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'Abstract

This paper presents a8 noniterative method for approximating empirical
signals over [0,) by a linear combination of expomentials. The technique
results in a subopt;mal approximation. Notably, the dependence of the sub-
optimal exponents s, on the integral square error € is such that lim (e+0)

84 = s4, the optimai exponents. The method may also be used for system
identification. It is especially useful when the system is modelled by a
black box and one has access only to the input and output terminals of the
system. A technique is demonstrated to find the multiple poles of a system
along with the residues at the poles when the output of the system to a

known input is given. Among the advantages of the method are its natural
insensitivity to noise in the data and the explicit determination of the
signal order. Representative computations are made of the poles from the
transient response of a conducting pipe tested at the ATHAMAS~I EMP simulator.
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SECTION I
INTRODUCTION
In recent years the singularity expansion method (SEM) [l, 2] has
been used very successfully to study transiént phenomena in electro-
magnetié radiation and scattering problems. With this approach,
information is obtained about the electromagnetic structures from
measured transient respoﬁses to known inputs. The information leads

to a characterization of the impulse response of the electromagnetic system

. by a sum of damped exponentials. It is desirable to know the complex

natural frequencies or poles with a high degree of accuracy. The
problem of extraction of the poles from the measured transient
response data is reduced to a system approximation/identification
problem. ,

The field of approximation/identification has developed rapidly
during the last decade. A good summary of the developments is
available in [%]. It also includes 230 references. The use of
exponential basis functions to aﬁproximate real time signals has

been extensively'studied by several investigations. The paper by

1 C. E. Baum, "Emerging Technology for Transient and Broadband Analysis
and Synthesis of Antennas and Scatterers," Interaction Notes - 300,

Nov. 1976 (Also in Proc. IEEE, Vol. 64, No. 11, Nov. 1976, PpP. 1598-1976.

2 C. E. Baum, "Singularity Expanmsion Method," in L. B. Felsen Ed.,
Transient Electromagnetic Fields," New York: Springer Verlag 1976.

3 K. J. Astrom and P. Eykhoff, "System Identification - A Survey,"
Automatica, 1971, pp. 123-162.



McDonough and Huggins [A] is of particular interst because it describes a
procedure for obtaining the optimum exponents and wcighting constants needeod
to minimize the integrated square error, €. Unfortunately, this approach
requires the solution of a set. of nonlinéar simultaneous equations in an
iterative manner.

Prony's algorithm for deriving complex poles and residues for equi-
spaced d;ta’samples [5] is qﬁite straightforward. However, the Prony Method
does not yield an op;imum set of poles and residues; nor does it give a
measure of accutacy. Also the set of poles obtained by Prony's method
depends on how the set of data points was chosen. This is true not only
when noise is present but also when the order of approximation is mqsh lower
then the actual order of the system. Prony's method becomes quite complicated

when the response to a system is given for an arbitrary input and' for nonzero

initial conditions. Furthermore, when the order of approximation is increased

from n to n+l, the whole procedure must be repeated.

The method described in this paper is suboptimal. In this method (first
suggesﬁed by Jain [6] ), the poles are suboptimal; However, they approach
the optimum poles {7] when the mean~squared error € is made small. Having
obtained the poles, the weighting constants are evaluated by a least square
method.. Moreover, the solutions of both approximation and identification

problems are unified under this new approach.

4. R. N. McDonough and W. H. Huggins, "Best Least Squares Representation
of Signals by Exponentials," IEEE Trans. Automatic Control, Vol. AC-13
August, 1968, pp. 408-412.

5. M. L. Van Blaricum and R. Mittra, "A Technique for Extracting the
Poles and Residues of a System Directly from its Transient Response,"
Interaction Notes - 245, February 1975 (Also in IEEE Trans. on Ant.
and Propagat, Vol. AP-23, No. 6, November 1975.

