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ABSTRACT

Diffitulties can arise in the evaluation of elements
in tﬁe impedance matrix éésociated with a moment-method
solution of the thin-wire electric field integral equation,
The results of a detaiied study are presented and several
representations are considered and compared. From informg—
tion regarding errors, regions of acceptability are obtained
The’deficiegcies in the thin-wire kernel arevcleérly illus-

trated and remedies are suggested.
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SECTION 1
Introduction

The kernel used in integral equations can often represent the analyst's
greatest difficulty. In electromagnetics, it contains a singularity over
which an integration must be performed, and as a result, extreme'care’must.be
exercised in performing the integration.

In this report, the defining integral equation in terms ofvéléctric field
for problems involving conductors is |

A xEPQE) = - m%we fi x f Ty - @V + KD (5,7 d¥r' (es). (1)
; 5 , S .

Thus, for a cylinder of radius a with azimuthally symmetric excitation that is
axially aligned (%), one must have '

inc _ 1 w b O 2y 1 == 2., ., SR
£ - - fogm J; 1G" [———a‘z"z‘ ik }—m g T drt Ges), @)

with the azimuthally‘directed component of current density existing only'as«
the solution of a homogeneous equation. In this expression, k = 2n/A, i.e.,

thé wavenumber in the ambient medium. Hence, for a circular cylinder,

ine 1 ‘ 82 A 1 Zm | o
Ez (z)ﬂ% " Joe | dz" I(z") ( 7+ k ——E.J; do' g(z,z' ¢,0') (zec), (?)

c 9z 8m

with

’ ‘ 'eéjk/{z-z')2+4azsin2¢'/2'
gz,z', ¢ = 0,¢') = , . (@)

fiz-z"y 244261020 /2

Equation (3) with Eq. (4) is an exact representation in this case, as
there are no approximations involved in the derivation, and, hence, there

are no restrictioms on any parameters in the problem.



»In this report, we define theé kermel bf'ﬁq. (3) to be-

gy

1 2ﬂ ‘ U
S@iz) == [ a'sat, ¢ - 0,00 @', (5)
gn- Jo _ : :

that is, a term proportional to the azimuthal integral of the free-space
Green's function. There is a great deal of interest in not only the
approximations of the kernel G(z,z') but also in the value of‘the double
integral in Eq. (3). However, the integral

i 22 2 -
J~ dz' 1(z") ( 7 + k7 G(z,z") (6)
z' oz' ‘

has an analytical solution in terms of values at the end of the range of
integration in z' when I(z') is of sinusoidal (sin kz' or cos kz') form.1
Therefore, we initially restrict our attention to the evaluation of the
integrals in Eq. (3) for the case where I(z') is a constant this gives rise

to nonanalytically integrable integrands. We éfe interested in the value of

» Q(z)é i.e.,

B 1 o1 ' :
Qz) = f dz' =5 [ 4o’ g(z,2', ¢ = 0,0"). | Q)
o 8m JO o

‘Because the major difficulties in the evaluation of Q(z) occur when the
singularity in g(z,z'; ¢, ¢') is in the range [a,B], we focus most closely on
this range. However, difficulties have also been observed when the
singularity is outside, but close to, this range. We comment on this
difficulty where approp:iate. )

Two basic options exist in the evaluation of Q(z). Specifically, they
involve the order in which théf¢' and z' integrations in Eq. (7) are performed.
In this report, we will deal with three different approaches to the evaluation,
two of which evaluate the integrals in the order indicated in Eq. (7).

 Alternatives also exist regarding the manner in which g(z, z', ¢, ¢') is
written. One of the basiéﬂgOals of this report is the definition of some

forms for Q(z) that satisfy certain accuracy requirements over ranges of the
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variables a/A, B/A, and the radius of the bylinder normalized to wavelength
(a/)\). 1t is‘evident,«both,in the derivations and .the numerical computations,
that the particular represenfationé uéed for g(z, z', ¢, ¢')_can affect the
ultimate accuracy iﬁ;Q(z).

For purposes of comparison,:we derive. three distinct approaches ;hat lead
|to three different forms of . Q(z) . Naturally, each approach inclﬁdes\several
different resuits,‘each of which is the outcome of retaining higher-order
terms in series representations. Also, because the values of G(z,z') and
9G/3z are needed in cértain cases, these functions are considered when
appropriate. For certain approximations, the results of numerical computations

are analyzed and the attendant errors studied.



