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ABSTRACT

The problem of in;ereét is to identify the transfer function of a system
by‘its poles and residues when the noise contaminated input and output are
specified. The first aim of this paper is to illustrate that several different
formulations for characterizing the impulse response of a system yield the same
set of poles as is obtained in the case of a discrete Wiener filter. The
second goal is to show how different formulations regularize the ill-posed
system identification problem. It has been demonstrated dhat the Wiener
filter is not always realizable as a causal rational funcﬁion. When the
order of the filter is specified a priori, the resulting ﬁilter may no longer
be optimum. Finally, representative computations are made of the poles from
the transient response of a conducting ﬁipe tested at the ATHAMAS-I EMP
simulator to demonstrate the stability, reliability, consistency and accuracy

of the results obtained by the pencil-of-functions method.
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I. INTRODUCTION

This paper deals with the modeling of a linear system By poles
and residues from a measured finite length input-output record of
the system. The objective of this paper is threefold:

1) to illustrate that several different formﬁlations for
characterizing the impulse response of a system yield the same set
of poles,

2) to show how different formulations regularize the ill~posed
system identification problem, and

3) to demonstrate that stable, consistent, accurate and re-
liable results in the identification of a system by poles and resi-
dues from a finite length input-—output record can be achieved by
the pencil-of-functions method.

Recognition that the different formulations yﬁeld the same
poles gives much insight into the nature of the prbblem{ It is in-
teresting to note that fromﬁlations based upon different assumptions
result in identical sets of analysis equations. For example, Prony's
method states that if a signal is composed of M deped exponentials,
2M samples of data are necessary to determine the%parameters of the

damped exponentials. However, it is not at all obvious that Prony's

‘method (as derived by most numerical analysis formulations) may be

interpreted in terms of predicting each value of data and therefore,




is a form of digital Wiener filter. Markel [1] and Markel and Gray
[2] did recognize the fact that identical analysis equations can be
obtained by several different techniques.

The subject matter of this paper is quite volumindus. A complete
bibliography is Beyond the scope of this work. Hence, |only relevant
references directly applicgble to our discussion are n¢§ed. The
references cited indicate where additional information/can be obtained.
In some instances, the earliest sources have been omitted.

The problem of interest is to identify the transfer function of
a system by its poles and residues when the noise contéminated input
and output are specifiéd. The signal and noise are comsidered to
be stationéry processes. When time limited signals are involved,
the problem is converted to an equivalent stationary problem by con-
volving the time limited signal with white noise of unit power [3].

In the second section the classical method of extracting the signal
from noise is discussed. This is the Wiener—Kolmogoroff theory [4].
The digital form of the Wiener-Hopf equation is deriveﬁ. Topics
associated with Wiener filters are also presented. They include in-
verse filter design, linear prediction, predictive decpnvolution (or

spiking) filter design, recursive filter'design and Kalman filtering.

1 J.D. Markel, "Formant Trajectory Estimation from a Linear Least-Square
Inverse Filter Formulation," SCRL-Monograph 7, Speech Communicationms
Research Laboratory, Inc., Santa Barbara, October 1971,

2 J.D. Markel and A.H. Gray, "Linear Prediction of Speech," Springer-
Verlag: Berlin.

3.E.A. Robinson and S, Treital,"Principles of Digital Wienmer Fiitering,"
Geophysical Prospecting, September 1967, pp. 311-333.

4 N. Levinson, "The Wiener RMS Error Criterion in Filter Design and
Prediction," Journal of Mathematics and Physics, 1947 V. 25, pp.
261-278. ‘




Both the popularly known covariance and autocorrelation methods are
derived from the Wiener filter theory.

In the third séction the various well-posed stochastic exten-
sions of an ill-posed system identification problem are described.
They include the maximum likelihood estimation théory, the minimum
predictor error variance and the maximum entropy épectral analysis.
It is demoﬁstrated that identical analysis equatiéns for parametric
modeling of the system can be obtained.

The fourth sectionvprovides Prony's method iﬁ various forms.

In particular, when a semi-least squares approach;is applied to Prony's
method, both the autocorrelation and the covariance method appear
as special cases; Thus it is also a form of a'diéital Wiener filter.

The second objective of this paper is discus;ed in the fifth
section., This section discusses the vainus concépts of ill-posed
and well-posed problems in system identification. It is shown how
the different techniques regularize the ill-posed system identifica~
tion problem by introducing further limitations on the solution.

Finally, it is shown how the pencil-of-functiomns method - radically

differs from the other formulations.

Finally, the third objective is demonstrated in section VI where
results are presented to demonstrate the claim that stable, reliable,
consistent and accurate results are obtained for the location of the

poles by the pencil-of-function method.



II. WIENER FILTER THEORY

Kolmogoroff (1942).and Wiener (1943) were thé firEt ﬁo present
a unified theory on extrapolation, interpo;atiOn and smoothing of
stationary time series. The linear filter which perfo}ms the desired
task is obtained by the solution of an integral equatibn known as the
Wiener-Hopf equation [4]. For sampled data systems, tﬁe integral
form of the Wiener-Hopf equation reduces to a finite sLm. The present
treatment describes how Weiner's concepts can be appligd to the identi-
fication of linear sysﬁems. The basic model for thisiprocess consists
of an input sigﬁal, a desired output signal and an acﬂual output signal.
If one minimizes the mean-squafed error between the‘désired output
signal agd the actual output signal from the desired #ystem, it be-
comes possible to solve for the optimum system commonﬂy known as the
"Wiener" filter. The fundamental assumption underlyiﬁg the procedure
is that all processes are stationary.

A stationary time series is one whose statisticai propertiés
are time invariant. In particular, the statistics ofjthe time series
at a future time are the same as the statistics of thé same time series
at a past time. Thus, a stationary time series is offinfinite dura-
tion., However, in an éctual experiment, we observe aftime series
over a finite interval. So in order to apply the conéepts of Wiener
filtering the finite length time series'is convolved Vith a white

noise series of unit power, to yield a stationary time series [3].

Moreover, in actual measurements only one waveform isirecorded and




the expected value is computed from only one waveform. Thus, im-
Plicit in this development of computing the ensemble averages [E{:}]
as a summation over time is the concept of ergodicity. This implies
that ensemble averages can be replaced by corresponding time averages.,
The concept of Wiener filtering is well known but is included
here for completeness. The fundamental elements of digital Wiener

filtering are summarized in Figure 1 for the sampled data problem.

Sampled Data Filter Actuyal
Input e ft = Output
X y
. t fo,fl’..” fM_l t
t =0,1,e0s, K=1 Error
€e

Desired Output Signal

de

t=20,1,2,...,,K¥M=2

Figure 1. Principles of Wiener Filtering.

Given input signal x, and a desired output signal dt’ the problem

is to find the linear filter coefficients £, whose ouput X, * £.I*
denotes convolution] yields a minimum mean—squared%error estimate
' 1
of d . If E{+} denotes the expected value, then the error
2
= - 2'

I =E@, -y)"} - (2.1)

is to be minimized,

In this case an M-length filter £, = {fo,fl, ""fM—l} converts,

in a least error energy,sense a K-length input X, =‘{x0,xl,...,xKﬁl}




into a K+M-1 length desired output d = {do,dl, ceny dK+ﬁ-2}' The

actual output is obtained as

Yt = YODY1, LU ] YK+M-2

= x, * f Z f x

T_O T t_T' (2'2)

The problem of making the desired output dt as close to yt as possible

amounts to the minimization of the error energy

2 M-1
I =E{(d, -y} =El@, } TEO £Xe_p)

\
2
}. 2.3)
The error is minimized by evaluating the partial derivatﬁves of I with
respect to fT and equating them to zero. This results in a set of

equations

M-1
dfj = E{2(d, Z £oX,_ T)( xe )}

A M-1 -
= -gE{dtx o+ 2 TZO f E{xt Fee J}

= 0 ’ forj e 0,1’2, o-o,M-l‘ (2.4)

The unknown filter coefficients are obtained by solvingithe following

set of simultaneous equations.