6. V. K. Jain, "Filter Analysis by Use of Pencil Functiomns: Part I,"
IEEE Trans. on Circuits and Systems, Vo. CAS-21, No. 5, September 1974.

7. V.K. Jain, "Decoupled Method for Approximation of Signals by
Exponentials," IEEE Trans. on Systems Science and Cybermnetics, July 1970.
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SECTION 11

APPROXIMATING A SIGNAL BY EXPONENTIALS

Let the ;ignal x(t) be real for t > 0 and zero otherwise and be
square integrable over [p,m). Let the least-square approximation
(which minimizes the integrated‘square error, €) of x (t) be g (t), which
‘for a given n (the order of approximation) is given by

m

q i
_ (3-1) st :

g(t) = , At e* (D)
Y .
= J=1

where
ji: m, = m, Aij # 0, Re [si] <0, sy # sj
i=1
for i+# 3. - (2)

Here, n equals the total number of poles in the approximatioﬁ function
g(t), m, is the multiplicity of the ith pole, and q is the number of
distinct poles of g(t). If all the system poles are assumed to be
distinct, then (1) can be expressed in the simpler form

i

g(t) = Z &, exp(s,t) 3)
i=1 ' )

A measure of the accuracy of the approximation of x(t) is the non-

negative number € defined by x(t) = g(t) + £r(t), where r satisfies

<g,r>=0and || g || = || ¢ II. If the function x(t) is integrated

repeatedly n times, a set of n+l functions is obtaingd, namely

x(t) = xl(t)

t
and xk+l(t) = Jf X (t) dt, for k =1, ...., n (4)

Also each function can be written as




X, (&) = 8 (t) + ¢ T (t) , where 8, and r, are obtained by

k
repeated integrations of g = gl and r = rl, respectively. It is

shown in the next section that the set of Fuuctions{gl, ""’gn+l}

forms an n-order subspace Sn of a Euclidean spacegzhf functions.

When x(t) is in S,» € = 0 and the exact exponents can be

determined from the n order .polynomial equation [i]

n+1 n+l-1i
Vo X =0 (5)
ii

.

i=1

where Aii are the positive diagonal cofactors of the matrix

= = < > sitive integer
[Gn + l] [gij gi,gj ] . Moreover, n is the smallest po v n 8\

such that |Gn+1' = 0. Hence, the calculation of the system exponents
g is reduced to finding the roots of a polynomial. For the general
case (suboptimal case) when € # 0, the positive square root of
‘ = <\z
IHn+ll (where [Hn+1] is defined as [hij Xy xj>] ), is of the
same order of magnitude as €, i.e., ’Hn+l
/
diagonal cofactors A,, of |H are related to A
; ii n+l .

| = ©(e) and the

. as
ii

. — . 2 .
Aii = V Aii' + 0.5 ¢ (6ii / Aii) + 6 (e%) (6) -

where Gii are certain constants, which aré dependent only on the function

g. To be able to make € as small as desired one should use a complete
set of apprdximating components. A set of components is called '
complete relative to a épecified class of signals if any member of
that class can be approximated with zero integrated squared error,

€ (at least, in thé 1imit, as n»»), If Qe consider the class of all
square integrable signals (i.e ., all signals of finite energy), we

find that an infinite number of components are required'for a complete




O

representation (of -any member in this class). For the exponentlal =,
components considered here, it is possible to show by means of Szaz's

theorem [3} that the representation will be complete provided

Z - Re [si]/ [l-%- |0.5+silz:} + © (7
1=1

As an example, consider the special case when

Re [s,] = -od
Inm [si]

for a, B >0. This represents a system where the system poles are the

(8)
Bi

harmonic frequencies of the fundamental (-a + jB). Substitution of (8)

in (7) results in the representation

Z 2125—a1+(a+8)i | ' .(9)

i=1 i=1
o0
a 1
Comparison of E a with the series E 5 7
1=1 =1 * *E 1

which diverges, reveals that indeed the series EE a, diverges

i=1
o 1.25 .
since a, > — for i > . Thus the set of exponential components
(@ + B%)1i e

used for this example is complete and one can make £ as small as desired

by increasing the number of poles in (1).