SECTION II
Representati('m’s for Q(z2)

THE CLASSICAL APPROACH

The classical approach has been the most widely used and was one of the
first introduced in the study of the kernel of the integral equations with

which we are concerned. The essence of the method is described in Schelkunoff

and Friis,2 and is exblicitly carried out to various orders of approximation

in Poggio and ﬁayes.a* In the latter work, gz, z', ¢, ¢') as given by Eq. (4),

is written in the form v C ‘

_ —JkR
g(z:‘,z',¢,¢') = % - }_—'E'-'— > i (8)

with

1)
- R'= -/Zazsin2 %f-+ (z-z')2 .
Attention is then focussed on the evaluation of the kernel
1 2T
6(z,2") = —Z—L d9'8(z,2',6 = 0,4"). @
8w :

when the last term in Eq. (8) is expanded in a Maclaurin series about kR = 0.
A derivation and comparison of the various approximations to G(z,z') are

provided‘in Appendix A and are given in Table 1.

lJ. A. Stratton, Electromagnetic Theory, (McGraw Hill, New York, 1941).

2S. A. Schelkunoff and H. T. Friis, Antenna Theory and Practice, (John Wiley
and Sons, Inc., New York, 1952).

3A. J. Poggio, and P. E. Mayes, Numerical Solution of Integral Equations of

Dipole and Slot Antennas Including Active and Passive Loading, Air Force
Avionics Laboratory Rept., Wright-Patterson Air Force Base, Ohio (1969).




Table 1. Appfox;l:mai:ion> to the kernel. R
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Using any of these approximations, one is still faced with the z'
indicated in Eq. (7). The first three representations,

integral
Gal’ Ga2’ ane Ga3’
are independent of a/\ and the first term in the approximation of G(z,z') for
z X z' represents a static interaction. These three approximations derive
from the decomposition of ¢(z,z', ¢ = 0,4'), in the form given in Eq. (8),
with the retention of only the first term of the MacLaurin series in the
1-e JkR)/R term. The 1/R term yields an exact form, namely, an elliptic

integral, while the second term is O(I/A) The representations are written in
‘an ascending series in 1/A".

AN ALTERNATIVE APPROACH

The foundation for the derivation of an alternative representation of
' Q(z) for small (z-z') has been provided by Tesche.é The approach consists of

first evaluating the z' integral in Eq. (7) and then performing the ¢'
integration.

In this representation,

1 2w : ‘ '
Q(Z) _—2_ d¢' P(Z,¢'), : (10)
Sn 0
ﬁhere
P(z,0') = fﬂ dz' g(z,2',6 = 0,4"). | (1)
o g o

The derivation, detailed in Appendix B, requires an expansion of g(z z', ¢, o)
about kR = 0 and yields, for P(z,9"),

m-1
o m .z-B . ,v \ 2 ‘
P(z,6') = = O L‘_ilf)_ f dg(aaz sin 92—+ gz) (12)
=0 b Jz-o ‘ o '

The case where the singularity is at thefcenter'of the range in £ is of
particular interest because, in a collocation solution of the integral
equation, the observation points are usually placed at the center of the
F. M. Tesche, Evaluation of the Surface Integral Occurring in the E-field

Integral Equations for Thin-Wire Antennas, Air Force Weapons Laboratory,
Kirtland Air Force Base, New Mexico, Mathematics Note 29 (1973).
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intervals. For this case, a = z - A/2 and B== z + A/2, and the results for
Q(z) are somewhat simplified We include below a tabulation of the representa-

tions of Q(z) denoting them Q (z) to indicate the order of the tems retained
in the derivation. Details are in Appendix B.

. kA : “r5 0
: Ql(z,) = —l—ﬂ + -2-;’? fn 2 + 7 “dy ILn sin VY + Z:‘-) . 3)
il .
| _J_ 202 | L1 2 1 e
VQZ(Z) + 2‘"’ "1 - -*-—2——- + .8—1? (ka)™ - ‘l;n—z' (kA) (ka)\/1 + (Z—;) ,

(14)

/2 - f 2}
L dlp(l--kza2 sin lp) R,n[-- + 1y /sin w+ (A) ] .

| [ 22 2,2 Y
. =jkA [, K%a®  k°A 2n2 K

Q) = =55 <1 "3 T 72) T <1 T2

L nZ

(ka) (kb)) (ka) [ 1 + (;—;) [

/2 | | 2] '
+ ;lé- 3 dll)(_lé - kzaﬂzv’ sinzlp) fn {-f;-i- \%inzwvf (ZA;) ] . o (:15)

Note that Ql(z) is independent of ka but dependent on kA and the ratio A/a,
that Qz(z) has terms of order ka and (ka) ; and that the integrand in Q3(z) is:
only slightly more complicated than that in Ql(z) quthermore, all the '

integrands are nonsingular and can be evaluated numerically with ease.