M-1
TzofrE{Xt —Femg) = Blexe )
for j = O’l’ seey M-l : (2.5)

In order to solve the above equations, it is necessary to compute

the expected values in Equation (2.5). By assuming that the ensemble

10




averages are

Similarly

expressed as time averages, one obtains [3]

- K-1

A 1 At

} = ] x___x . =C
K-M L Te=tt=j 13

E{xt—Txt—j

(in the covariance method)
L

K =0
K-|1-3|-1

X X .
t=-T t=j

[}
R

B t(gay
2o A el (1=3)

(in the autocorrelation method)

A1 K=1
Bdx g} feow L, ey

(in the covariance method)

é K-1

b L

d x __.
oot ; 3

tin the autocorrelation metho&)

(2.6)

(2.7)

2.8)

(2.9)

It is important to stress that the terms "covariance" and "autocorre-

lation" are not based upon the standard usage of the terms as occurs

in the theory of stochastic processes. Rather, we follow the usage

which is quite prevalent in the literature of speech processing [5].

The following discussion is intended to clarify their interpretation.

It is clear that the covariance definition given by (2.6) yield

an unbiased estimate since

5 J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE,
Vol. 63, No. 4, April 1975, pp. 561=580.
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K-1
E(E(x_x 1] % B2~

— x_ . x_ .]
t=-T t~j K =-M g=M E-T -3
1 K-1
=X - tEM E{xt-rxt-j} = E{xt_rxt_j}.‘

On the other hand, the autocorrelation definition given by (2.7)

results in a biased estimate since

. Aol K-|t=3|-1 |
[E{x,_%egH) = Elg Xpar¥enj]
t=0 :
K-|t-3|-1
-1 - le=il |
KL E{xt—Txt—j} [1--— ]E{xt_Txt_j}.

It is interesting to note that the bias is negligible when M (the
order of the filter) is much less than K (the number of data points)
as |T-j| << K. The bias is significant, however, when K is only slightly
larger than M, This result can be useful for explaining why a large
number of data points (K >> M) is necessary for accuraﬁe frequency dis-
crimination when using the autocorrelation function to obtain the power
spectral density,

Becéuse the covariance method gives an unbiased esfimate, it
might be assumed that it is a better estimate. Howevet, the biased
estimate provided by the autocorrelation method is often preferable.
As an example consider the zero mean four data point sequence (4, -2,
-1, -1) and M = 2, Using the unbiased estimator, the expected values

are Céo =1, CiO =1,5, ¢! = -1, C!, = -2, 1In contrast, the biased

20 30
i 1 = ! = - ) = e ' = -
estimator results in r(o) 5.5, r(l) 1.25, r(z) i 0.5, r(3) 1.0.

Note that C' _ 1is less than C!. whereas rt

00 10 0) is guaranqeed to be greater

12



than r! _ for T > 0.

(T
Continuing with our development, the discrete Wiener-Hopf equa-
tion presented in (2.5) can bg written in the folloﬁing matrix form

for the covariance method

(c, .1

€45 et Fi el = P hyer ' (2.10)

where [Cij] is a square matrix whose elements are given as

K-1

C,. = Z X _ X, _ (2.11)
ij =M t=-i"t-j?

[Fi] is a column matrix consisting of the M unknown filter coefficients

fo,fl, ""fM—l’ and [Dj] is a column matrix whose elements are given
by
K-Z'l
D, = d x _. | (2.12)

For the autocorrelation method, the unknown filter coefficients are
obtained from the solution of the matrix equation

. = . 2.1
[Rli‘jllMxM[FllMxl [DJ]Mxl (2.13)

" where [Rli‘jl] is a square matrix whose elements are given as

K-1 K-1-|1i-3]
Rii-4] "tZO Feet¥eey T Ly TfeH|-d] (2.14)
and [Dj] is a column matrix defined by (12). |
Interestingly, most of the formulations for the solution of an
unknown linear filter lead to analysis equations which can be formu-
lated either in terms of the autocorrelation matrix equations (2.13)

or in terms of the covariance matrix equations (2,10).

13




It‘ié igporﬁant to note that the Wiener filter is%not always
realizable as a causal rational function (in terms oflpoles and zeros), . (:)
However, in general, the Wiener filter is amn infinite order filter.
When the order of the fiiter is specified a priori, the resulting fil-
ter may n§ longer be optimum.
Various forms of the Wiener filter‘have appeared under different
names and have been used in various geophysical, speecb processing,
~and digital signal processing applicationms. Next, various modifica-

tions of the Wiener filter are presented.

2,1, Inverse Filter Formulation
The inverse filter attempts to transform the input signal into
an impulse [6]. Assume that the input sequence X, is transformed to

an impulse of area ¢ by an all-pole filter of the form

s o

F2) = 577y | (2.15)
where
M=l L ‘ ,
F(z) = ] f,27°, withfj=1 (2.16)
1=0

In terms of Figure 1, the desired waveform dt is an imbulse of area o, |
It follows that thekcoefficients of the filter should be chosen such

E ' = | ] 1;

: . |
where ¢ = 1 for t = 0 and zero otherwise, Multiplication of both

6 J.D. Markel, "Digital Inverse Filtering - A New Todl for Formant
Trajectory Estimation,'" IEEE Trans. on Audio and Electroacoustics,
Vol. AU-18, No. 2, June 1970, pp. 137-141.

14 , , <:);




sides by xt—j and summing t from k to K-1, one obtains

M-1 k-1 0, k>0
] £0] x_x 1= 4 | (2.18)
1=0 ' g=p 7Tt

Ox_j, k=20

Since x_j is zero for j > 0, the unknown coefficients fT for Tt =1,2,

«s+y M-1 are obtained from the solution of the following equations

Mil K'z'l
£f [ X X .]1=0 (2.19)
120 T t=k t-T t=]

for j 1,2, sy M"lo
For k = M, the above equations reduce to that of the covariance equa-

tions as in (2.10)., This is because

R-1
D, = ] 6.x

= O.
I =M

t-j

For k = 0, equation (2.1 ) reduces to that of the autocorrelation
equations, The poles are obtained from the roots of A(z) i.e. from

the solution of the polynomial equations

I £2" =o. (2.20)

In particular, if zy is the ith root of the above equation (2.20),

then the ith pole is equal to inlz,].

2.2 Linear Prediction
The term "linear Prediction" was first used by Wiener in his
classic work on prediction of stationary time series, Since its publi-

cation, it has found wide application in the determination of all-pole

15




models for the pfocessing of speech sigﬁals [51.

The basic philosophy here is tg take a part of the sampled wave-
form (say the first M-1 péints from K data points) and predict the
next data point on the waveform by proper choice of the predictor co-
efficients ag. The linear predictor of step size one predicts the
~Mth data point of the waveform when a (M-1) order predictor filter is

chosen. In the time domain, the predicted sample ﬁM is given by

M-l
b Y 8 M-1

where (-al,-az,—a3, censy -aM_l) are the predictor coefficients, The
coefficients a, are the negative of the values of fi presented in
Figure 1. A (M-1l) order linear predictor thus requires a linear com-

bination of the previous (M-1) samples. The error is then given by

M-1
MTMT M T izl 21%M-1 T MM

‘M-1
= - Z a;x,_; wvith aj = -1 | (2.21)

The total squared error is defined by

K-z-l '2 K-z-l M-}-:l 2
I= [e 1" = [ ax ]
t=k °© g=k i=0 T 1
M-1 M-l
= Z xt-—i t—
1=0 j=0 J
M-1 M=1 K-1
=7 3 fifj{tzk xt-i*t-j}‘ (2.22)

1=0 §=0

When k = M, this amounts to minimization of the error only over data

points of the waveform from M to K-1. When k=20, thﬁs implies

16




minimization of the error over the entire waveform. Minimization of
I, with respect to the set of the filter coefficients leads to a set

of simultaneous equations given by

Mgl K'z-l :
£.1{ X, X, .} =0 (2.23)
420 1 gap tmit-d

for j = 1,2, ..., M=1, from which the unknown filtér coefficients fi
are obtained. Equations (2.23) are identical to the set of equations
(2.19) obtained ip the casé,of the inverse filter formulation in the
previous section.

Linear prediction ié thus equivalent to an all-pole model for
the input X, The poles for this model are again obtained from the
solution of the'poiynomial equation
Mil fiz-i = 0.
i=0

Thus iﬁ X, represents the méasured impulse response of the
system,lthe set of poles obtained by linear predic&ion parameterize

the system in terms of an all-pole model.