8. R.E.A.C. Paley and N. Wiener, "Fourier Transforms in the Complex
Domain," Am. Math. Soc. Colloquium Pubs., Vol XIX, Am. Math.
Society, New York 1934.




It can be shown []1 that the roots of the following equation

n+1 y ¢ (n=i+1)
E .,/A {1 A =0 (o

i=1

yield the suboptimal exponents si, which are related to the optimum exponents

s, as g,'=g

i i 4 + el + 0 (82), where Qi are the appropriate constants. Once

the suboptimal exponents are found, the weights Ai can be obtained by a

least square solution. The next section gives the solution procedure for

the general case. The following result due to Gram is used to calculate €.
If el,...,en span an n-dimensional subspace Sn of an inner product space,

then the least square approximant in Sn to a given x ¢ Sn is

o
AR DAL
l
g() = ——— <o
lc_| _ |
. l n
<e :x > I
n |
]

where [Fn ] = [gij = <ei,ej>] . In our application ei,.....en are

the exponential functions used to approximate x(t) {:i.e., e, = exp (slt),...:}.

Hence,
5
i <X, x> '<e »X> ... <e ,x>
’ S D n_
o JVeer, x> _ Ve<r,o - 1 | <el,x>;
oo .
el Hell ITell le| l [G]
. l n
. |
<e_,x> |
An alternative expression for € can also be obtained as (11)

= V=12 11sl1® - 1] | o

10




O

EXAMPLES

Four examples have been considered which deal with the approximation

problem. They are approximations to the

(A) Square pulse [SQ?], where

sep= J1 , 0<t<l (13)

0 , elsewhere

(B) Sine pulse [SIN?] , where
SINP = |Sin mt , 0<t<1

0 , elsewhere 1)

(C) Gaussian pulse [Fé] , where

N 2 )
GP = |exp {-[—56:—2%-2—} } ; t>0 1s)

0 . £<0
and ‘
(D) The function [fIP]
TP =4 (+eH7 ;€20
0 3 <0 | ' (16)

Figure 1 represents the approximation of SQP obtained by odd orders
(n=1, 3, 5, 7) of approximation. Figure 2 corresponds to the even
orders (n = 2,4,6,8) of approximation. Figures 3 and 4 are the-odd and
even orders of approximation to the SINP. Similarly, Figures 5 and 6
correspond to the odd and even orders of approximation to the GP.

Figure 7 plots the integral squared error (g) to the different orders
df approximations for the SQP, SINP, and GP. As expected, it is easier
to apptokimate a smooth function (e.g., GP) than a discontinuous

11
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funé;ion (e.g., SQP). The plot also indicates that as the order of approximatlon
is increased, £ decreases, thereby illustrating that this method couverges
numerically. Figures 8 and 9 represent odd and even approximations to TIP.
Notice, largest absolute errors always occur at the origin.

This is a very significant point. It implies that when a signal starts
from zero the sum of the weighting constants multiplying the damped exponentials

must be zero. Hence, to begin with, the system is over determined.

19
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SECTION III

IDENTIFICATION OF SYSTEM POLES AND RESIDUES: ARBITRARY INPUT (:)

WITH ZERO INITIAL STATE

The complex exponéntial approximation of square integrable
signals over [O,m) lends itself in a very natural way to the
system identification problem for causai systems. In practice,
an infinite observation interval is notvavailable. (The sample
should be truncated in a way to include most of the enérgy-)
Secondly, for identification of a system under normal operating
conditions, the available data records are usually for some
arbitrary input. The method presented here incorporétes the two
practical situations mentioned above. The problem then is to
obtain the system poles and the residues at the polés when the out-
put y (t) of the system is known for a known input x(t). The
impuise response h (t) of the system is assumed to be of the form C:) .
described by (1) and (2). - Hence the transfer functioﬁ H (s) is

