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ABSTRACT

A proof is given that, for a broad class of perfectly con-
ducting scatterers, the patch zoning method for numerically
solving the magnetic field integral equationvprovides a
uniformly convérgent sequence of approximate solutions for
which the error can be bounded by an expression that tends
to zero. The method of proof emplojs well-known techniques
of abstract operator approximation theory. These techniques
are applicable to the 5atch zoning method when a suitable
Banach space is defined which includes both the class of
solutions and the class of forcing functions appropriate to

the electromagnetic scattering problem.

Fork started at TDR, Inc., Los Angeles, CA 90049




ACKNOWLEDGEMENT

I would like to thank Maurice Sancer for his contribﬁtions
and direction during the early stages of this investigation
and for his helpful remarks on the final version. Thanks
alsq‘goes to Nasd Varvatsis, for critically reviewing the
manuscript, and to Oliver Gross and Fred Dashiell for help-

ful discussions.




SECTION 1. INTRODUCTION

The patch zoning method for numerlcally solving the magnetlc
field integral equation -(MFIE) may be motivated by standard
algorithms for performing numerical integration. The
author's experience with this method has shown it to be a
viable tool for predicting surface cuirent densities on
perfectly conducting metallic~bodiesvilluminated by an
eléctromagnetic field. The aim of this note is to show

that, for a broad class of scattering surfaces; the patch
zoning technique provides a sequence of apprcximéte solutions
which converge to the exact solution of the MFIE; details of

the technique as applied to the MFIE may be found in
Reference 1.

The proof of convergence will be based on the theory of
collectively compact operator approximations [2]. We will
cast the integral equation and the patch zoning approximations
to that equation into the framework of this theory and thus
establish the convergence of the patch zoning method. In
addition, this abstract thedry of operator approximation will
permit us to place an upper bound on the magnitude of the
difference between the approximate and the true solutions

to the MFIE.




. ' SECTION 2. PRELIMINARIES

For a perfectly conducting scattering body of the type to be

considered in this paper, the magnetic fleld integral equation
for a glven wavenumber k takes the form

[(I-L)3) (¥) = J(¥) —'/S‘«R(;,?')j(r')'ds' = 20 () x HPC (D) (1)

where fA(Z) is the unit outward normal at r, HIPC(F) is the
1nc1dent magnetlc field, J(r) is the unknown tangentlal vector
at * and '
iK|E-F'] ., > o a > > > >
LE, 33 (cry = & Gklr-r'[-1)n(x) X [(x-r"') X J(')] (2)
21| z-%" |

The proof of the convergence of the numerical solution of
Equation (1) will be based on a number of assumptions about
the types of bodies to be considered_ We now list all the’
properties of a perfectly conducting body which will be
explicitly used. These properties‘are’satisfied by a large

class of interesting bodies including continuously, twice
differentiable surfaces of convex bodies.

Assumption 1: The surface of the body, S, is simply connected,
bounded and has a finite surface area.

Assumption 2: ‘n(r) is well defined at each point of S. 1In

addition, for any two points ?1 and ?2 of 5, we have that
ﬁ(? )~ﬁ(§ ) = I; 2lT(rl,r ) where T is a continuous function
of both 1ts parameters except at r2 ;1 We will assume that

|T| is bounded as r2 approaches' rl.
Assumption 3: We can introduce an orthogonal coordinate system

(e;, e,)) on S such that their corresponding unit vectors él



and 82 are well defined and continuous except at a finite

number of points P, - We will choose our orientation such

that &, X &

_/\
1 2 = D

Assumption 4: For each pair of points ;l and r., of S with

2
> > . . > > - )
Ty F r,, there exists a point r, +'r1 on S with

I;l-;B' < |;l—;2| and (fl-;z) parallel to the plane tangent to

S at ;3. In,addition,'given €>0 there exists a §>0 such that

for all ;4 with [;2—;4]<6 there exists an ;5 with the

properties |§5-§3l<c,I;l~?5]<|§l~§4| and [;l-§4l parallel to
the plane tangent to S at ?5. |
In Appendix A we willyuse these assumptions to analyze the
functional form of ﬂ(;, ;')3(r'). This in turn will be used
in Appendix C to show that(LE)(?) is continuous when [3[ is
bounded and f| {(¥,2')J(¥')|dS' exists. Since (I-L)J would
therefore have the same discontinuities as 3,‘the only

