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Abstract

The effects of time truncation on the Fourier transform of a typical
6 8

double exponential (e']'5X10 t-e'z’GX]O t) are investigated. Time truncation
is a problem when the Fourier transform is taken of a function which has
not yet decayed to zero, i.e., time stops at a finite limit and does not
go to infinity as the Fourier transform requires. The procedure used was
to calculate the analytical Fourier transform of a time truncated double
exponential both with and without selected taperings. The difference in
percent of the magnitude of the ideal transform and the time truncated
transform was calculated for various frequencies. The percent error was
then contour plotted with independent axes of frequency and truncation time.
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Introduction

Time truncation occurs frequently in EMP transient simulator
measurement systems since the transient has a relatively high rise rate
and a relatively low decay rate. If one goes to a high sweep speed to
look at the early time data, time truncation occurs because the whole
waveform cannot be displayed. If one uses a low sweep speed to Took at
all the-data, the early time resolution is lost. To give some insight
into the effects of time truncation on the Fourier transforms of such
data, a particular double eXponentia1 was selected and the effects of
‘truncation on the analytic Fourier transformation was calculated. The
effects of two tapering tethniques were compared with those of outright
truncation. Time domain waveforms with negligible DC (i.e., zero frequency)
content (e.g., damped sines) were not investigated. "




I. Theory !

1. Introduction.

The Fourier transform of a function f is

b w -
Flw) = 7.2 f(t) e 19 gt

Assuming f(t) =0 for all t <0, then

Flw) = /g ) e719% gt
= R0 i (1)
where Fw(t) 4 I f(t) L (2) .

2, Truncation without tapering.

When there is truncation then f(t) is known only up to some
time Tmax’ but may be nonzero (but unknown) for t outside the interval

(
'[O'Tmax]° Let o

A

By linearity of the Fourier integral

T

Flw) = £™*f(1) et gt + 2 f(1) 9 gt -
max
) Gw(Tmax) * Fw(t)‘t=Tmax .
Let
e(0) & RO, = Fle) - F (1) (4 .




Then we have

Fla) = Gm(Tmax) * Ew(Tmax) (5)
F(w) is the transform of the function f over all time and
Gw(Tmax) is the approximation of the transform which we calculate
because of the fact that we have data only up to Tmax' Ew(Tmax)
is the error in the calculated approximation due to truncation.

Consider the case in which f(t) is the double exponential

) 0 vV £t<0 ()
f(t) =
e 0t Bty ¢ >0
In this case equation (1) yields
Flo) = £y (et e Bty o710t g4 -
- fz e»(a+im)t dt - .f; e-(3+im)t dt
o =1 s(ovie)t , 1 _-(BHie)t
- o © e © ]t=0 =
- 1 (7)
otiw B+iw
equation (3) yields
Tmax , -at _-Bt, -iat
Gw(Tmax) = Jy (e -e""") e dt
-
SRS BN (72 L I (-3 PO LIS St
ot+iw B+iw t=0
-1 ~(a+iw)T -(B+iw)T_.
" o e " B+}w Le e
Le-(uﬂ'm)Tmax ]_e~(8+1w)Tmax (8)
= atiw T T Btiw

J
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and either equation (4) or equation (5) yields

] e-(oc+'iw)'1]'max e~(8+'iw)Tmax

Ew(Tmax) ot+iw RB+iw (9)

In this case then
| 1

FO = -

and
e'aTmax é'BTmax
EO(T ) = -
max o B

Since normally 100 < B , therefore the o term usually dominates the right
hand sides of the last two equations. That is,

and

=0T ax

E

(T

)

max

Consequently a good approximation of the relative error in the truncated
estimate GO(Tm ) of F(0) at DC is given by

) . (é’aTmaf)//1
-\ a o

ax

EO(Tmax

F(0).

(10)
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Therefore, for example, the magnitude of the relative error at DC can be
reduced to approximately .1% as follows:

-aT
e MX - 001 iff
iff -l = 4n 001 iff
. -1
max )
. 4£n 1000 .
o

To make the example even more specific, suppose o = 1.5x106 . Then to

reduce the DC relative error to approximately .1% equation (10) tells

us that it is necessary that the truncation time t in equation (3) be
no earlier than ‘

max %%Ei%%% 4.6 usec

If the source function is truly a double exponéntia], then the
error termva(Tmax) can be calculated from equation (9) for various
values of a, B, and w, On the other hand, if the source function is only
approximately the assumed double exponential then such a calculation of
Ew(Tmax) could be regarded as only a first approximation to be used in
some kind of predictor-corrector process.