.obtained by taking the Laplace Transform of (1) as

| « o |
R = 2, > AL (D!
‘ i=1 =1 J

j
(s-si)

For zero initial state, the output y (t) of the system is

obtained as

t

y(t) = d{ " x () h (£t - 1) dT

q m, t (3-1 s, (£-1)
= Z Z A, f (t -1) . e x(t) dT
; ij .
i=1 j=1 0

(17 | Q |

22




The faplace transform of y(t) is then obtained as

m,

q
1
A (j-i)! X () (18)
¥(s) = ¥ (s) = X(s) H(s) § > ij (s—si)J

i=1 j=1

If the output time function is integrated n times, then the

t
yn+l(t) = ‘[ Y (1) dt, where yl(t) = y(t) (19)
0 .

Laplace Transform of (19) is expressed as

i
Y08 = Z Z AL (G-D! X)) = L

1=1  j=i (s—si)j s" "

Next consider two functions, p(t) and d(t), which are defined

on a common interval. The two functions are combined via a scalar

parameter A to produce
£(e,A) & A p(t) +d(t) (20)

The quanﬁity f(t, \) is defined to be a pencil of functions p(t) and d(t)
parameterized by A [6]. It is a linear combination of functions

d(t) and p(t) through the parameter A. The pencil of functions

contains very important characteristics from a system identification
point of view, when the functions d(t), p(t) and the parameter A

ére appropriately selected.

The set of 2n pencil functions defined by

[{yl(t) - )\yz(t)}, {yz(t) - Ay, ) ,...,{yn(t) - kym_l(t)},

x, (t), %,(0), ...,xn+1(t)] | (21)

- 23




is considered. Since in this case it is simpler to deal with the
frequency domain quantities, attention is focused on the set of

pencil functions defined by

[{Y&(s) - A Yz(é)} ,{Yz(s) - A Y3(s)} ,....,{Yn(s) - A Yn+1(3{} ,
Xp(8)s X4(8)s wevx (8] (22)

This set of pencil functions displays some interesting properties
if they are checked for linear independence. Checking for linear

independence of the set, we write

i [ak {Yk(s) - A Yk+]_(8)} + bk X.k +1 (s)] ='0 | (23)
k=1

Substitution of (18) into (23) yields.

n .
n-k % [
s [ak (s=)) H(s) + bk] =0 . (24)
k=1
where
‘ " s - sg . T ]
= = i= i] (S -8 )
H(s) = N(s) - =1 Z:l =1 i
: D(s) q
™ (s - sg)ml
=1

Clearly, (24) is independent of the choice of Xl(s). Hence, the
input function Xl(s) does not affect the linear independence of the
set of pencil functions in (24) unless Xl(s) = 0. Therefore, any

conclusions drawn on the properties of the pencil of functions of

24




(22) do not depend on the input functions since only nonzero input
functions are employed in the analysis. D(s) is a polynomial of
order n in s. 1Its roots are the system poles. N(s) its a poly-

nomial in s having a highest possible order of (n-1). Equation

(24) can also be rewritten as

n n-k q mi ‘
"7 (3 (50 N(s) + b, T (s }-o (25)
k k i=1 i

k=1 -
It is assumed that any common roots to N{(8) and D(s) have been cancelled
before substitution into (25). Equation (25) represents a polynomial
equation in S of the order (2n-1). Since 1, s, sz,... SZn-l span a
2n  dimensional subspace, this set is linearly independent and hence the

set of 2n coefficients (ak, bk) must be identically zero if (25) is to be

satisfied for all values of s. The above holds as long as A ¢ ki. For

A= Xi , it turns out that (25) has a root s; = Ai which can be factored
out. The polynomial equation now reduces to an order of (2n-2). The
set 1, s, sz, ....32““2 spans a 2n-1 " dimensional subspace. Nevertheless,