bounded absolutely integrable solutions of (I—L)3 = 2f x AC

for continuous H*1P° must be continuous. We may thereforg
restrict the domain of L to C(S), the set of continuous
tangential vector fields defined on the surface S. Cc(S)

becomes a Banach space by introducing a uniform norm
> > A '
gl = max |3 .3
r
This in turn induces a norm on the bounded operators qf the

‘Banach space; namely,

Rall I1§Tisl ot )]




SECTION 3. PATCH ZONING

In Appendix A we will show that the 1ntegrand of our operator
equation is of the form

';_;l , (5)

where v(r r ') is a unlformly bounded function of - its arguments.
In addition, if f is piecewise contlnuous so "is V. " With this
in mind we will motivate the patch zoning approximation to
the integral operator. In Appendix B we w111 show that

this approximation is convergent.

A standard scheme for numerically calculating I= f f(e)de is to

divide the interval [a,b] into m segments, q » and
approximate I by ’

m .
£(e.) de - o
iz=:1 l,/;i : (6)

where e is the midpoint of the ith interval. If f(e) is of
the form B

le-5571 N )

we should modify Equation (6) to avoid the convergence
difficulties imposed by the singularity. We choose .a product
integration scheme based on Riemann—-Stieltjes integration

to approximate the integral; namely



| . 1/2
J[if(e)de =J/ég(e)d[§gn(e—égg) Ie—igg‘ J
~Zg(e )[ [sgn(ejl;-lz) |e- a+b| } (8)

This concept has a naﬁural extension to multiple integrals, and
we use.this extension to define our patch zoning method. We
partition the surface into N zones, S + by an algorithm such
that the diameter, d i)’ of each zone tends to zero as N
increases. We then form the approximate operator L J as follows

N
N co 1 >,
. z:d/' exp (ik|r-r |)(ikl§"§[*l%
N | i=1 Si( > > 13

21| -7
R(r) x [(Z-7') X 3(?)}) das’ (&)
where
JiED = (28 )1 & (F) + [F(£5)-8,(E;)18,(E)  (10)

and ;i is some central point of the ith zone.

To minimize the number of discontinuities introduced by the
patch zoning method, we will make all the singular p01nts~
of the coordinate system lle on zone boundaries.




SECTION 4. CONVERGENCE OF THE SOLUTION

The approximations, LN' to the magnetie field ‘operator L
were defined in the previous section. We will now state three
abstract theorems about collectively compact approximations

to an operator (Theorems 1.6, 1.9 and l.li of Reference 2)

and use these theorems to show that these approximate operators
define a sequence of approximate solutions to the MFIE

which converge to the true continuous solution if one exists.

Definition: ‘A sequence of operators KN mapping a Banach
space, X, into itself is called collectively compact if it

maps the unit ball in X onto a relatively compact subspace
Of Xo . 4

Theorem 1: If K is compact, {KN} collectively compact, and
KN+K,then (I—K)—l exists if, and only if, for some n, (I—KN)'—'l
exists and is bounded for all N>n. In that case ‘

(I—KN)‘l > (1-K)"1. '

Theorem 2: For K and K, as in Theorem 1.

N
|1 (kg=K) K|] ~0 | o (11)
Theorem 3: For K and KN as in Theorem 1, we write x = (I—K)’ly,
- : -1 :
Xy = (I-Ky) ly and Ay = || (I-K) II-II(KN-K)KNII. Then for

all N>n (same n as in Theorem 1) the error in the apprbximate
solution is bounded. The bound is given by



@07 (1xgrxe |1+ 1 1)

Hxg-x|| < 1-a, (12)

Note: The convergence of Xy to x follows from Theorem 1 and
the existence of (I—K)“l; Theorem 2 established that AN
tends to zero; and therefore, the assumption that KN4K permits

Theorem 3 to bound the error by an expression which tends to
zero as N increases.