11,



AN EXTENDED, THIN-WIRE KERNEL

Deficiencies have been observed in the thin-wire kernel as illustrated
in Appendix A. There, the thin-wire kernel given by

e-jk /(z—z')2+a2 ‘ '
G(z,z') = ' _ ' - (16)

il /(z-z')2+52

is not a suitable representation of the exact G(z,z ) of Eqs. (4) and (5) for
small values of |z-z'|/a. :

In our investigation of representations of G(z,z') or Q(z), we rederived
and extended the thin-wire kernel. An integral representatlon of the function
g(z,z',¢ = 0 ,0") is available in the form5

ST | | | o
-jk (Z"'Z')’ +p . o v T
£ = ‘2!'— j dv ej\)lz—z I H,(z) (p/kz-uz) s . QA7)
vV ' 2 2 . -] Yo ) : . o ) ‘ .
z=z")"+p : ‘ ~ , :

where

1
p = 2a sin %; .

The correspondlng integral form for G(z,z'), with an interchange in the order

of integration, is therefore

16ﬂ2j'

. . ot
G(z,2") = —* r RNESY f ' ml® (2a sini-/{ ) (18)
[ 00
The ¢' integral has a well-known result so that

C(z,z') = 5%3"[: dv ejvlz—z'l Jo(;féz-vé> Hiz)(Qsz-Vz) . (19)

5I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and

Products (Academic Press, New York, 1965).
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This approach to obtain the exact integral representation of G(z,z') is

outlined in I-Iallen.f6

The substitution of the series representation for the zeroeth-order Bessel

function, i.e.,

o 2 L1

5 v

J, (a/kz—\)) = Z (--1)i~~2i = (kz-—\)z) s (20)
i=0 2771 T(i+1)

allows Eq. -(19) to be written as

R o D el
=0 22441 ra+n)

‘[Q)dv ejvlz—z'l (kzﬁvZ)i'Héz) (asz—vz ) (21)

Furthermore, one can introduce the series representation

i i
2 2 2i 2 i! 20 =28
K=V =k Y (-1 TV k (22)
< : - 4=0 L

and obtain

: ® : 21 4 :

1 i (ka) L 4l

G(z,z') = =7 D Z (G0 e reree

83 QE% 221y res1y  §20 L (1-2):

28 r.dwzz Mlemz'| @ (A2 . (23)

However, the Vv integral is nothing more than

az

24 | oy
SR r av eIVlz=2'| 1 (a/kz—\)2> , sy

6E. Hallen, Eléctromagpetic Theory (John Wiley and Sons, 1962).

~ 13




and, usiﬁg Eq. (17),

G(z,2') = = i -’ )™ 3 L 2
it T 2%y raen e VEAOT

822 e—jk\/(z—z’)2+a2 . | | 25)
22] . . :
32 /(Z_zl)2+a2 . ‘ o ’ . ‘

This expression for G(z,z') can be written in the compact form

G(élz _L i __(.li‘?‘ﬁ___ 1 +_1_D21g (26)
= 22441 raa) 2 thin®

where

o e—jk\/(z-z')2+a2

g = .

thin /[———T—E_7z
(z-z')"+a

and

2 3
D=

9z

In Eq. (25), the 7 = 0 term corresponds to the common, thin-wire form

1 ,

G (z,2") = 47 Bthin ° @7
while retaining the ¢ = 0 and 7 = 1 terms corresponds to the "extended"
‘thin-wire kernel

2 N2
1 (ka) 3
G(z,Z')=~—1—-———<l+ >g . - (28)
: 2
1 ‘ 4t 4 3 (kz) | thin

14



jes]

xpanding the terms in Gl(z,z') yields

' / W\ 2
e—jkV(zfz') +a 1+jka/1+(z::')
— 1-
4n 1 2
V(z-z')2+a2 2[1+(z:: ) I

L > ‘3jka\/1+(z'z ) +3 - Ka® [1+‘(——z’z) ] (29)
zv_zv)z] K a \ a |
)

[rm}
~~
N

-
N
I

+

[(

The extended thin-wire kernel derived above does not exhibit the

Ippropriate singularity at z = z' and, hence, cannot be expected to yield‘
uitably accurate results for Q(z) near that point. We can expect however,

that its range of validity will exceed that pertaining to the thin-wire kernmel.

THE SMALL DISTANCE LIMIT OF THE THIN-WIRE FORM

The thin-wire form for G(z,z') was derived in the previous section. We
now consider an approximation to Q(z) that is obtained by expanding the

exponential in a Maclaurin series. . This approach is presented by Harringtoh7
and used for comparison by Tesche.4 :

We are interested in the approximation

g 27 —jkV(z—z‘):+a
Q,(2) = f dz" —1—2f o' E— . (30)
(0] 8n Y0 /(Z_z,)§+a2 |

Using the Maclaurin series, one obtains the integral

B
-1 1 '
Q, (2 “sz dz —— ™ (31)
o (z-2z") "+a

7R. F. Harrington, Field Computation by Moment Methods (MacMillan, 1968).