2.3 Predictive Deconvolution or Spiking Filter Design

The general linear filtering problem involves the input X the
impulse response ht and the output Ve When it is desirable to evalu-

ate ht given x_ and Yes the problem is referred to as deconvolution.

t
In this sense the inverse filter problem discussed in section 2.1 is
a deconvolution problem. Predictive deconvolution refers to the

case in which the output Ye is assumed to be a delayed impulse

17




Mgl
f x = 0§ (2.24)
=0 T t=-T t=Q '

The unknown filter coefficients ﬁr can be pursued in aiménner anéla-
gous to the inverse filter approach by assuming the input to be re-‘
presented as an all-pole model. However, we prefer to |show that the
filter coefficients can also be determined by interpreting the prob-
lem as a prediction problem. It is in this sense that khe term pre-

dictive deconvolution is used {7].

Introduce the change of variables t - o = B in equation (2.24).

The resulting equation is
M-1
- = L] '2
TZO e o8 (2.25)

Next, assume the filter coefficients to be given by -

a-1 zeros

(1,0,0’ ...,'0,-6.1,—82, seey -aM—l) (2.26)

The upper limit on the summation is now given by M + a - 2. Equation

(2.25) can now be written as

M+q-2 ' Mgl
X + f x = X - ax
t+a =1 T t+q—r t+a =1 T t=-T
= c&t ‘ (2.27)

If the estimate of xt+a is assumed tq be given by xt+a,‘then

M-1

= - ! 2,28
t+o Tgl 8r¥t-1 (2.28)

and oét can be interpreted as the error of the estimate.

7 K.L. Peacock and S, Treital, "Predictive Deconvolution: Theory and
Practice," Geophysics, Vol. 34, No. 2, April L969, pp. 135-169.

18




If the total squared error is minimized as was done for the
linear prediction approach in section 2.2, a set of equations is ob-
tained for the filter coefficients. When a = 1, these equatibns re-~

duce to the same equations as were obtained in (2.22)

2.4 Recursive Filter Design

Recursive filters are often used in digital filter design [8-12].
Digital filters are most often applied to discreté time series by
convolving the time series with the impulse response of the filter.
Each output point is a weighted sum of a finite number of the input
points. In this case the filter is describable b§ a linear constant-
coefficient difference equation. If X, is the‘input to the filter
and'yt is the output, then they are related by

M-1 L-1

Z a,y. _, = b_x__ (2.29)
k=0 k't k; £=0 r t-r

Application of the z-transform to both sides yields

8 A. Oppenheim and R, Shaefer, Digital Signal Processing., Englewood
Cliffs, NJ: Prentice Hall, 1975.

9 J,L. Shanks, "Recursion Filter for Digital Processing,' Geophysics,
Vol. XXXII, No. 1, February 1967, pp. 33-51.

100 D.L. Fletcher and C.N. Weygandt, "A Digital Method of Transfer Func-

tion Calculation," IEEE Trans. on Circuit Theory, Jan. 1971, pp. 185-187.

11 C.S. Burrus and T.W. Parks, "Eime Domain Design of Recursive Digital
Filters," IEEE Trans. on Audio and Electroacoustics, Vol. AU-18,
No. 2, June 1970, pp. 137-141.

12 S, Treital and E.A. Robinson, "The Design of High Resolution Digital
Filters," IEEE Trans. on Geoscience Electronics, Vol. GE-4, No. 1,
June 1966, pp. 25-38.
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M=l L-1 -
) az Y(z) = ] bz "X(2)
k=0 r=0 :

or J b2t
Y(z) . r=0
H(z) = xéig = T 1 (2.30)

k=0

Therefore, a recursive filter has a transfer function which is
expressed as a ratio of two polynomials of the z-trané%orm variable.
The objective here is to synthesize the filter from th; given impulse
response of the system. It is important to note that; unlike the
previous three types of filters, this is not an all-pole filter but

|
a pole-zero model. In other words, given some desiredgfilter operator
D(z) (which is the transfer function of a desired systém having the

impulse response dt)’ we require the coefficients A(z) and B(z) of

" the filter
B(z
F = .
(z) Az) (2.31)
such that
-1 -2 -K-1.
F(z)X D(z) = dg +dyz ~ +dyz ~ + ... +‘dK_lz :
Here x_ (as shown in Figure 1) is an impulse.
A technique for determining A(z) and B(z) is outlﬁned next,
- -1 -2 ~Mt+1
A(z) =1 + ajz =+ ayz toee tay q2 | (2.32)
and ‘
_ -1 -2 -L+1
B(z) = bo + blz‘ + bzz + o0 t bL—lz\ (2.33)

where M and L are arbitrary numbers which fix the numﬂer of poles and
zeros respectively for the filter.

T -2
Since F(z)A(z) = B(z), it follows that F(z){1 + alz + a,z +

20




z-l +b -2 -L#l}.

-M+1 ,
se e +aM_lz } {b0+b 22 +... +bL_1Z

1
Since multiplication of z~transforms is equivalent to convolution of
the discrete time series, the series of bt coefficients is equal to

the convolution of the ft coefficients with the at‘coefficients. Or

equivalently,
Mil
b, = a.f .
t j==0 j t-]
By assumption, a, = 1. Therefore,
M-1
= - 20
£, = b, jzl af (2.34)

As bt =0 for t > L (from equation (2.33)), one may write

M-1 - |
£, = - ] a,f R for t > L

j=1 jot=j

If the at coefficients are judiciously chosen such that the response

ft closely approximates the desired response dt for t > L, then

M-1
d_= - a,d_ |
for t = L+1, L+2, ..., K-1, | (2.35)

Next an error series et, which can be added to the right side of
equation (2.35) to make it equal to the desired seéries dt’ is defined.
Thus,

M-1

d = - z a.d +e .
t j=1 jt-3 t

It follows that

M-1
= .d , since a, = 1
St jZO J t=] 0
for t = L+1, L+2, ..., K-1. ’ (2.36)

21



Next, the aj coefficients are chosen in such a way that the mean-squared

error is minimized. 1In particular, (:)/
K-1 2 K=1 M-1

a

I= ] e = 1 []

a._1°
t=I+1 t=I+1 j=0 J *7J

(2.37)
is minimized. By differentiating I of equation (2.37) with respect to
aj and equating the derivatives to zero, a set of simultaneous equa-
tions is obtained. They are given by

M=-1 = K-l

L aj[t=§+ldt_jdt_k] =0 | (2.38)

for k = 1,2, ooo,M-lo
For a realizable filter the numerator polynomial is generally ome

degree lower than the denominator polynomial (if the pohes are simple).

‘Thus
L+1=M, -
Hence, (2.38) reduces to | | ' <:)/
M-1 K-1
jZO aj[tEM de_gdeg] = 0 ‘ (2.39)

which is idenmtical to the covariance equations as given by (2.10). The

right side of (2.10) is zero because

D,= ) 6 ,=0 forj=1,2, ..., M1,
J =M t-] :

The poles for the filter are then obtained by the solution of the poly-
nomial‘equatioh

M-1

It is interesting to note that the poles for an all-pole model corre-

Spond to the identical set of poles for a pole-zero model for the
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same order filter.

Next the residues at the poles (or equivalently, the numerator
polynomial) can be obtained by minimizing the mean-squared error

given by Z{ft - dt}z.
t

It is interesting to note that when the numerator polynomial is
realized directly in‘the form presented in (2.33), the problem re-
duces to the case of the Pade approximation [13]. Mathemati;ally;
Pade approximation results in an approximation of D(z) by F(z) such
that the seminorm ‘

Ip@@) - F@ | = [p@) - F@| + DT - Fr@)|

DL+M-l _ FL+M--l

+oee. + | (1) - Q)| (2.40)

is made zero. Here Dl(l) represent the first derivative of D(z) evalu-
e | ,
ated on the unit circle, and DL M 1(1) represent the (L+M-1)th

derivative evaluated on the unit circle.