there remains 2n get of coefficients (ak, bk). It is now possible for
equation (25) to be satisfied with at least one nonzero coefficient. This
implies linear dependence of the set_(22), when A = Ai. So if A is a

system pole then the Gram determinant of the set of the functions will be

zero. The Gram determinant of the given set (21) is defined by

| [qu] -

— sy

X
Yy T A Yy Y m ATy <y =AYy, ¥y s A Yg> i<y - Ay, Ta Hl>

< X X >
n+ 1’ "n+1




bThus, det [?2;] =0, 1f X\ is a systen pole. After some tedipus-

algebraic manipulations, it can be shown that

n+l

\/——-. n - i+l ot \[~ n-j +l
det[GZN}= Z by A Z | Bys N
i=1 ) i=1

where Aii is the ith diagonal cofactor in the Gramian.[?Zn +1j}

and only the first n+l cofactors are considered. The Gram matrix

[an + ;} is defined as

. -
' >
Y1 I e SV You” Ve X e Y Ky
| .o < >
RETURSTGAEES A TR VIS T SR MO T

' - o< >
[Gzn%-‘- THr¥y? e KoY SXpeXp> L.l XyoX 4

<

> ... <x x>
Fat1?V1” o Fpar Yo 10X LN LS

= 26)

The polynomial equation, whose roots are the poles locations, is then

given by
n+l n - i+l » ,
}: Vig =0 | @n
i=1 |

26




Instead of ohserving the magnitude of the square root of the Gram

determinant another test can be used. The new test criterion uses the

ratio of the geometric and arithmetic means of the eigenvalues

[ . Jl/m

m
i=1
M
1
M [Z pi]
i=1

DM is defined as the ill conditioning measure of the Gram matrix. ' For an
Mth order matrix p; are the eigenvalues of [GZn +1]. However, this test
can be applied without any spectral computation. This is because the
product of the eigenvalues equals the determinant of the matrix and the sum
of the eigenvalues equals tﬁe trace. Since the geometric mean must be
less than or equal to the arithmetic mean, the ill conditioning measure

DM must always lie between zero and one. It can equal zero only if

\GZn-+A =0, i.e. only if [an +£]is singular. A value of DM equal
to unity results only if [an +l] is proportional to an indentity matrix.

Since the identity matrix is trivial to invert, a value of D, equal to

M

~unity implies that [GZn +J is perfectly conditioned. >It follows that

DM leads to a more quanfitative explanation for the following qualitative

statements:

1) More accuracy is needed to analyze real data than synthetic data.

2) Raising the sampling rate increases the amount of computational
accuracy needed (since the higher frequency energy of real data
generally decreases as frequency increases). Hence, there exists

an optimum sampling rate for any waveform.

3) Proper prefiltering can decrease the amount of computational accuracy

needed.

27




The output y(t) can now be expressed as

q m
y© = L L AL P
i=1 j=1 o4
q m t
1 Sit
A j-1 -
= E: E: AiJ N (t-1)7 Lo 8yT x(t)dT

(28)

Once the Pij's are obtained, the unknown constants A can be obtained

ij

from a least squares procedure.

The integrated squared error € can be found as described earlier.

28




EXAMPLES

Several examples have been considered to illustrate this

technique.

A,

Input: sin(t)
Qutput: 5 |exp(-t) + sin (t) - cos(t)]
Data: 101 uniformly spaced samples of a record of

2 seconds .

The true transfer function is

H(S) = ._1;9_

s+l

A first order approximation was chosen and the result is

() = —10.0016396
s + 1.0001723
Input: exp(~2t) cos(t)

OQutput: 0.5 ‘:exp(-t)-exp(-3t)]

Data: 201 uniformly spaced samples of a record of 3 seconds.