15




which can be evaluated to yield

]

_ Vioy 2 2
Q4(z) 1 on 2= + V(z q) + a

X - jk (B-0) (32)
2-8 + V(z-8)% + a2 |
For B = z + A/2, a = z - A/2, and A >> a,
‘ 1 A
Q,(2) = o7 in o - % kA (33)

16



SECTION III
| A Numerical Comparison of Various Kernels

To compare the various kernels or the functions Q(z), numerical computa-
tions are necessary. We performed these computations for selected representa-
tions and can therefore suggest forms that satisfy certain accuracy constraints.

In the numerical studies, we included the functions Q(z) shown below.

Table 2. 'The functions and their definitions.

Q(z) Eq. (7) and Eq. (4) (Exact)
QO(Z) .fdz' Go(z,z') Eq. (27)

Q, (2) Eq. (13)

Qz(z) " Eq. (14)

Q,4(2) Eq. (15)

Q,(z) Eq. (32)

Q. (2) .fdz' Gl(z,z') Eq. (28)

The relative error is used as a criterion of accuracy in the study of the

representations and is defined as .

Q-
Relative Error = 3| - (34)
where Q is the exact representation [Egs. (7) and (4)] and Qi is the respective
approximation. Because the error is dependent on z, a, 8, k, and a, we

restrict our attention to

e Self terms: o =2z-A/2, B=12z+ A/2
e Adjacent terms: a=2z+A/2, B=1z+ 3A/2
® Next-to-adjacent
terms: o=1z+ 30/2, B =2z + 5A/2,

with variations in wavenumber k and radius a. In this manner, the dependency
of Q on z is contained implicitly in the specific term we are considering and
in the range [a,B]. Therefore, we have parameterized our curves with respect
to the term considered and to ka, and have plotted the relative error versus
Aa.

17



RELATIVE ERRORS IN THE SELF TERMS

The relative érrors in the evaluation of the self terms, Q(z) for o0 = z -
A/2 and B = z + A/2, have been calculated. The resultsg afe shown in Figs. 1
through 8: the relative errors are plotted vs A/a, kA, and N/A. The latter
abscissa is the number of intervals contained in one wavelength. Note that
kA = (ka)(A/a) and N/XA = 27/kA. 1In Figs. 1 through 5 there is a region
denoting error bounderies for certain representations. The relative error
curve for each representation oscillated within these boundaries and the
detailed nﬁture of the curves themselves did not convey any seemingly useful
information.

The range of values of A/a shown in Figs. 1 and 2 do not in reality
correspond to the values likély to be encountered in practice. Because.one
generally uses on the order of five to tens of intervals per wavelength,
most of the representations will suffice. 1In fact, most will provide relative
errors less than 1% in the commonly used ‘range of N/)\.

For thicker wires, the relative accuracies begin to deteriorate.
Although théronset is seen in Fig. 3, it is more clearly seen in Figs. 4
through 8 where the relative errors over the iﬁdicated range of A/a are rnot
monotonic functions and often show a decreasing, and then an increasing,
relative error as A/a decreases. The deficiency in Q4 is evident in Figs.

4 through 8. Furthermore, the relative inaccuracy in Ql, Q2, and Q3 is

seen to increase with increasing ka, and kA (in general). Inspection of the‘
thin-wire representation also indicates a problem as its relative error
curves exhibit minima. HoWever, the relative error in the extended thin-
wire representation is reasonably constant with respect to variations in

ka and the relative error is less than 1% for Ala > 2.

A careful study of Figs. 1 through 8 allows us to establish the set of
representations that will yield relative errors less than 1% over the ranges
107 < ka < 0.4, and 0.01 < kA < 1.0 (Fig. 9). :

18
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RELATIVE ERRORS IN THE ADJACENT AND NEXT-TO-ADJACENT TERMS

The various representations used for Q(z) can yield errors even when
the interval of integration does not contain the singularity. Because the
representations Ql’ QZ' Q3, Q4 are for small displacements, this may not
be surprising. However, the user must be aware that difficulties can be
encountered. In Appendix A, we show that sizeable errors in adjacent terms
can arise by using the thin-wire kernel Go(z,z'). We now investigate a
similar occurrence in representations of Q(z). In this portion of the study
we include only those representations appearing in Fig. 9, i.e., QO’ Q., Q3.
Figure 10 shows the range of relative errors induced by the wvarious
approximations as a function of A/a with the parameter ka varylng from 10 -4
to 10 2 The relative error is almost insensitive to the variation.
However, Figs. 11 through 15 show the relatlve errors for QO and Q3,
as well as the relative constancy of the relative error in Q as ka increases.
The results presented in Figs. 10 through 15 allow us to plot the range of
applicability fot the various representations when evaluating the adjacent
terms (Fig. 16). Finally, because we have considered the adjacent terms,
it is appropriate to consider the next-to-adjacent terms, o = z + 3A/2, and
B =z + 5A/2, Having performed a similar study as that preceding, we present
here only the encapsulated result, namely, the plot of the ranges of
applicability. Figure 17 depicts the ranges in the ka - kA space, It is
evident in this plot that the region is enlarged where the extended thin-wire
representation provides a relative error less than 1%. Naturally, the region
of validity for Q3 is shrinking because it is a small distance approximation.
The results of our investigation of the various representations of

Q(z) are summarized as follows:

e If A/a > 10.0, the thin-wire representation can be used everywhere.