2.5 Kalman Filter Theory

Underlying Wiener filter design is the so-called Wiener-Hopf integral
equation, its solution thrdugh spectral factorization, and the practi-
cal problem of synthesizing the theoreticaliy optimal filter from its
impulse response. The normal Wiener filter is derived from the Weiner-
Hopf equation and in general this equation can be solved only in the
steady state, i.e. when the obéervation interval is semi-infinite. The

contirbution of Kalman was recognition of the fact that the integral

13 R.N. McDonough, "Representation and Analysis of Signals, Part XV =

Matched Exponents for the Representation of Signals,' Johns Hopkins
University, April 1963, ‘
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equation could be converted into a nonlinear differential equation
whose solution contains all the necessary information for design of
the optimal filter. The problem of spectoral factorization in the
Wiener filter is analagdus to the requirement for‘solving M(M+1)/2
coupled nonlinear algebraic equations in the M-order K&lman filter.
These equations can be solved numerically for transient type problems,
where data is available only for a finite interval. This, in general,
resylts in the Kalman filters being time-varying. Howéver, in the
steady-state the Kalman filter reduces to the time invériaﬁt Wiener
filter [14]. The presentation by Sorensen [15] expresses the results
of Kalman filter theory in a Qay that makes this compakison easier.
The problem involves estimating a signal s from measured data

‘ {do, dis eeey dK-l}' If the estimate is computed as a linear combi-
nation of the dn’ then

N M-1 ‘

8 = iZO Agd, : (2.41)
The M coefficients Ai are chosen in such a way that th% mean—~squared
error, ’ ;

\
1= ElGs, -8) (s -8, : (2.42)

is minimized. Here T denotes the transpose of the row vector (s, - §h).
This criterion is satisfied when the error in the estﬂmate sn is

orthogonal to the measured data, or

a 14T ] :
E[(sn - Sn)di] =0, for i = 0,1,..., M-1 (2.43)

14 A. Gelb, "Applied Optimal Estimation,' MIT Press, 1974..

15 H.W. Sorensen, "Least-squares Estimation from Gausé to Kalman,"
IEEE Spectrum, July 1970, pp. 63-68.
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This is the discrete form of the Wiener-Hopf equation. Expressed in
a different ﬁay
M-1

E[s d°] = 'Zo A(E[dd]] for 1 = 0,1,...,M-1.(2.44)
1=

T
ni
However, the matrix inversion that is required becomes computationally
impractical when M is large. Wiener and Kolmogoroff assumed an infinite

amount of data (that is, the lower limit of the summation is - rather

than zero). The resulting equations were solved usidg spectral

factorization.

’The basic difference between Wiener—Kolmogoroﬁf theory and the -
Kalman filter theory is how equation (2.44) is solved. In 1955 J.W.Follin
suggested a recursive approach to solve (2.44).~;t is clear (see reference
15. p. 65) that Follin's work provided a direct stimulus for the work of
Richard Bucy, which led to his subsequent collaboration with Kalman. in

the total development of the "state space" approach for obtaining the

filter equatioms.,

2.6 Summary

As outlined above ail forms of the digital Wiener fiiter lead
either to the covariance or the autocorrelation equations. It is
also'interesting that the same set of poles is obtained whether one

models the signal as an all-pole model or as a pole+zero model.
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III. STOCHASTIC METHODS APPLIED TO

SYSTEM IDENTIFICATION

Three different stochastic methods used in spectral estimation
are presented in this section, They are maximum likelipood estimation,
minimum predictor error variance estimation, and maximup entropy
spectral analysis, All three models are considered aé éll—pole models.
These methods have no relationship with discrete Wienerifiltering
theory, The methods presented in this section start with completely
different assumptions but finally yield the identical set of either
covariance or autocorrelation equations which characterize the system
to be identified from the measured impulse response.

In these methods it is assumed that the data samplgs are part
of a random process., The problem is to choose the par%meters of the
system which characterize the given impulse response soias fo make
the probability of occurrence of the actual observation most likely.

In other word§, the parameters for the system to be characterized are
chosen in such a way that the proﬁability density funcdion defining

the pafameters is maximized.

3.1 Maximum Likelihood Estimation Theory | N

In this approach the measured impulse response of ithe system is
considered as a segment of a random process. It is fugther assumed
that the impulse response can be generated by passing an unéorrelated

noise sequence {et} through an all-pole model of the form
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F(z) - WL with £ =1 (3.1
£,z '
i=0
Next the random process is assumed to be Gaussian. The noise
sequence {et} is thus characterized by a zero mean and a variance Oi

Gaussian process. Thus

E{ét} =0 and E{eiej} = 6ijoi (3f2)

As the measured impulse response Xt has been assumed to be
generated by passing the noise sequence {et} through the all-pole model,
it follows that

M-1

Lo fixt-i =e. (3.3)

From (3.2) and (3.3) it is clear that the sequence X is Gaussian with

zero mean and a cross-correlation defined by

E[xixj] =854 ‘ (3.4)

This correlation sequence gi—j would then be a fuqction of the system
parameters fi’*i =0, 1, co.r M-1 and,ci. Since #t is Gaussian, a
Gaussian multivariate probability density functioq is defined for the
sequence of random variables XGaXps e g1 THe maximum likelihood
theory assumes that the parameter values which ma%e the measured ob-
servation of the impulse response most likely are the same values
which maximize the joint probability density func#ion of X i=20,

1, «e., K=1. This can be achieved by differentiating the density

. 2
function with each of the unknown variables, fl, f2, eeey fM—l and ce

and then setting the first partial derivative equal to zero. The
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solutions of the set of equations then yield the valueé for the unknown
parameters, Even though the procedﬁre is conce?tuallyisimple, for M (:)';
greatér than 2 the set of equations becomes extremely mnonlinear and no
exact solution for this problem exists [2].

However, Itakura and Saito [16,17] solved the max#mum likelihood
problem by making some additional assumptions. First,:the number of
data points K is made much greater than M, the order of the filter
(i.e., K >> M). Second, the joint probability density' function for

the sequence xo,xl,xz, censy xKrl is approximated by

p{xo,xl, cee ’XK-].} = [chz]‘K/zexp[—a/ZGez] | (3.5)
where
o= f.x . ‘ (3.6)
t=0 i=0 Tt | |

~ |
It is interesting to note that 0 has the identical form of the error

defined by the autocorrelation equations in linear prehiction (see
equation (222)).

It has been shdwn [16, 17] that the results'obtaﬂned for the un-
known filter coefficients fi are identicél to (2,13) @hiéh utilizes
the autocorrelation equations.

The corresponding equations for the covariance méthod are ob-
tained by defining a conditional density function for%the probability
density. This is achieved by treating the M data poidts Xy xl, ceey

Xy.p @s a set of deterministic initial conditions and the remaining

16 F. Itakura and S. Saito, "Analysis Synthesis Telephony based on
Maximum Likelihood Method," 6th International Congress on Acoustics,
Tokyo, Japan, Aug. 21-28, 1968, C-5-5, pp. C-17-20,

17 F. Itakura and S. Saito, "Extraction of Speech Par%meters based upon
the Statistical Method," Proc. Speech Info. Process, Tohaku University,
Sendai, Japan, 5.1, 5.12 (1971) (in Japanese).

o

28




K-M data points as a set of random variables. Under the above assump-

tions, the conditional probability density function is approximated as

(17, 2]

pc{(xM’xM+l""’xKr1)!(XO’xl""’xM-l)} =

<2noe2)‘°'5<K'M&xp[-a/zci] ‘ (3.7)
where
o = Kil [Mfl £x 1% (3.8)
g=M i=0 T t71

Again it is clear that & has the same form as the error energy defined
for the covariance equations for the case of linear prediction (see
(2.22)). Maximization of the conditional probability density func-
tion is then achieved by maximizing pc with respect to the unknown
filter coefficients fi and Oi. The identical set of equations (see

(2.10)) for the covariance method. is obtained for this case.

3;2 Minimum Predictor Error Variance
In this method the data samples are n§t considered as a part of
a Gaussian process., In other words, the method remains the same as
before, i.e. the measured impulse response is generated by passing a
noise sequence {et} through an all-bole model [2]. It is assumed
that the error sequence is of zero mean and of variance given by
A .

E[ei] = ) ) f
i=0 j=0

E[ ] (3.9)

1f5 BlXe g%y

Next the process is assumed to be stationary so that the expectation

in (3.9) can be expressed as
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Elxe_s%y) = 854 (3.10)

and the error variance as

E[e’] = £.f.g, . (3.11)
t i=0 j=0 1 i J

The problem is to determine the filter coefficienté so0 as to minimize
the error variance.

An additional aSSumption is now made, Specifically, it is assumed
that the process is ergoaic so that the ensemble average E may be
converted to a time average. Hence, the approximation

a1 Kl
8i-5 ~ kK- tZM Xe-1"t-j

=C,, - (3.12)

1]

leads to the covariance equations (2.10) and the approximation

K-|1-3]-1

>
bl Lo

i-j e Xe+| 19 |

t=0

=1y g o ' (3.13)

leads to the autocorrelation equations (2.13). Hence, this method
yields a set of analysis equations identical to those for the dis-

crete Wiener filter.

