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Abstract

Formulas are developed for accurate evaluation of the normalized
Hallén-System matrix that arises while solving for the current distribu-
tion on a wire antenna or scatterer. The technique developed here may
be generalized to other similar electromagnetic problems. The thin
wire example is chosen for illustrative purposes and also for comparison
with previously known representations for the matrix elements. It is
observed that the present method is applicable whenever the kernel func-
tions are analytically Fourier (or Laplace) transformable.




I. Introduction

. : 3
The Pocklington form~ of the integral equation for the current dis-
tribution on a straight thin wire (receiving or driven) is well known and

is given by
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With reference to figure 1, L and a are the length and radius of the
wire. If we assume that the current density is azimuthally symmetric,

the total current across the antenna cross section at location z is given

by
27
I(z) =f J(z)ad¢' = 27a J(z) (1.2)
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Using equation 1. 2 in equation 1.1, we get
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where the kernel is given by
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Figure I. Geometry of the Problem Showing the Zoning
of the Thin Wire
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If we treat the integral in equation 1. 3 as a function of z and solve the

differential equation, Hallén’s1 form of integral equation is obtained as

L
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Implicit in equation 1. 5 is a harmonic time dependence of the type
exp(jwt) which has been Fourier transformed. Quite often, e, g., tran-
sient analysis, it is useful to introduce complex frequency s, in which

case equations 1,2 and 1.5 become
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where

v = sle = propagation constant (1. 9)

z, = characteristic impedance of free space
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Implicit in equations 1.6 and 1.7 is a time dependence of the form exp(st)
and the tilda signifies a two-sided Laplace transform, It can be easily
verified that equations 1.3 and 1.5 are special cases of equations 1.6 and
1.7 by setting s = jw. Because of the differential operator in equation
1.6, equation 1.7 is more amenable for machine solution, which is
usually achieved by the method of moments, e, g., Harrington. 2 This
method converts the integral equation 1. 7 into a system of linear

equations

i
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or ZO[ZNP’ q] [Ip] [fp(z)] (1.10)
which is then solved for the unknown current distribution. We shall call
this Z matrix as the Hallén-System (or simply H-S) matrix. This matrix
is to be distinguished from the generalized impedance rnatrix2 and associ-
ated eigen impedancesG, both of which have a more physical interpreta-
tion. If we use pulse functions for expanding the unknown current and

delta functions as the testing functions, the elements of the normalized

H-S matrix [Zy] are given by
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where Rp= [(zp—z‘) + (2a sin ¢'/2) ] and p,9=1,2 ... , (n+1),
[Ip] in"équation 1.10 is a column matrix made up of zone currents

I,,I ccce, I . The right hand side of equation 1. 10 is given by
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A and B are constants to be determined by imposing the end conditions

(z =0) =1, =0and I(z =L) =I(n+1) =0,

1
For purposes of this paper, we are concerned with the matrix

[ZNp q] whose elements are given by equation 1. 11, in which Zn and z'

are respectively the observation and source points, and A is the cell

width, It is observed that [ZNp q] is a Toeplitz symmetric matrix.

However, if the current distribution is of interest, using I1 = I(n+1) =0
and rearranging equation 1. 10 becomes
1 ' =
zlzy ] [Ip] [vp] (1.13)
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where [Zl'\]p q] is [ZNp q] with its first and last columns replaced by

1 - 1 - ' :
ZNp, 1 smh(’sz) and Z{ cosh (sz) . [Ip ] is a column
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matrix made up of A, 12, 13 sooe In’ B, and the elements of the column

matrix [Vp] are given by
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Now, however, [Zi\]p q] is not a Toeplitz symmetric matrix.

Returning to equation 1.11, let us specialize it to the diagonal ele-

ment. With a change of variable x = (z' - zq), it is given by
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This integral is seemingly singular (as x and ¢' approach 0) and the two
approximations used by Harrington2 and Tesche3 will be reproduced below
and later compared with a more accurate evaluation used in this paper.
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Equation 1. 16 is derived from 1,15 by approximating
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R(¢') = X + (2a sin¢'/2)2] = [xz + a2]
and keeping the first two terms in the expansion of exp(- YR), whereas

equation 1, 17 retains the ¢' dependence and also keeps only the first two

terms,
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IT. Matrix Elements by Transform Method

In this section we shall develop formulas for more accurate evalua-
tion of the general element in the normalized H-S matrix and later
specialize it to the diagonal element and compare results with those of

equations 1.16 and 1,17,

Consider the ¢' integral of equation 1,11
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This has been shown by Hallén]' to have a Fourier inverse transform

representation given by
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Because of the symmetry property (zp and z' are interchangeable),

only the cosine part of the integral contributes so that
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Using this result in equation 1. 11 and performing the z' integral, a

general matrix element is given by
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If Zp and zq are the mid points of pth and gth cells, respectively (see

figure 1), they are given by
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(2.3)
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It is noted that the first and last cells are of width A/2 and not A which
makes the end points z = 0 and L to be the centers of imaginary cells of
width A which extend beyond the physical ends of the antenna., This fact,
if and when necessary, is easily accounted by dividing the first and last
column elements by a factor of 2. Substituting equation 2, 3 into equation

2.2 and with a change of variable y = £A/2
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where the argument v of the modified Bessel functions is given by

1/2
v = a 'Yz + (4y2/A2) /.