° ifiA/a > 2.0, the extended thin-wire represehtation can be used
everywhere.

e If A/Ja < 2,0, Q3 should be used for the self and adjacent terms and
for the next-to-adjacent if A/a < 1.0.

e For 1.0 < A/a < 2.0 Q3 is used for the self and adjatent terms and

the extended thin-wire for the next-to-adjacent term.
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REPRESENTATIONS FOR A SINUSOIDAL CURRENT DISTRIBUTION

Several commonly used basis functions for conducting wires include
sinusoidal components. Hence, the linear current density in Eq. (3) is

written as

 sin *
I(z') = cos;Ik(Z"zi)]°

However, the axially directed electric field of suéh a current distribution
can be simply written asl

~ 3 £
o sc [52 a1 2
B, ~ 1) 325, [ % - . (35)
151 &1

Hence, it is seen that one requires for calculations only the wvalues of

0 1 2T ’ :
G"('z‘a‘z") = —_'2-‘ .{ d¢ g:(z7n"¢=os"¢v') (36)
In 8 .
and
SG(z!z') = _L_ 2m do"' __a_ =0 v) ' (37)
3z ' - 2 ) 32" »g(z,n~,¢— »9'), _
n 8m
or, in expanded form, |
1 T2 le—jkr
G(z,2') | = — J/ﬁ dy " (38)
n 2" 0 ‘
and
2 : -jkr
oz' ] 2 r r r
In 27 0
where
r ='VQz~n)2 + Aazsin2 P .
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These integrals can be performed easily using a numerical scheme as
there is no singularity. Also, to circumvent the numerical integration,
one can use approximate forms. For instance, for large |z - z'|,r =
A 2 :
(z-n)"~ + az,
-jkr
~ 1 e
G(z,z") b — (40)
n
0.4 T T T T T 1T T | T T T T7
0.1
O I~ - .
= N Thin wire
extended
0.01 1 ] [ T T T B
0.01 0.1 1.0
‘ kA ’
Fig. 18. Representations leading to kernel evaluation with less than
1% error. : ‘
and
. . - =jkr
36(z,2) | _ 1 jkr+l zne i (41)
dz' 4m  r T r

n
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-approximating G(z-z'

For small Iz - z'l the approximations in Appendix A can be used. Naturally,due

regard must ‘be paid in both cases to the errors involved in these approxlmatlons.
‘Figure 18 shows the region for which the relative error realized in

= A/2) [Eq. (37)] by the thin-wire and extended thin-

wire representations are less than 1%. A similar plot is provided in

Fig. 19 for the derivative at the end of the interval. |

It can be concluded that G(z,z') as given by Eq.
numerically for

(36) can be evaluated
Ala < 4.0, by using the extended thin-wire version for Ala >

4.0, and the thin-wire version for Afa > 14.0. For the derivative term,

these limits become A/a > 4.0 and 30.0, respectively.

0.4 — T
01 8/k=7.0
fo] = .
J e
B A/a =30
(Thin wire /
extended)
0.0V 1 Y 4 e ’
0.01 0.1 1.0 Fig. 19. Representations leading to

derivitive evaluation with
less than 1% error.

SECTION 1V
Conclusions

The widely used thin-wire representation has been shown to be deficient,
particularly when displacements from the singularity are small. Alternative

representations have been provided and regions of validity have been

“delineated. Constant and sinusoidal representations for current have been

considered and the errors in evaluating self terms, adjacent terms and
next-to-adjacent terms have ‘been evaluated. Using the results contained here,
a user can -employ the form that is consistent with his accuracy requirements,

yet, in most cases, without having to numerically evaluate the integrals
containing singularities.
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Appendix A. A Classical Approach to the Kernel Approximation

Introduction

An 1ntegro—d1fferent1al equation for the current distrlbutlon I(z) on

cylindrical dipole antenna of length 2L and radius a with general but

azimuthally symmetric excitation Ez(z), as given by Ref. 1, is

52 2\ L ' ;
2k f I(z') G(z,2",a) dz' = —jue EL (2), (A-1)
0z L i z

lere the kernel G(z,a',a), because of the assumed symmetry, has the exact

representation
2
s ' 0
1 21 e Jka\% sinzkbz_+z__z__
G(z,z',a) = o2 / 2a dy’'. (a-2)
" a , , iy
4 sinz-i— + 222
2 a
The characteristics of G(a,a',a) near its singularity (y' = 0, z = z') play

an important role in establishing the solution for I(z). The solution of

Eq. (A-1) or alternative forms (e.g., Hallen's intégral'equation) by approx-
imate numerical techniques, such as point matching (discretization and
ccllocation),s’9 requires (for éfficiency) the knowledge of the valid
approximations to G(z,z',a) that do not require ay' integration. Also, the
ranges of validity of the approximations must be known‘and observed to ensure
agcurate solutions. We derive here various representations and graphically
compare them to establish their respective regions of validity. An error

that arises when a particular approximation is used will be considered.