The true transfer function is

H(s) = (s=2-j) (s-2+j)
(s+1) (s+2) (s+3)

A third order approximation indicates

H'(s) = .83319(s-2.00099 -.9986193) (s-2.00099 + .9986193)

(s+.999979) (s+1.99997) (s+2.99949)

The gain factor in this case deviates from unity because of the

truncation error.

29




C. Input: ramp (t)

Qutput: 6 [—1 + t + exp(-t) vus(t)] <:)

Data: 201 uniformly spaced samples of a record of

41 seconds.

The true transfer function is

H(s) = 12

.52 + 25 +2

A second order approximation yields

H'(s) = -.0058987 s + 12.0158425

s 4+ 2.0021149 s + 2.0025363

The contribution of the additional zero is negligible for any

practical purposes.

Next the technique is applied to the synthesis of poles and <:)
zero for noise contaminated data. The empirical signal is

Ze_t [%osZt + 2 sin 2t}, The noise is introduced as a form of

multiplicative noise. A random number is generated; and if the
number 1is even the value of the empirical signal is multiﬁlied by
1.05 for 5% noise, and if an odd random number is generateﬁ the
multiplicative factor becomes 0.95.

The results of the poles and residues are first given for
Prony's method and then for the present technique.
Prony's method
1. No Noise

Poles: -1

1+

j2
232

+1

. Residues: 1
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2. 5% Multiplicative Noise (-26dB)

case a. Poles: -1.298717 + j 1.676503
Residues: 0.95 + 3§ 0.671413
case. b. Péles: ~ .252421; ~1.207952
Residues: - ,01973812; 1.919738

The two different cases are due to two sets of random noise parameters

B. Present Method
1. No Noise
Poles: -1.001384 + 3 2.000112
Residues: 1.000154 + j 1.999721
2. With 5% Multiplicative Noise (-26dB)
case a. Poles: -1.016796 + j 2.001249
Residues: 1.020853 + j 2.037931
case b. Poles: - .9977843 + j 1.980839
Residues: 1.043612 + j 1.941599

3. With 20% Multiplicative Noise (-14dB)

case a. Poles: - .965332 + j 2.011705
Residues:  .949282 + j 2.024689
case b. Poles: -1.014091 + J 2.000726

Residues: 1.158494 + 3§ 1.954903
Even with 20% noise the maximum error in the location of the poles
is 3.5% in the real part and 2% in the imaginary part, whereas for
the residues they are 16% in the real part‘and 5% in the imaginary
part. The Pronmy's method gave erratic results even with 1% multiplicative

noise.

31




Tﬁe present technique is next applied to the identification
of poles and residues in a synthetic signal with additive Qoise.
The signal is the same as befére. The noise is uniformly distributed
between +.04 so that 0 = ,025; 300 equispaced sample points were

chosen of a record of 8 seconds. The results obtained are

Poles: - .86644 + j 1.8323
Residues: 1.0065 + j 1.7617
As a finai éxample, consider the transient response of a 1l0m long
and lm diameter conducting pipe tested at the ATHAMAS-I EMP simulator
(or popularly known as the HPD). The timé domain responses of the
pipe were measured at different points in space. One such response.[9]

is shown in Figure 10. The particulars of the experiment are as follows:

Data Nos.: PH 00202
Shot: 43i6
:Sensor No.: 0026
Meas No.: Jl
Orientation: 00
Test Item pos.: +00 +02 +30
Configuration: 001
Environmental level: 111
The technique mentioned in this paper was applied on the truncated
porti&n of the waveform (from O to 500 nanoseconds). The poles and

their residues obtained for different order approximations are shown

below.