3.3 Maximum Entropy Spectral Analysis
An important aspect of time series analysis is the computation
of the power spectral demsity which is primarily determined by the

second order statistics. In an actual experiment, the number of -
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data points is always finite. Hence, fof the problem of interest the
data lengtﬁ may not be Sufficient to obtain a specified dggree of
frequency resolution. Also, given a finite number of K data points,
we can obtain at most approximations of the K autocorrelation func-
tions Ty rl, ooy Tp q* In the previous formulations the data has
been assumed to be zero outside the known interval. In some instances,
this may be an unreasonable assumption about the extension of the data
beyond the known interval., The question then arises és to what
assumptions should be made about the data outside the finite sample
and what assumption should be made about their second order statis-
tics (i.e. the autocorrelation), since they determine the power
spectral density.

Burg proposed an information theory approéch to the problem. He
suggested [18] that the most reasonable choice of the unknown auto-
correlations is the one which adds no information or adds most
randomness or maximizes the entropy. He then proceeded to select the
power spectral density having the maximum entropy of all poséible
spectra that agrees with the known values of the autocorrelation

function'ri.
The information content of a random process is defined in terms

of a quantity called entropy and is mathematically expressed as

H=-) P n P, (3.14)
33

where Pj is the probability of the jth event of a random process,

18 J.P. Burg, "Maximum Entropy Spectral Analysis," Ph.D. Thesis,
Stanford University, Palo Alto, California 1975,
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When the random variable takes.on a continuum of values, the sum in
the definition of the entropy is replaced by an integral. Since . <:)'
we are dealing with a time series X xl, sees Xy g the probability
is replaced by the joint probability density function p(xo,x

10 e xKr1)°
Thus

H=- IP(XO’Xl’ ""xK-l) n {p(xo,xl, cens xK~1}dV (3.15)

where dV is an element of volume in thg space spanned by thé random
variables. Burg then proceeded to adjoin a hypothetical variable X
to the available estimates of the autocorrelation funcfion ro, rl,
r2 and so on. We may.then consider the joint probability density

available for the K data points and the adjoined X, as

P(xoxxls LA ] xK_l,xK) ' ' (3016)

This probability density function has an entropy A\\
H = -Jp(xo,xl,...,xK_l,xK)ﬁn{p(xo,xl,..,xK_l,xK)}dV (3.17)

Burg chose as (3.16) that probability density function which has its

first K second order moments as ro,rl, ceny rK—l’ and which under

bthe given constraint maximized (3.17). The obvious choice for the

probability densitybfunction in (3.16) is Gaussian since according

to Shannon and Weaver [19, 20] the Gaussian distribution results in

maximum entropy. Thus

19 C.E. Shannon and W. Weaver, The Mathematical Theory of Communica-
tion. Urbana, Illinois: University of Illinois Press, 1962, pp. 56-57.

20 R.N. McDonough, "Maximum-entropy spatial processing of array data,”
Geophysics, Vol. 39, No. 6, December 1974, pp. 843-851. '
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exp{- % X' [sRK]’lx}
P(XnsXas eoosXp_19%p) = (3.18)
0°*1 K-1°*K 1

{(2m) 5 det [RK] }1/2

where X is the column vector of the X, the prime indicates the trans-

pose, and the matrix [RK] is given by

- \ ]

R = |1 : :

l.’K e & e ° o o ° o+ 5 e o+ » ro (3.19)

The entropy can then be expressed as (19, 201
1 JK+1 v
H = 5 n{(2me) det [R.K]} (3.20)

Now Ty is to be chogen in such a way that H in (3.20) is maximized.
Hence the value of Ty is the one which maximizes det [RK].

In order for r, to constitute a proper set of autocorrelation
values, the matrix [RK] must be positive semi-definite [21]. More-
over, det [RK]vis a quadratic function in tK. .It follows that

maximizing det [RK] with respect to rK-yields the value of Ty obtained

from the solution of the following equation

rl ro * 0o 00 rK-z
T r T

det | 2 1 k=31 .9 (3.21)
Ty Te_peree T3

21 A. Van den Bos, "Alternative Interpretation of Maximum Entropy
Spectral Analysis," IEEE Trans. on Informatioanheory, Vol. 1T-17,
No. 4, 1971, pp. 493~494,
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Next, if an all pole K~1 order model is chosen, then from the
previous sections we know that the autocorrelation functions for
this problem are related by the K unknowns fi as

K-1

gt kgl EeTiex = 05 for j = 1,2, ..., K (3.22)

r

This is identical to (2.23), for fo = 1, The set of ‘K equations in

K-1 unknowns in (3.22) indeed has a solution which is found by solving
the first K-1 equations. The last equation can be séen to be a -
linear combination of the first K-1 equations. Interestingly, the
determinant of the abqve set of equations in (3.22) is identical to
that of (3.21).

Thus it is shown that the extrapolated autocorrelation functions
coincide with those functions which would have been predicted by thé
model of equation (3.22). Hence this procedure is equivalent to the
all-pole model described by the maximum likelihood estimation [20-23]. (:);

Since so far as the second order statistics are concerned, the
sampled data xt may be modeled arbitrarily closely by an all-pole

‘model of order K, we may view the above process as an autorggressive
process with input (white noise) and output (xt) relation of a filter
described by the transfer function [22, 23]. | |

H(z) = —t . (3.23)
K-1 . :

1+ f z-1
121 i

22 D.E., Smylie, G.K.C. Clarke and T.J. Ulrych, "Analysis of Irregu-
larities in the Earth's Rotation," Methods in Computational Physics,
Vol. 13, New York: Academic Press, 1973, pp. 391-430.

23 S.L. Marple, "Conventional Fourier, Autoregressive and Spectral
Methods of Spectral Analysis," Ph.D. Dissertation, Stanford University,
Palo Alto, California, 1976.
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Also
s_(£) = 5,(0) |BGW|° | (3.24)

where Sd(f) and Si(f) are the output and input power spectral density,
respectively. The power spectral density of the process X has been
shown to be [20-23]

§,(f)

S, (£) = — %=1 (3.25)

1+ ] £ exp[-j2rfiAt] 2
i=1

where Si(f) is the power spectrum of the white noise driving the
filter.

Thus, for M = K, identiéal analysis equations are oBtained by
the maximum entropy spectral analysis and by the maximum likelihood
estimation théory; It has also been shown elsewﬁere that this is

indeed so [20-23].
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1V, PRONY'S ALGORITHM AND ITS EXTENSIONS:

In the previous two sections the system identification problem
has been solved as a stochastic procéss. The measured impulse re-
~ sponse has been characterized by a random process. In this section
the approach is different. It is different in the sense that the
noise contaminated impulse response is now represented as a deter-
ministic process. The problem is to determine the poles and resi-
dues which characterize the measured impulse response.

Historically, Prony was the first to make an attempt at fitting
experimental data with complex exponentials. In 1785 Prony postu-=
lated that the basic laws dealing with gas expansion can be ex-
pressed as a sum of exponentials. He demongtrated that, given 2M '
data points, it is possible to fit exactly M exponentials to the
data at thoée pdints; Prony must have experienced great frustration
when he applied his method due to the extreme sensitivity of the
exponent to the accuracy of the measured data. This has been ex-
plained by Lénczos [24]. However, in some cases of EMP problems
the exponentials encountered are complex and they are apbroximately

at harmonic frequencies. Moreover, the real part of the complex

exponentials are much smaller compa;ed to the imaginary parts. Hence,

the damped’exponentials in the case of EMP problems are more closely

orthogonal and, thereby, create less problems with regard to accuracy

24 C,. Lanczos, Functional Analysis. Englewood Cliffs, N.J.:
Prentice Hall, 19 , PP. 272-279.
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than is evidenced in the example by Lanczos. The contamination of
data by noise creates grave probleﬁs for extrécting M correct exponents
from 2M data points. Hence, more data are necessary and a semi-least
squares approach to Prony's method is taken. The details of Prony's
method are well known and have been omitted. The final equation that
ultimately results is the same set of equations that are encountered
in an autocorrelation or a covariance equations of linear prediction.
McDonough {[13] and Van Blariﬁum [25], in their Ph.D. dissertationms,
used the autocorrelation equations (2.13) while Markel and Gray [2]
used the covariance equations (2.10). Thus, the semi-least squares
Prony's method is equivalent to a M-length Wiener prediction filter.
The term semi-least squares has been applied because‘the true least
squares problem would give rise to a set of coupled nonlinear

equations [26].The true least squares problem has been defined as in [26].