DERIVATION OF APPROXIMATIONS

, . ‘ 1
The kernel G(z,z',a) can be written as the sum of two integrals:” one

containing a phase-stationary, singular integrand, and the other, a regular

integrand:

27 21 -jkr
1 dy’ 1-
O e T S AR
8m 0 0

8K. K. Mei, IEEE Trans. Ant. and Propag. AP-13, 374 (1965).

95. A. Schelkunoff, Advanced Antenna Theory (John Wiley and Sons, New York, 1952).
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where

. \
r =\/4a2 sin2 H%__+ (z-—z.)2 .

By performing a simple transformation and substituting a Maclaurin series

about kr = 0 for the exponential and integrating the terms to order k3r3 in
the integrand, the kernel can be written as

22
! R - L, _ bk a -
G(z,z',a) Sﬂza [Zle(kl)\ 2mjka - kl E(kl)
%;Ejksa3 +~% jk3a (z--z')2 + .. ,] . (a-3)

where

k1 = 2a/ \léaz + (z-z')2 ;

and K(kl) and E(kl) are complete elliptic integrals of the first and second
kind, respectively. Equation (A-3) is an exact expression for the kernel
when all the terms in the series are included. However, for ease of com-
putation, we consider various approximations for the kernmel for limited
ranges of the variable |z-z'|/a. |

An - approximation valid for kr << 1 results when the first two terms of
Eq. (A-3) are retained. This approximation, referred to as Gal’ contains
the result of the first integral and the integral pertaining ton = 1 in
the Maclaurin series. A simplification of Gal can be realized by making

use of the first term of the series expansion for K(kl),lo viz.,

K(kl) ='ln V1 - ki .
For a small |z-z'|/a, we have 1 - ki x |z-z'|/2a, so that a second

approximation is obtained:

1 8a v
G . = 2k. fn - 2mjkal , (A-4)
a2 = g2 |7 [z-2' | J 3

lOE. Jahnke and F. Emde, Tables of Functions (Dover Publications, New York,

1945).
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and because kl * 1, a third approximation follows:

1 8a
G, = T T~ -
a3 8ﬂza 2 fn " 2mjka : (A-5)

Let Gb be the kernel that results from keeping the first three terms of Eq.
(A-3), i.ev, up to the n = 2 term in the Maclaurin series. This approximdtion

can be written as

ka

th
po
po

6, = —2— {2k K(k.) - 2mika - s’ E(k.) | .. (A-6)
anZa | 1L k] 1 |

The approximations Gal’ Ga2’ Ga3’ and Gb have been written for kr << 1. From

the definition of r, we see that this requires ka V/4 + (z-z'/a)2 << 1. For

<< 1, the inequality may be satisfied for quite large values of |z—z'|/a.

The kernel can also be approximated over the remainder of the range of

Iz—z'l/a. One such approximation, which is generally referred to as the

in-wire kernel, is obtained by a physical approximation in which the source
int z' is considered to be on the surface of the cylinder and the observation

int z to be on the axis of the cylinder, sb that the approximate kernel

can be written as

al

Th
ob

Eq.

r— —
\/ z-z' 2
-jka\/l +( )
G, = 1 21 £ 2

L. po

. ' (A-7)

| | 2
Another approximation can be derived by letting Iz—z'|/a >> 4 gin” Y'/2 for

1 y' in Eq. (A-2). Then,
. z-z'
1 o~ Jka| =]
G = 2T . (A-8)
€ 8ﬂ2a ' Iz—z'l
a

is kernel is identical to the one that results from placing both source and
servation points on the axis of the cylinder. It can also be derived from

(A-7) by requiring that |z-z'/a| >> 1.
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© ' integration indicated in Eq.

COMPARISON OF APPROXIMATIONS’TO THE KERNEL

The various approximations to the exact kernel G (normalized to 8ﬂza) are

plotted as a function of normalized displacement in Figs. A-1 and A-2. The

(A-2) was performed numerically to establish
" the regions in which the approximations most aécurately represent the exact
kernel. The figures are for radius-to-wavelength ratios (a/)) of 10'-4 and
10-2, respectively, and show the dependence of the regibns of validity on

the dipole thickness.