3. Cosine tapering.
Cosine tapering is sometimes used to drive f(t) to zero at Trax®
In this case the analog to equation (3) used to approximate F(w) is

A ‘ '
Hw(Tmax) B Gw(rTmax) * Hw(r’Tmax) v (1)

where r may be .any real number satisfying r ¢ (0,1) , Gw(rTmax) is
defined in equation (3), and




H(r,T ) - I Tmax m(t- rTma o lwt

X
ALELI (T f(t) cos[ -————1——-—

dt
Often r is given either the value .95 or .9 .
Consider the application of cosine tapering to the double

exponential given in equation {6). For that function the G (rT] ax
in equation (11) can be had directly from equations {5) and (9) as

) term

-(u+iw)rTmax ~(B+iw)rT

: max
e [
= - - + T
) F(w) otlw B+iw

where F(w) is given explicitly in equation (7). (Equation (13) is, of
course, just another way of writing equation (8).) For the equation (6)
double exponential, equation (12) would yield

T | m(t- rT ) .
-0t -Bt max -int
H (r,T ) = s M (e™%t.e™Phy cos[ e dt
W max : rTmax maxz] -r)
= U, (a) - U (B)
where
U ( ) g f Tmax e"Yt [ (t rl aX) ] e-'iwt dt
0! rT o cos 2T 1T
Appendix A begins with equation (15) and shows that
T (y+iw) -(y+Hiw)rT
0 ) = 2o ™+ alrtiule "
v 22(Y+iw)2+1
8 .
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(13)

(14)

(15)

(16)
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where

(1 r)

max
T

Combining equations (11), (13}, and (14), we then have

—(8+iw)rTmax -(a+iw)rTmax

. & e
Hw(Tmax) " B+iw - o+iw *

#F() + U a) - U (B) an .

4. Linear tapering, .
Cosine taperiﬁg is not the only kind of tapering used. Sometimes
a 1inear function of t is subtracted from f(t) to make it zero at Tmax
Such 1inear tapering is especially appropriate when the signal is coming
from a device 1ike an integrator since integrators are prone to drift
approximately linearly in time.
In the case of linear tapering f(t) is approximated by

{i‘ (T )

v(t) = f(t) - Tt _
max

F(w) is then approximated by

T

. _ max -iwt
Vw(Tmax) = fov v(t) e”'*" dt
- "'a" [F(t) - bt] e~ Ut gt
Tmax ~-iwt TmaX -jut
=y f(t) e dt - b Sy te dt (18)
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where

Integrating by parts (or using tables) shows

-fwt
;tetet g o & (1+iut)
m ‘ .

Applying this result.and equation (3) to equation (18) yields

VolTmax) = &y(Tnax) - 2z (1+iwt)|t=0
-fwT
: b “!max _

Gw(Tmax) - —;7[e (1+1meax) -1 = )

{

(T _..) -iuT
= g (T ) +--2—-'9§l‘-[1-e “‘a"(1+mmax)] (19)
, W T

Analogous to equation (4) we in this case define the error

A
Dw(Tmax) = Flw) - Vw(Tmax)

Applying equation (5), this becomes

‘ Dw(Tmax) B Gw(Tma}c) * Em(Tmax) -V (T )

Combining this with eQuat1on (19) then yields

10
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F(T ) ~jwT
- max Mmax; -, . _
Dw(Tmax) Ew(Tmax sz 1-e (]+1meax)] T
max
FT__.) =iwT
_ max MaX, ., . )
= Ew( max) —5?——~—[e | (1+1meax) 1] (20)
max

For the double exponential of equation (6), equation (9) makes equation
(20) become

e'(a+1w)Tmax e_(6+1w)Tmax
pw(TmaX) - otiw h B+iw B
f((T ) =faT
e (4T ) -1]
W21 max
max

5. Summary.

We now have an'equatibn for the frequency domain errors induced
by time truncation of a double exponential signal (equation (9)). We
also have the equations for errors due to time truncation when data has
been "tapered" by cosine (equation (17)) or Tlinearly (equation (20)) to
reduce the frequency domain errors.

1
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I1. Numerical Results

1. Presentation,

To generate numerical results, an arbitrary double exponential

was picked ( f(t) = 6-1.5x106t - e-2.6x108t ) and the magnitude of the
error term as a percentage of the known value of the analytic Fourier
transform of the double exponential was plotted. The plots are contour
plots, in truncation time-frequency data space, e.g., the vertical axis
is truncation time in seconds and the horizontal axis is frequency in
Hertz. The plots are arranged in sets for which different contours
were selected. The scale is a pseudo-logarithmic scale in that it is
linear within each decade. S

These plots are 1ntended to show the relative effects of the
various kinds of tapering. As'such, they do suffer from some computa-
tional inadequacies (e.g., only small efforts were made to avoid "small
difference of large numbers" problems). This does not mean that the
plots are numerically useless, but extracting absolute values from
these plots should be limited to + 1/4 inch and values of error greater
than 1%. ’

Each set of plots is arranged in the following order:
1. Pure truncation
2. Cosine taper of the last 5% of the time data
3. Cosine taper of the last 10% of the time data
4, Cosine taper of the last 15% of the time data
5. Subtraction of a ramp function to force the time data to
zero at the last point.
The plots in Appendix B are composite plots which present all the
contours for a given taper. As one would expect, cosine tapering and
subtracting a linear function both help at the high frequency end. It

12
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is felt that the dramatic decrease in error magnitude upon subtracting

a linear term is due to the relatively small discontinuity in the

derivative of the time function. This leads one to the specu]ation that

perhaps it would help to invent a tapering function that would force the
~tail of the function to be zero and the derivative of the function to be

equa1 to the derivative at the start of the wave (i.e., B-a for the

double exponential).