4.1 Various Extensions to Prony's Method

The reason for presenting this section is to show that for a
particular extension.to Prony's method a procedure similar to the
pencil-of-functions method is posed in a Hilbert space. Yet each of
them yields a different answer. Hence, it is extremely importént

how a problem is developed.

25 M. Van Blaricum and R. Mittra,"Techniques for Extracting the
Complex Resonances of a System directly from its.Transient
Response; Interaction Note 301, December 1975. (Also in LEEE
Trans. on Antennas and Propagation, Vol. AP-23, No. 6, Nov. 1975.)

26 R.N., McDonough and W.H. Huggins,'"Best Least-Squares Representation
of Signals by Exponentials," IEEE Trans. AC-13, No. 4, pp. 405~
412, August 1968.
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Tuttle [27] extended thé Mth order difference equation encountered
in Prony's method to an M order differential equation but then con- (:) :
fined attention to the single point t = 0, Kautz [28] then extended
the technique to the semi-infinite interval [0,=), 1If avcontinuous
function xt is a sum of complex exponentials, then it can be shown
that ;he various derivations‘of X, satisfy a constant coefficient

homogeneous differential equation

Ml g
] ax =0 with a =1 (4.1)
1=0 i’t o »

where xéi) is the derivative'with respect to t of X, . But if the

data are noisy, then the right-hand side of the above equation is

no longer zero but

M-1
) a,x(i) =e ‘ (4.2)
. i1t t
i=0 \
where et is the error term. Kautz then proceeded to solve for a; <:)/

by trying to reduce the error

©

1= [ e 1% (4.3)
)t A '
0

The exponents sibﬁsed for fitting x,_ are then obtained from the zeros -

of the characteristic equation

.Zbas-i=0 (6.4)

27 D.F, Tuttle, "Network Synthesis for Prescribed Trénsient Response,"
- D.Sc. Dissertation, M,I.T., 1948,

28 W.H. Kautz, "Approximation over a Semi-infinite Interval," M,s.
Thesis, M.I.T., 1948,
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The expansion of X, as a linear combination of its derivatives
is inappropriate if the data it are not everywhere smooth (for example
when it is sampled). Carr [29] extended this technique by integration

of the differential equation (4.1) k times. This leads to

M-1 ,
(i-k) _ . N
iZO ax =0. witha =1 (4.5)
and where
t t
i-k i k
xé | ) . J oo J xi}) (dac") | (4.6)
+o0 400 :
L—rw\/
k times

[Note : The lower limit of the integral is + and not =-*].

and the choice of the lower limit as +w impiies

xéi) (+) = 0 for i = 0,1, ..., M-l T

Again, if the data are noisy, then the coefficients a; are obtained

from the minimization of the function

o0
M-1
[ [ 7 ax3 1% | (4.8)
s o 1t
0 i=0
The exponents s; are obtained as before from the solution of the
polynomial equation (4.4).
It is interesting to observe that this approach is very similar
to the pencil-of-function method as discussed in section VI, For
k = M-1, it is obvious that the data x_ is an element of a Hilbert

t

space spanned by the data and its successive integrals [30]. But

29 J.W. Carr, "An Analytic Investigation of Transient Synthesis by
Exponentials," M.S. thesis, M.I.T., 1949.

30 M.J. Narasimha et al, "A Hilbert Space Approach to Linear Predic-
tive Analysis of Speech Signals, Tech. Report 3606-10, Radioscience

Lab, Stanford Electronics Lab, Stanford University, California, 1974.
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the solution to the s&stgm identification problem by any difference ‘ .
equation leads to a regularized ill—poqed problem which has not been . <:) /
regularized in terms of the poles of the waveform but rather how
close the actual and the measured reéponses ére. This is described
in detail in the next sectionm.

A major objection with all these techniques is that there seems
to be no compelling reason for the choice of a, = 1 rather than ay-1 = 1,
or for ‘that matter the choice of aﬁy a; to be unity. Yet each of
these choices leads to a different set of exponents [13].

This has been explained in great details in reference [13].

40



V. ILL-POSED AND WELL-POSED PROBLEMS OF
. SYSTEM IDENTIFICATION

v The system identification problem is almost always ill-posed. (This
is reflected by the fact that two impulse responses with drastically
different natural frequencies may yield almost identical outputs for the
same input.) An iil—posed problem can be regularized however by imposing
additional constraints on the system.

We begin our discussion by defining the concept of a well-posed
problem along the lines of Tykhonov [31-32] andeavrentiev [33]. 1In
particular, cqnsider the operator equation

| Xh =y (5.1)
where the operator X maps an element in the space H to an element in the
space Y. The problem of solving (5.1) for h given X and y is said to be
well-posed if the following conditions are satisfied:

1) The solution to (5.1) exists for each element in the space Y.
2) The solution to (S.i) is unique in H.
3) Small pérturbatibns in y result in small perturbations in the solution |

to (5.1) without the need to impose additional constraints.

If any of these conditions is violated, the problem is said to be

31 A.N. Tykhonov, "On the Solution of Incorrectly Formulated Problems

and the Regularization Methods," Soviet Mathematics, 4, 1963 np .1035-1038.

32 A.N. Tykhonov, "Regularization of Incorrectly Posed Problems,"
Soviet Mathematics, 4, 1963, pp. 1624-1627.

33 M.M. Lavrentiev,''Some Improperly Posed Problems of Mathematical
Physics," Springer-Verlag Tracts in Natural Philosophy, Vol. II,
Springer-Verlag, Berlin, 1967.
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| ill-posed. It is important to realize that uncertainty in data due ﬁo
measurement error may cause a problem to become ill-posed. Specifically,
this results when a noisy measurement of‘y produces a waveform which does
not belong to the space Y.

‘When (5.1) was introduced, it was assumed that the operator X was
known exactly. When there is uncertainty in X, in addition to uncertainty
in y, the problem is said to be well-posed in the wide-sense provided
condition (3) is generaiized to require that the solution h depends
continuously on bofh X and y (i.e. small perturbaﬁions in botﬁ X and y
should produce only small perturbations in h). For exaﬁple, in linear
ieast-squares problems where (5.1) is a matrix ‘'equation in a finite
dimensional space, the solﬁtion is given by

h=& O xy. | (5.2)

Since the generalized inverse of a matrix does no; depend continuously
on ité matrix elements, the problem is ill-posed in the wide sense.
Interestingly enough, this problem is well-posed in the

narrow sense. If the determinant of the matrix is very small or

the condition number (|[X || ”X.lll) is very large, then the problem
is numerically ill-conditioned [34]. Anothef example of an ill- »
posed‘problem is the integral equation of the fi:st kind.

Hadamard introducedtge notion of a well-posed (correct, properly
posed) problem at the beginning of this century when he studied the
Cauch§ probiem in connection with the solution of Laplace's equation
[32]. He observed that the solution did not depend continuously on the

data. On the basis of this, Hadamard concluded that something was

34 M,Z. gashed, "Some Aspects of Regulariazt%on and A?proximat;on~
Solutions of Ill-Posed Operator Equations, Proceedings of the
1972 Army Numerical Analysis Conference, pp. 163-181.
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wrong with the problem formulation because solutions exhibiting such
type of discontinuous dependence do not correspond to physical systems,
i.e. they do not arise in the study of natural phenomena. Other mathe-

maticians of that time, such as Petrovsky, also reached the same

conclusion.

Mathematicians, such as Hadamard and Petrovsky, reasoned that the
mathematical models associated with the i11-posed problems must be
incorrect. However, today it is recognized that their definition of

a well-posed problem is lacking. In fact, using that definitionm, many

"inverse" problems of mathematical physics are ill-posed. This includes
most radiation and scattering problems in antenna theory.

In order to avoid difficulties associated with the original definition,
Tykhonov suggested that the three conditions be restated differently. 1In
addition to the metric spaces H and Y and the operator X, let there be
given some closed set Hcc: H. We call the problem for the solution

of (5.1) properly posed according to Tykhonov if the following conditions

are fulfilled: -

1) It is required that the solution h exists for some class of data

y and belongs to the given set Hc’ h e Hc.
2) The solution is unique for the class of solutions belonging to Hc'
3) Arbitrarily small changes of y which do not carry the solution outside

the metric space Hc correspond to arbitrarily small changes in the

solution h.