Figures (A-1) and (A-2) show that a single approximation, adequate for

the entire range of |z-z'|/a, does not exist. They also indicate that G 1o
Gb’ and Ga3 are excellent approximations for small values of the normalized

displacement Iz—z'l/a. It is also evident that the accuracy of the approxi-

mations, especially for the imaginary part, deteriorates as the ratio

]2.0 T T III[ U

1 I l\ 1 LR 1 U 1 I 1 LI
Exact G \ a/A=10
10.0 Ge'——v\ - Imaginary part
N Ca1rCa2 Cazr o
o 50 \/Gb’Gc’Gd'Ge’G 5
8 . S
< \ -0.003948 o
@ s
5 6.0l =" £
S 6.0 T TTE~ > g
S G, S
3 2
o 5}
< 4.0 £
a
2.0 . \>
G ____H<:;;uu_.
: ’ : 03 h g e,
0.0 L] 1 ] 1 Lo 1 1 | x'?ﬁ,"l.o
0.04 0.1 1.0 10.0
Normalized displacement [(z-z')/a]
Fig. A-1. A comparison of various approximations to the kernel for a/\ = 10-4.
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a/ increases. Because it is.necessary to use different

over various ranges of Iz-z'l/a, one can, in view of the

expressions, choose

[ 2n Tf__aTI»-‘Zﬂjka

2 kyK(ky) - 2mika

G(z,z',a) = L < ‘
2
81" a

V)

approximations

simplicity of the

|z-z'|/a <0.3

|z-z"|/a <3.0

|z-2z"|/a >3.0 .

The. first entry is included bécause it has an analytically integrable

singularity at z = z'. The approximation Ge serves well

The restriction on the radius-to-wavelength ratio should

¢stablishing these regions of validity.

for |z-z'|/a >6.0.

be observed when

: ]200 ¥ 1 T II l. 1 I l\l LI T T i i T T T _0‘3]
\ —-0.32
110.0 a/n =102 1-0.33
' 1-0.34
G ~°
N: 8.0 \,/ e --0.35 =
R ' H-0.36 O
6 6.0 \ -0.37 +
45 \ GC’Gd’Ge\’\?/f 8_
i \ Imaginary e —1-0.38 g‘
o} . % c
S 4.0 1 7e2 7y Th O S NQ =T 03
--------------- TS C.1 5 % B 0.40 2
G ' QL:S a2’ "b’ a3 —~0.
: € ' Real part
2.0+ ~ SN N e
P —=V.
: . Gq3 \
0.0b— v 14y ! NI R | - L L0 120,43
0.04 0.1 : 1.0 10.0
Normalized displacement [(z-z")/a)
Hig. A-2. A comparison of various approximations to the kernel for a/)\ = 10-2.
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A CRITICISM OF THE THIN-WIRE KERNEL

Although the thin-wire kernel Gd has generally been used over the entire
range, this approximation suffices only fcr'lz-z'l/a <3.0. For normalized
distances less than 3.0, this kernel is clearly deficient because its real part
does not exhibit the proper singularity. = However, because we are generally
concerned with its integral rather than its functional value, the thin-wire
kernel can be used over a wider range than Figs. A-1 and A-2 indicate.

It is interesting to consider the relative error that afises when the

thin-wire kernel is used in evaluating the integral on the right hand side for

z, = zj. Figure A-3 plots the relative error given by
zj+A/2 : j+A/2
./. Gd(zj,z',a)dz' -} G(zj,z',a)dz'
z.~0/2 /2 |
g, = —3 d
1 \ +A/2
~fzj G(zj,z',a)dz'
| Jz . -A/2
J,
vs the normalized interval half-length 50.0
A/2a. Also plotted is the relative ]
4

error €, for evaluating the integra- 52 i
tion over the adjacent interval, ¥

S
2 + A2 < z;, + 34/2. 1In the matrix g10.0 -

7} J
solution of the integral equation, © 3

> —
these plots of the relative error in ?g -
the diagonal and first-off diagonal S 1
terms in the coefficient matrix. \-
The relative error in the diagonal 1.0 ol Lo gl L
and first—off diagonal elements can 0.1 1.0

A/2a

be unacceptably 1arge for small

intervals (A/a<2.0). The 62 is not a

Fig. A-3. Relative errors (€l and £2)
monotonically decreasing function,

resulting from the use of
but rather suffers a sharp minimum the thin-wire kernel.
when the interval contains the

crossover of G, and G at |z-2"|/a%0.4.

The relative errors (81 and 82) can be

reduced by increasing the interval
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-length. For intervals on the order of six radii (A/a~6.0), the relative errors

are |less than 2%.