| For adequate representation of the current, if we choose the cell width

A » a and « radian wavelength, then equation 2.4 is quite accurate. The
radian wavelength A may be computed via X = c/l sl . Equation 2.4 is
now ready for machine integration and may be performed for real y or
one can treat y as a complex variable and suitably deform the contour
on the real axis to a contour that wraps around the branch cut. The
branch points are at y =+jYA/2, We shall now specialize equation 2, 4

for p = q and obtain the normalized diagonal element as

1
ZpN T 3
s
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II1. Numerical Results O

To perform machine integration of equation 2. 5, it is useful to
investigate the singularities and the analytical structure of the integrand.
As in equation 2. 4, the integrand in 2.5 also has a pair of branch points
at y =+jvA/2. If we exclude the DC frequency(y = 0), the integration
may be carried out on the positive real axis of the complex y plane. The

infinite integral of equation 2.5 may be broken up as follows

1 [ UL ® siny <
Z = — f + f —~ I (v)K (v)dy (3.1)
DN 7r2 0 UL y o o

If we choose an upper limit UL which permits a large argument approxi-
mation for the modified Bessel functions, e.g., Iv, =10 implies

UL = 5A/a because of I’YAI « 1, One can now write

1 [ 5a/a sin y ” siny 1 O
Z o~ f —=1 (v)K (v)dy+f - y} (3.2)
DN Tr2 0 y o o 50/a y 2v

For a suitable change of variable, it is possible to write the second inte-
gral over a finite range of integration. Both of these integrals were
carried out with a 40-point Gaussian quadrature routine. Care was taken
to ensure outgoing wave nature by choosing the proper Bessel function
product, depending on their arguments, The ranges of integration were
continually subdivided until a convergence criterion of the type, the mag-
nitude of the ratio of two successive answers was less than 10-3 was met,
With this type of convergence, it was seen that the second integral was
insignificant since it contributed values of the order of 10-6. Requiring
a 3-figure accuracy, the second integral was neglected. Numerical com-
putations were made for cell sizes ranging from 1 to 100 radii for the
case of 50 cells per wavelength. In order to be able to compare with

previous results, the computation is done on the imaginary axis of the O
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complex s plane. The results are found in table 1 and plotted in figure 2,

The real part of Z from Ilarrington'sz approximate formula is a

straight line in thifggure and is valid only for A 2 10a, Tﬁe real part
from Tesche's3 formula is not plotted because of its closeness with the
values obtained by the transform method. This can be seen in table 1.
Furthermore, the imaginary parts of both Harrington2 and Tesche3 are
constant and equal to each other because of similar approximations in-
volved. It is seen that the imaginary part from the transform method, as
may be expected, is oscillatory and appears to have a mean value equal to
the constant value - ¥A/(47) in the previous two methods. It must how-
ever be pointed out that both of the previous results are excellent approxi-
mations within the ranges of their validity and the transform method,

although significantly more time consuming (10 times or more in several

cases), does lead to improved accuracy.
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Harrington Tesche Transform Method

Ala
Real Imaginary Real Imaginary Real |Imaginary
1.0 | 0,00000 -. 01000 . 09529 -. 01000 . 09447 -. 00999
2.0 .11032 -. 01000 . 15460 -.01000 . 15472 -. 00982
3.0 . 17485 -, 01000 . 20000 -. 01000 . 19974 -. 01004
4.0 . 22064 -. 01000 . 23661 -.01000 . 23663 -. 00956
5.0 . 25615 -. 01000 . 26709 -.01000 . 26660 -. 00966
6.0 . 28517 -. 01000 . 29309 -. 01000 . 29267 -.01028
7.0 . 30970 -. 01000 . 31568 -.01000 . 31568 -. 01051
8.0 . 33095 -.01000 . 33561 -.01000 . 33534 -.01040
9.0 . 34970 -. 01000 . 35343 -.01000 . 35281 -. 00999
10.0 . 36647 -. 01000 . 36952 -.01000 . 36946 -. 00931
20.0 . 47679 -. 01000 . 47757 -.01000 . 47691 -. 00956
30.0 . 54132 -. 01000 . 54167 -.01000 . 94103 -.01073
40,0 . 58710 -.01000 . 58730 -.01000 . 58630 -. 01015
50. 0 . 62262 -. 01000 .62274 -.01000 . 62323 -. 00834
60.0 .65164 -. 01000 . 65172 -.01000 . 65053 -. 01001
70,0 .67617 -. 01000 .67623 -.01000 . 67598 -.01168
80.0 . 69742 -. 01000 . 69747 -. 01000 . 69848 -. 00782
90.0 . 71617 -. 01000 . 71621 -.01000 . 71526 -. 00879
100.0 . 73294 -. 01000 . 713297 -.01000 . 73150 -. 00977

Table 1

Diégonal term of the normalized Hallén- System matrix for a
thin wire as a function of normalized cell width;

A/A =50,00 or kA =.125664 .
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Figure 2. Plot of the Diagonal Term of the Normalized Hallen-

System Matrix as a Function of Normalized Cell Width
(A/a), KA =0.125664 (or 50 Cells Per Wavelength)
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" IV. Conclusions

An accurate way of computing the impedance matrix elements for a
thin wire structure is outlined. This procedure is based on being able to
analytically Fourier or Laplace transform the kernel function. The thin
wire structure was only chosen for illustrative purposes, although the
method is applicable if and whenever the kernel is analytically transform-
able. Another example where this method is usefully employed may be
found in the treatndent of three dimensional >E1VI scattering from a finitely

long circular cylinder by Kao, 4.5

Numerical results for a representative case of a thin wire structure

are compared with previously available results.
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