9., J. S. Yu, C-L J. Chen and J. P. Castillo, '"Responses of a Conducting
Pipe," ATHAMAS Memo - 14, April 14, 1977.
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Fig. 10. Transient Response of a Conducting Pipe Measured at the ATHAMAS--I EMP Simulator




For n

Poles

(in rad/sec) x 10

-1.339 +

+1

-1.750

D5 =

7

jo.
j 1.158

j 5.480

.0399

5, the poles and the residues are

For n = 6, the poles and the residues are

Poleé

(in rad/sec) x 107

-1.466 +
- .9696 +
- .7370 +

D6 =

j .5716
j 1.660

j 6.308

.0130

34

Residues
.5396 - 4§ O. ,
1430 + 3 .2811
1401 + 3§ .0798
Residﬁes
.2981 ¥ § .6743
.2189 + j .0218
.0895 + j .0364




For n =7, the poles and the residues are

Poles 7 Residues
(in rad/sec) x 10
-1.588 + j O. - -1.288 - jO.
- .6428 ¥ j 1.272 - 4220 ¥ § .0274
-1.071 + 3§ 1.262 .9802 + j .3593
- .7012 + j 6.321 .0918 + 3 .0333
D, - .0060 |

Unfortunately, it was not possible to go beyond seventh order
because of limitations in the computer pfogram. It is quite clear
that the pole which has converged is

sg= (- .7012 % 3 6.321) x 107 rad/sec.

The dominant pole of the same waveform was obtained by Cordarck
using an iterative Prony method as

s. = (- .603 % j 6.75) x 107 rad/sec.

There seems to be close agreement between the results.

The total time taken by the present method to analyze all of the
approximations up to seventh order on an IBM 370/155 computer was
appromimately 1 minute.

Also, we point out that the convergent pole is the dominant pole
of the desired waveform as contrasted with the measured waveform.
This is because the measured response is the integral of the desired
waveform as shown in Figure 10. 'Hence, the residues associated with

the measured waveform are modified by factors involving the respective

poles.

* Private Communication with Dr. T. Cordaro
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That is, if . .
ALt
x(t) = Z a el

then

s emerges as the dominant pole of the desired waveform when the
residues of the measured waveform are multiplied by the correspoﬁding
pole Qalues.
Also, it is seen that the value of DM decreases as the order ipcreases.
DM equal to zero represents a singular matrix and hence an overdetermined

system. For the seventh order D7 = 0;006, which represents a near <:)f
singular matrix.
It is expected that proper prefiltering (i.e. use of' first order
filters instead of pure integrators) and utilization of the knowledge
of the input waveform to the system may significantly increase
convergence of the poles. Tﬁen the values of D, would decrease at a

M
faster rate than is observed presently.

36




SECTION LV
IDENTIFICATION OF SYSTEM POLES AND RESIDUES: ARBITRARY INPUT

WITH NONZERO INITIAL STATE

When the initial state is not zero, the output can be

expressed as

4 —mi y j-1 ]
: -1 -s,T
y(t) = E: E: Aij (t=-T) e i x(T)dT + a,
1=1 j=1
0

where ai are related linearly to the initial state. For this

case it can be shown that the pencil set

n-1
%;yl - Xyz, seees YT Xyn+l, LOTRERNE ST Cyernot :}

is linearly dependent if and only if A is one of the system
poles. The development is similar to that of the previous
section except that the Gram matrix is now (3n+l)

dimensional as defined by the functions

n-1
{ﬁfu.ﬂwﬂ,xzp.”,XMd,l,t,.“t }
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SECTION V

DISCUSSION

"The suboptimal exponents determined nonitatively are

1 =g

Sy T %4

+ eli . Thus as the order of approximation n is increased,
not only should the error decrease but the suboptimal approxima-
tion will approach the optimum. Also a formula has been developed
for the direct computation of the error. The major disadvantage
or the technique‘is that the Gram matrix may be ill-conditioned in
some problems, especially when the order of the system n becomes
large.

However, when the déta are noisy the integrators in the
above system can be replaced by FOF (first order filters) to
enhance accuracy in the estimation procedure. In addition,
realization of first order filters is easier to obtain than
is the realization of integrators when a hybrid implementation is

~ desired. Presently, work is being carried out to study the

different aspects of this problem.
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