CONCLUSIONS

Variots approximations for the exact kernel G have been compared and a
deflciency in the thin-wire kernel pointed out. A consideration of the errors
involved in the integral of the kernel leads to the conclusion that the thin-
wire kernel should be used only for sufficiently large intervals (A/a<6.0). Au

matrix solution of the integral equation for the dipole using G, might not

d
converge as the number of segments N increases indefinitely, but rather might
begin to diverge beyond a certain number NO’ To increase the number of

segments, other approximations for the kernel near the singularity must be

- used.
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' Appendix B. An Alternative proach to the Kernel Approximation

An alternate representation has been provided by Tesche.7 - There, Q(z) is

written as

X o o ’ ;
Qz) = =5 f dé" P(z,0"), (B-1) *
8T ’ o

where

]

P(zy¢')

ﬁ dz' g(z,z',¢ = 0,9"),

. 1 3
Expanding on his derivation, with R‘=\/Za2 sin2 %i-+ (z-z')2 » we obtain

: : m-1
e\l az=B , N 2
P(z,0") = - 3 SR (7 4 (4&2 sinz“%— + 52)
=0 ™ z~0
'l-(z-a) + V4a? gin2 %—' + (2-8)2
- n |— - k(o)
, - |
[‘zfa) +-¢za2 sin2 %r~+ (z-oc)2
© .M z—-B :
Sy Sl f ag ™1, : | (B-2)
Cm=2 ,m. =0, . -

The first two terms are independent of ka, as in the previous form, and the
first term is static. Tesche uses these two terms in his approximate

z + A2, and‘obtains

representation, in which he sets a = z - A/2 and B

. | 2| SRR
P(z,0") = —jkA - 2 In ‘%+ \/smz% + (zég) -2 SLn[sin %—] . (B-3)
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Hence, the first-order approximation to Q(z) becomes -

Vo? &4 |

again, as expected,.independent of ka but dependent on kA.

-jkA
4T

’

: i3
1, ..1_f o |
+3- 0 2 + z ) d¢' fn

Q,(2) = : =+
m

4a

which is

Let us now write Q(z) with higher-order terms included, i.e.,

(z-B) + Jﬁaz sin2 %% + (2—6)2

(B~4)

g B 1 '
W 5 do' &n

2m
Q(z) = )
8 0 (z-0) + J4a?

Thu

order approximation

8, including terms up to order pertaining to m =

]
sin2 %T~+ (z—oc)2

(B-5)

2, we obtain a second-

. ?
' z-8 2¢' (z—B)
2m ‘ ‘ ' ==+ \/sin +H5—=
QZ(Z) = -jk B—;T—?- - —1? f do' [l - k2a2 sin2 %-]Rn 2a 2 2a
8m 0 s ' _\2
z=0 \/SmZLJ, z_oc_)
a 2 2a
1 2 g_ z-8 2 : ¢ z— 2
-3 k™ (z-B)a sin + (EZ) - k" (z-a)a sin = + 6529 ,
(B-6)
which has terms of order ka and (ka)z.
‘For . = z - A/2 and B = z + A/2, we have
2
A / 2 »(A)
- - =+ Jsiny + |[-—
Q. (z) = K& _ —1—- (1 - k%a? sinZy] fn |42 ___\4a
2 4m 2 N / 2 A\ 2
4a + sin"y + (Z;)
2 (kA) (ka) sin Y+ Z— (B-7)
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The last term can be anélytically"integratéd:5

/2 : 2 ;2 | ; o
f dy sinzlp + 4 = 1+ A Efmn/2, = L ’ (B-8)
0 4a 4a 2
: A
1+ (4)
" where E(7/2,k') is an elliptic integral of the second kind, so that

2 ,
-jkA 1 A 1
Q,(2) = _iTr- - ;? (kA) (ka) /1 + (._) Ef———

4a -
1+ (A)z
4a v (B~9)

2
dy [1 - k2a2 Sinzw] in ZAE + \/sinzw + (ZA;) - &n sinp \ .

/2

T
+55 f
i 0

It is well known that

/2 '
fn (siny) d¥ = - w/2 n2

{

and that

/2 2 m
sin'y fn (siny) dy = 3 (1L -2 4 2).

Then, we have

| ‘ 2 2 ,
- A
CCRE RS o Rk R TR ey ST S A
1+ |—
4a

/2 2
+ —]"2— { dy (1 - k2a2 sinzlp) n [.4% + sinzq) + (ZA;) ] + O(kR).
i
(B~10)
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We now introduce the m = 3 term in Eq. (B-Z), which can be written as

a1y 3 27 z-B
1=——3———(1,‘)——l—2—qu>'f

' .3 2 3
o8t 0 z2-Q m

g;l s, (B~11)

so that

R T A L2 [ K%
3 4 3 72 2m

S ) . 2 »
+ 81_1r (ka)? - ::-:—2— (k0 (ka) /1 + (—A—) E 1

+ ;E- gf dY (1 - k"a” sin"yY) &n [Z§r+_v/£;;—;_:ii;;5*- . (B-12)

This expression should be more than adequate for most self-
The re¢

Ql(Z)

term evaluations.
*quired integral is only slightly more complicated than that given by
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