We denote by Hﬁ the image of Hc after application to the space H of
the operator X. Requirement 3) can now be restated in the following

manner,
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The solution of equation (5.1) depends continuously on the right-hand

side y which is a member of the set Hi. <:);>
If Hﬁ is a compact set, the following statemeﬁt holds. If equation

(5.1) satisfies thé requiremeﬁts 1), 2) of a well-posed problem due t;

Tykhonov, then these exists a function a(T) such that [32]

a) o (1) is a continuous nondecreasing function with a(0) = 0.

b) For any hl’ h2 £ Hc satisfying the inequality .d(Xhl, Xhz) < &g,

then d(hl’ hz) <e (e)

Thus the requirement of continuous dependance is satisfied if 1) and 2)

are satisfied.

We note that, if a problem is properly posed acdording to
Tykhonov and we replace the metric spaces H and Y by their subspaces
Hc and Hﬁ, then the problem becomes properly posed in the usual sense.

The necessity of examining spaces H, Y together withEHc, Hﬁ.is
due to the fact that in real problems the errors committed in the (:)f\

-

determination of the right-hand side y, usually lead to y outside of
Hi. The consideration of the problem according to Tykhonov's formulation
gives the possibility of constructing an approximate solution with a
certain guaranteed degree of accﬁracy in spite of the fact that an
exact solution of (5.1) with approximate data either does not exist
at all or may strongly deviate from the "true" solution.
The new set of three conditions may be summarized as follows.
The first condition guarantees the existense of X-l in the sense that
a solution may proceed by choosing a complete basis from the compact

set Hc in order to project y and Xh (for h € Hc) into Hﬁ . The

uniqueness of the solution is guaranteed by condition two. Condition

three requires the continuity of the solution in the space Hc.
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Given an ill-posed problem, Tykhonov has regularized
‘the problem by redefining what is meant by an acceptable solﬁtion.
Basically, the idea is to make constructive use.of the notions
we have with regard to a physical problem by which we determine
a certain class of acceptable answers having more-or-less
acceptable magnitudes and degrees of smoothness. Regularization of an
ill-posed problem need not be confined to the method of Tykhonov.

Various schemes proposed in the literature have involved one or more

 of the following concepts: [34]

a) a change in the definition of a solution

b) a change in the space to which the solution belongs

c¢) a change of the operator X

d) the introduction of regularizing operators

e) probabilistic methods or well-posed stochastic extensions
of ill-posed problems.

Note that it may be possible to regularize an ill-posed problem
with respect to one set of variables but not another. Thus, the choice
of piecewise triangles or piecewise sine functions as a basis for
expanding the current distribution on ?“ antenna by the method of
moments results in a regularized ill-posed problem with respect to theA'
current distribution on the antenna structufe. However, the problem
is not regularized with respect to chatge because the chatfge distribution
obﬁained in this maﬁner is discontinuous. As a point of interest, the
method of moments regularizes an ill-posed scattering or a radiation
problem by the introduction of concepts (b) and (c).

In a system identification problem, the objective is to find the
impulse response h(t) of a linear time-invariant system when the input
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x (t) and the output data y(t) to a system are known. The input-output

relationship for a causal system is described by
: . :
y(t) = J x(t—T)h(i)dT = Xh
0
In problems arising in system identification we are usually certain

(5.3)

of the existence of the function h(t) that appears in the integrand in
equation (5.3). 1Its uniqueness can also be guaranteed. However even if the
solution exists and is unique, eq. (5.3) can have for a specific X a
peculiarity which makes the problem an incorrectly posed one. This
peculiarity arises from the "smoothing" action of the convolution operator X.
This is illustrated with the following example. -

Consider two'continuous‘functions hl(t) = h(t) and hz(t) - hl(t) + C
sin w t. Iﬁ is clear that for an arbitrarily large value of C we can
choose sufficiently a iarge value of w such that the difference between

¥y = Xh, and Yo = Xh. is less in absolute value than any previously given

1 2

(arbitrarily smallj number £, i.e the operator X "smoothes' out a very
intense, but adequately high-frequency component, to an extremely small
level. The presence of disturbances accompanying the function y(t)
makes the problem ill-posed. TFor instance aSSume.that experimental

conditions permit agreement of the measured function d(t) with the

exact function y(t) only to within an error §
max

d -
0ge<o © -y@© ] <4 (5.4)

It is easy to see that if the operator X of (5.3) has the smoothing action

we have described, then we can always find two functions h (t) and h (t)

1
there are at least two different functions that satisfy (5.3) with d(t)

whose transforms v, = Xh., and Y, ='Xh2 both satisfy (5.4). Accordingly
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taken from experiment to within an error §. In fact, there existsan
infinite set of such functions, whose members may differ from each other

by as much as we please. It is in this situation that the "incorrectness"

of the problem (5.1) actually lies.

In antenna problems, the situation is not that severe due to the

highly peaked shape of the kernal (e°jkr/r),

Suppose now the measured function is d(t) = y(t) + e(t) where e(t) is
the noise of the system. The noise is assumed to be a stationary
random process with zero mean and correlation function ¢(T).

The solution of the problem
[~

gys [ =T R AT

(5.5)
is formally obtained in terms of Fourier transforms of the output and
input by means of the expression

00 . t .
3w ~
A (W)
—o0 % )

where the symbol ~ denotes the Fourier transform of the corresponding
function. Of interest is the variance of the function h(t) when instead

of ywe used =y +e in (5.5). The variance is derived in [35] as

o0
GL(&) = -i— ¢(w) dw 5.7

where @ (w) is the power spectrum of the noise. Note for finite emergy

signals that

| )| —>o oo |l —= = | (5.8)

In order that the variance of the solution remains finite, the power

spectrum @(») of the noise must £a11 off sufficiently rapidly as jol->e.

35 V.F. Turchin et al, "The Use of Mathematical Statistics Methods

in the Solution of Incorrectly Posed Problems," Soviet Physics
Uspekli 19, 1971, pp. 681-703. '
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This imposes severe restrictions on the class of processes e(t) that are
admissible as noise. 1In praétice, these conditions are never satisfigd;
since the ndise always contains a background "white noise" component.
Consequently as |W|+*8 the spectrum ;:Cus) approaches a nonzero constant
limit. Then the variance in (5.7) is infinite. Hence unsatisfactory
solutions are obtained when the experimentally found function d(t) is
substituted for y(t) in (5.5). The source of the difficulty is obvious:
the high frequency components of d(t), which grise.from the presence

of noise and which are hot present in‘che true function y(t), produce
large oscillations in the solutionmn.

It is useful to examine the situation needed for (5.5)'to be a
correctly posed‘problem in the presence of white noise. 1In particular,
if 32(@) is a rational function, tﬁe numerator polynomial must be of
higher degree than the denominator polynomial. This.requires in x(t)
the presence of singularity functions such as doublets, triplets, etc.,
all of thch have infinite energy.

The classical Wiener problem ié also ill-posed. The solutiom is
determined from the orthogonality principle, which sfates thai the‘linear
minimam meén square error estimator is chosen to make the error orthogonal
to the data. However, the solution is not unique because, in general,
othef estimatérs which are also orthogonal to the data can be added to
the solution without upsetting the orthogonality condition.

Makimun'likelihood, minimum variance, and maximum entropy spectral
estimation regularize what would otherwise be an ill-posed problem by using

statistical techniques to estimate the solution as opposed to solving for
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an exacé solution. The main feature of a statistical regularization scheme
is that an estimation "rule" is prescribed for the observed data., Given the
noisy data, one simply applies the estimation "rule" 'in order éo achieve
the estimate, The quality of the estimate depends on the goodness of the
estimation rule chosen as well as the accuracy of the a prori knowledge
concerning the statistics of the underlying process. This leads to the
replacement of the exact solution of the equation by an approximate
"regularized" solution. Different strategles, both optimal and sﬁboptimal,
may be suitable for different problems. However, they all result in a
statistical regularization of the problem and, in general, yield estimates
of varying quality,

One disadvantage of the statistical regularization approach is that
considerable a priori.information is usually needed if a particular
strategy 1is to be successfully applied. Nevertheless, the following
advantages hold:

First, the probabilistic approach is.the.natural way to describe
measurement noise which is often responsible for a problem becoming 111~
posed.