The particular cosine tapering used for these plots spanned a range
of cos 0 to cos %-(see equation 12). This can result in a sharp discon-
tinuity of the time derivative at the window time Tmax‘ However, cosine
tapering from cos 0 to cos m is sometimes used. This would reduce the -
discontinuity in the derivative at the window time and may very well be
the equal of subtracting a linear term in its enhancement of accuracy.

The plots in Appendix C were made by letting the contour plotting
routine pick four equally spaced contours in the window time-frequency
plane. The contours do not have the same values since there are different
maximum values for the error depending on thé taper used. It is interesting
to note that subtraction of a linear term results in much Tess maximum
error than the other tapering techniques.

The contours in Appendix D are of the error values 80% through 130%
in steps of 10%, and the contours in Appendix E are of the error values 20%
through 80% in steps of 20%.

Even 5% cosine tapering improves the high frequency data remarkably.
Again, subtracting aklinear term appears superior. It does introduce
s1ightly higher errors in the low frequency range but results in much
higher accuracy in the high frequency range.

The contours for Appendix F are of the error values 2% through 8% in
steps of 2%. These are the most interesting of the plots because they
represent values of error which can be tolerated.

A 5% cosine taper helps the accuracy of the data quite a bit; a
10% taper helps the data a fair amount more; and a 15% taper is just a
little bit better than the 10% taper, indicating that the cosine taper

13
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is approaching a 1imit. The subtraction of a linear term results in
far better data at the high end of the spectrum and only slightly degraded
data at the low end. | '

The plots of Appendix G were run as a matter of curiosity and are
of the ,1% error contour. This data cannot be trusted too much in terms of
absolute values (e.g., for pure truncation the contour should be at 4.6
usecs instead of 10 usecs). However, the comparison between plots is
sti11 valid and indicates the superiority of the use of linear tapering
over this type of cosine tapering for this waveform.

2. Conclusions. ,
The calculations described here were intended to give some insight

into the errors induced by time truncation and how effective two tapering

techniques are. For the specific double exponential f(t) =

o o-1.5x10%t _ -2.6x10%

,» subtracting a linear term ( f = bt ) (thereby
forcing the value to zero at the truncation time) is superior to the
particular cosine tapering technique described. However, extending that

conc1usion’(to indicate that subtracting a 1inear term is superior for -

arbitrary waveshape or is superior to other tapering procedures) is not
warranted based on the calculations presented here.

14




Appendix A: Derivation of Uw(y).

From the definition of Uw(y) in equation (15), we have

!
rTmax

Tmax e-(y+1w)t

Let a (for "argument") be defined by

a

Solving this equation for t in terms of a yields

where

ne>

Equation (A3) implies

dt

By equation (A2),

2aT

A 'ﬂ'( t-rT

max

max
il

max

)

-r

(1-r) -

+
za rTmax

max

zda

2T . (1-r)

15

cos[

max
X7 gt

(A1)

(R2)

(A3)

(A4)




Applying equation (A2)
~ yields

U,(v)

where

ne>

fO e

rT iff a=0 and

T iff a= 3

and the two preceding sentences to equation (A1)

Ui

> =(y+iw) (za+rT__ )

max cos(a) z da =

3 -(y+Ho)za -(y+io)rT

i fg e e max cos(a) da

. T :
'(Y+1w)rTmax 2 ~(y+iw)za
fO e

ze cos(a) da

-(y+iw)rT u
ze max IS eba cos(a) da

~(y+in)z

Integrating by parts twice (or using tables) yields

U, ()

-(y+iw)rT ba
ze max r —%—- (b cos a + sin a)
be+1
| m
~(y+iw)rT 0
ze max 3?——-(b~0 +1) - g
b™+1 b=+1
b
z(e2 - b;
(y+iw)rT
(b%+1)e max
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Using equation (A5) to eliminate b then yields

-m2(yHu)
u (v = zle sEiia D
w yHiw)r
[z (y+o) 241 T max

Applying equation (A4) to the numerator exponent makes this become

=T _(T-r)(y+iw)
o - 2 ™ T o))
W

o (yHie)rT
. [-22«(Y+_iw)2+-|]e max

"

T (y+iw) ~(y+iw)rT
_ Z[:e max + Z(Y+1w)e . . max
)2

ZZ(Y+iw + 1

17




APPENDIX B

Composite Plots of Percentage Magnitude Error
(with Cosine Taper or Linear Taper).
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APPENDIX C

Four Equally Spaced“Cdntours of Percentage Magnftude Errors.
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APPENDIX D

Magnitude Errors of 80% to 130% in Steps of 10%.
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APPENDIX E

Magnitude Errors of 20% to 80% in Steps of 20%.
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APPENDIX F

Magnitude Errors of 2% to 8% in Steps of 2%.
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APPENDIX G

Magnitude Error of
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