heading refers to Pocklington (P)

or Hallen (H)‘theory and the second to the basis functions (current expansions)
used - piecewise sinusoids (8), piecewise constant (C). A1l currents are
ma/volt. |

P -85, d/L = 0.1

No. of Zones Real I Imag. I
20 10. 404 -12.812
40 10.228 -13.398
% 09.968 -14.026

P-cC, d/L=0.1
20 10.574 ~12.708
40 10.276 ~13.362
90 9.963 -13.987
H-¢C, d/L = 0.1
20 10.455 ~13.056
40 10,221  -13.489
90 9.925 -14.087
P -5, d/L =0.013
20 1.745 -6.140
40 2.823 ~7.710
90 3.314 ~8.332
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advantage of P - S is that the matrix elements are algebraic expressions

P -¢C, d/L = 0.013

20 3.421 -8.295
40  3.517 -8.204

90 . 3.405 | -8.316
H-C, d/L = 0.013

20 ' ; 3.386 ' -8.359

40 : 3.369 -8.374
90 3.358 -8.389

Thus for thick:wires (d/L = 0.1) the various results agree to within a

few percent for any number of zones. However for thin wires (d/L = 0;013)

P - 5 gives results that are low by about 30% when 20 zones are used. Since
the running time is proportional to the square of the number of zones, these

results suggest that P — S should not be used for thin structures. The

and involve no numerical integrations. This advantage.is outweighed for
thin wires by the fact that a large number of zones must be used to obtain
accurate results. | ‘

In Figure 2 the pole locations for a cylinder with d/L = 0,01 are
shown as determined by Tesche [2] and this approach. Notice that the pole
locations are sensitive to zoning in the same manner as the currents in
the frequency domain. Figure 3 shows the effects of zoning on pole locations
for a cylinder with 4/L = 0.1. 1In Figﬁres 4 and 5 are plots of the mode
vectors for two different cylinders, two poles on each cylinder and different
zoning. For the thin éylinder, the mode vector changes very little as

the zoning increases from 18 zones/meter to 40 zones/meter. For the thick

cylinder, thé mode vector shows oscillations near the ends of the cylinder

12
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at 40 zones/meter. This is due to the thin-wire approximation and the fact
that no end corrections are included.

Figure 6 is the time history of the current on a thin dipole for broad-
side incidence. This is determined from the two poles»having the smallest
magnitude (Figure 2). However, the second pole makes'no contribution to
the current at any point along the cylinder. This agrees with Séssman's
results [3] whicﬁ_show strong resonances at kL/2 = 1.2 and the next at
kKL/2 = 4, 1In view of these results, Figure 7 is i(t) for the thick cylinder
for the smallest (first) pole and then, at early time, i(t) is shown for
the first and third poles (Figure 3) at two locations along the antenna.

The agreement between these results and those previously obtained [3,4] is
quite good. For ct/L greater than 4, the contribution of the third pole is
negligible at eitﬁer position.

Figure S shows various>poles calculated for the crossed cylinder model
assuming excitation along the y-axis. In this particular geometry equal
length cylinders are considered and d/L = 0.1 for each. Also, in the interest
of running time, the problem is zone& at 12 zones/meter. Figures 9, 10 and
11 are current time histories for this problem with different numbers of
poles used and at the junction on the different wires in the problem. It
appears rthat fqr ct/L > 3, two poles provide good results ﬁhile for ct/L < 3,
additional ones must be considered. The curves are calculated using the
same excitation and are to be compared to Figures 23, 24 and 25 in reference 4.
(In the two reports, the curves for the x—-axis have different signs since

they were plotted for different sides of the junction.)
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APPENDIX

In additign to providing a means by which the current time histories

may be evaluated, the SEM provides a convenient means by which charge

densities may be obtained. In section 2 of thlS report the method for

calculating 1(t) has been outlined. Baum [1] and Tesche [2] have discussed

the necessary operations using the continuity equation to obtain the charge

density. This expression is

P— T

p(t) = - _1 J/ﬂz U(t) D(sy) C(sq) E (s)eSt ds
27] o - 2
' (s - s o)

where

D(s,) = 4 I(s))

Taking into account the second order pole one obtains

— T

t
p(E) = - I U(t) Dlsg) Clsy) E,(sq) e ©
a

Sa

— T
+ I U(t) D(sq) C(sq) E_(0)
o 2
s
o

T

| +tz U(t) D(sy) C(sy) E (0)
o

Sa

T
+ I U(t) D(sy) C(s,) E;(O) (la)
o

Sa
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Notice that in (la) the particular form of the e
a step function that turns on at t = 0, has been
depends on the inclusion of the explicit 1/s dep

Since the coefficient of t in (la) must be zero,

- T
L U(t) D(sq) Clsg) | Eg(0) = O
) Sa

This is true irrespective of the form of Eo; thus

= - T _
I U(t) D(sy) Clsy =0
[0

S

T

xcitation function, namely
used and the form of (la)
endencevéf this function.

it follows that

(2a)

(3a)

where'ﬁnT is the transpose of the null column vector.

The 'last term in (la) involves the sum (3a)

contribution to the charge density. Therefore,

T

and thus makes a zero

p(t) = = £ U(t) D(sy) C(sy)
a

T

w——m

+ I U(t) D(sy) C(sy) E_(0)

[}

and all terms are defined.
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