Second, the.probabilistic method allows more complete use of previous
experience, by inéluding it in the a prori distributions.

- Third, when there is no such experience, the probabilistic method
still allows one to proceed by making use of extremely weak assumptions
about the unknown processes,

The various techniques discussed in section III describe various
strateéies to regularize in a statistical way the ill~posed system

identification problem,
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The penéil-of-functions regularizes the identification problem by
generating the compact set Hc to which the solution belongs. This is achieved
by introduction of the operator S which integrates a function from e to t.
For a discrete-time system the integral reduces to a sum. The pencil-of-

function method makes use of the simple sequence

" k
nos {a
The sequence 1s indexed on k and Ty = exp (j27§fi) and Ai are the residues.

Application of the operator S on n reduces to
k
o= § AT /(1m0
It follows that {1 -(1- r, )S]*l = {0} o It can also be shown that

the operator S maps the space onto itself while preserving the poles of the

sequence. It 1s because of this factor that the poles and zeros obtained by

this method are extremely stable, reliable, consistent and accurate.
The vectors which span the compact set Hc to which the pole Ty
belongs are generated by successive applications of the operator

(1-¢1- L )S] to v . Note that in thi operator r, is an unknown

i
quantity. The ri's ére obtained from the linear dependence of the spanning
vectors of the compact set Hc. The detailed mathematical derivations may be

obtained in [36}.
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Vi. PENCIL-OF-FUNCTIONS METHOD

A useful mathematical entity arises by combining two given func-
tions defined on a common interval together with a scalar parameter

as

£(t,)) = Ag(t) + h(t) (6.1)

The entity f is called a pencil of functions (as g(t) is not permitted

to be a scalar multiple of h(t))g(t) and h(t) patameterized by A. For
example, if h(t) is composed of
h(t) = A exp(~-st)

and

t
f(t) = L h{t)dt = :sf‘- exp (-st) [for s > 0]

then the pencil Ag(t) + h(t) can be formed. The pencil of functions
is linearly dependent only when A = -s. Therefore, the value of A
can be computed from h(t) and its integral using their inner product,
The main result thus concerning the linear dependence of the pencil
sets is that the parameter Xsétisfy a polynomial equation. Tﬁe de-
tails of this method may be found iﬁ references [36-38]. An added

advantage of this technique is the generation of the successive

36 V.K. Jain, "On System Identification and Approximation," Florida
State- University, Tallahassee, Eng. Res. Rep., ss-1 1, 1970.

37 V.K., Jain, "Filter Analysis by Use of Pencil of Functions: Part

I & II," IEEE Trans. on Circuits and Systems, Vol. CAS-21, No. 6,
September 1974.

38 T.K. Sarkar et al, "Suboptimal System Approximation/Identification
with known Error," Mathematics Note 49, 3 September 1977.
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integrals of the function. So assuming the function itself is in L2
space, then the set generated by the successive integrals forms a
compact set in L2 space. This is how the ill-posed system idqptifica-

tion problem is regularized by converting the function to L Since

2
we are interested first to find the values of A for the pencil, genera-
tion of successive intégrals of the funciton forces the solution to
belong to the compact set spanned by the integrals. That is why it

has been possible to estimate an error bound on the location of the
poleé [36-38].

Another added advantage of fbrmulating the problem thié way 1is
that the effect of conventional filtering can be greatly reducedf This
could be achieved not by forming successive integrals of the functions
(1/s) but rather successive smoothing of. the function by passing it
through a band.pass filter [(as + b)/(cé + d)]. The integrator is then
a special case of a band pass filter for a = 0 =d and b = 1 = ¢. This
could increase the frequency resolution of the identification technique.

- Moreover? as the poles ére obtained from a polynomial equation
whose coefficients form the minors of the Grammian of the pencil of
functions, noise corrections can be done easily, Thus, in order to
make the estimate of the poles unbiased the entries in the gram—-matrix
can be altered in a systematic way to yield an unbiased estimate for
the poles [25,26].

As an example consider the transient response of a conducting
pipe tested at the ATHAMAS-I EMP simulator. ’The.éonductihg pipe is
10 m long and 1 m in diameter., Hence, the true resonance‘bf the pipe

is expected to be in the neighborhood of 14 MHz. Also, the pipe has
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been excited in such a wa? that it is reasonable to expect only odd

harmonics at the scattered fields. The data which have beén measured
are the integral of the E-field and hence is available in.terms of a
voltage. Thus, in addition to the frequencies of the conducting pipe
one should also observe a very dominant low freﬁuency pole, The same
transient data as depicted in Figure 10 of reference [38] is used for

analysis. The results for a fifth and a seventh order system are as

follows:

For n = 5, the poles in radians/sec are

(=0.0029 + 3j0,083) x 10° (=13.33 MHz)
(-0.0428 + §0.217) x 10° (=35.20 MHz)
(-0.0098 ) x 10° (= 1.56 MHz)

For n = 7, the poles in radians/sec are

9

(-0,0058 + j0.084) x 10 (=13.40 MHz)
(-0.0270 ¥ §0.219) x 10° (=35.10 MHz)
(=0.0270 + 30.550) x 107 (=87.60 MHz)
(~0.0012 ) x 10° (=0.19 MHz)

It is interesting to observe that the real pole due to the in-
tegrator has been obtained. This pole is a very dominant pole as the
data have been recorded after it has passed through an integrator.
The above results display a dynamic range of approximately 1000:1 for
the values of poles of the conducting pipe.

Next the data were differentiated to get rid of the undesirable
dominant pole of the integrator. The differentiation was done numerically,

For a fourth and a sixth order system the above results have been
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recalculated as follows:
For n = 4, the poles in radiaps/sec are
(<0.0026 + 30.086) x 10° (=13.70 MHz)
(-0.0480 + 30.235) x 10° (=37.47 MHz)

For n = 6, the poles in radians/sec are
9

(<0.005 + 30,083) x 10 (=13.23 MHz)
(=0.034 + §0.221) x 10° (=35.59 MHz)
(=0,071 + j0.406) x 10° (=65.9 MHz)

Here the convergence in the location of the poles has been obtained
with only fdﬁr poles.' Also, there seems to be a good agreement in
the pole locations obtained from the original integréted‘data and
the numerically differentiated data. It is also interesting to ob=-
serve that indéed the poles are occurring approximately at odd
harmbnics of the fundamental. Hence, the pencil-of-funcitons method
does provide‘stable, reliable, consistent and accurate Qalues of
poies from noise cop:aminated measured responses of electromagnetic
systems. |

In Figure 2, the true numerically differgntiated data is
plotted against the reconstructed response of a sixth order system.-
The plot has been normalized to unity Amplitude. It is:interesting to
note that there is a close agreement even in the very early times of
the two waveforms.

Finally, it would not be too much of an exaggeration to point
out that ﬁo the best of the authors' knowledgé, so far ho other
technique has been able to obtain such stable, reliable, consistent
and accurate values of poles for this measured waveform for such low

order systems.

54




[l

o

o

r'al

S . Llll‘lllllL]lllllLIlll!l‘!iLI‘LIll]l!LlLlll

experimental data

! N\ - - - - - - reconstructed response
\ ‘
\

lllQL‘LIll‘llll‘lllllllll"llt‘llll

llll‘llll'llll‘l[lllllll‘
l‘!TII‘llrI‘lllﬂ'Tll!lllllllll!‘l!llll\ll

llllll‘ll‘l!“‘ll?

T T TT T[T T T T T T T T T T 1
c. 1.7 23.2 3%.0 16.7 8.3 At 'sx.s 33.2 UL 117,

Time in nanoseconds =

Fig. 2. True Response Vs. Reconstructed Response of a Sixth Order System for
a 10 m Long 1 m Diameter Conducting Pipe.
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VII. DISCUSSIONS

The presentations of the previous sections demonstrate that the
use of a proper mathematical model is extremely important in regu-
larizing an ill-posed préblem. It has also been showﬁ that the
pencil-of-functions differs radically from the other existing schemes
of finding poles and residues of a finite length noise contaminated
record. It is because of the use of a completely different'regu-
larizing scheme that.the error bounds on the location of the poles
was possible. This is why reliable, consistent, stable and accurate
results for the poles and residues bas been obtained fﬁr this method.
Thus, the pencil-of-functions method shows a great promise for the
analysis of poles and residues from measured transient responses of

a finite-size conducting body in free space.
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