-

Since Appendices B and C show that the assumptions of Theorems
1 to 3 met by L and LN’ we have shown that the sequence of
approximate solutions converges to the unique continuous
solution if one exists. It remains to describe the method of
'solving the approximate equation. If we set

F @) = 280 x B + 3 @) | (13)
N NN

then 3N(§) is completely determined by its values at the

central points of the zones. We therefore restrict r to these
points to obtain the matrix equation

-

I-A. -B J .8 -&_.pinc
N N N "1\ 2 R 4
5 (r.) = 2 i v(r.) , (14)
-C 1-D J. & 1 &_-jtne 1
N N N 2 1 '
. N -> Vss -> .
where AN.— el(;i) (LNel)(ri)
”~ -> I >
By = €p(ry) - (Iyey) (ry)
‘ (15)
o~ " -»>
CN - ez(ri)'(LNel)(ri)
A -> A ->
DN = ez(ri)'(LNez)(ri)



The separation into surface coordinates is possible since we

‘ >
may restrict each r,

to S—{pi}. Equation 14 is the scheme

actually used for the numerical solution of the MFIE via

patch zoning and, by
to the value at each
approximate integral
> N .

{r;} is certainly no

entire surface, thus

construction, its solution is identical
of the ;i of the soldtion to the
equation. The maximum error on the set
greater than the maximum error on the
leading to the conclusion that:the

numerical solution converges along with the approximate

solution.
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APPENDIX A. BEHAVIOR OF f{ (Z,%')

In this appendix we will disCuss the nature ofvthe discontin-
uities of the integrand of the magnetic field operator L.

Our intention is to prove enough to show that L maps
uniformly bounded,integrable, tangential vector fields into
equicontinuous tangential vector fields. This property of L
will be used to show that L is compact and that {L } is
collectlvely compact.

We begin by showing that £(r,r')J3(¥') can be written as
> > :\;(;-r*') > .
L, t)3 () = ——+t—= for r'#$r (A-1)

where v is a bounded véctor fieldq, necessariiy taﬂgential at
f, defined everywhere except‘z' = ¥. The continuity parts
of assumptions 2 and 4 will guarantee that for fixed ;’,'3‘

is continuous in §.,AIn addition, for fixed ?, v will be
continuous at r' if J is continuous at r'. To do this we must
evaluate §(%,%') where g(r ') = A X |(E-F) x Fxr )] This

trlple product can be expanded to give

> o

g(X,T") = [AE)-FEIE-F)-1AE) . & )13 () (A-2)

From assumptions 2 and 4, and from the fact that n(r ) J(r )=0
we have '

il

AEFENTE-TY) = (AE-AE)1-IE N |- 2@

-

= [2-E Iz[?r*(r,'r*"%a(f')]?:(?“) (-3

11



> '
But T is contlnuous in ¢ and r' as 1s t, prov1ded that r'+r-

hence, the result is continuous in r And, if J is continuous

at r', so is'the resultant first term ef‘the right-hand side
of Equation A-2. '

Similarly, we have for the second term

B GENT 6 = |33 (- RED1-EEM)IE

|t f'lzﬁ(r’,f")-’t(?")w(r)
l' (A"4)

L

I
l"Hr
P'Hr "Hr

where, by assumption 4, the leading coefficient of the result
is less than or equal to unity. -The continuity with respect
to T and *' follows exactly as with Equation A-3.

Combining Equations A-3 and A-4'and their ensuing discussion,
we find that we ‘have proved our assertlons about v. Since the
continuity of v w1th respect to T was 1ndependent of the
continuity of J the above analysis of that continuity is
equally valid for LNJ. In particular we have shown tha@ ;

->

VELTY) 2 ﬁ‘i—‘il‘(max[?l) 131 @5

e A :
and therefore by assumptlon 1 Jf¥i£—£~)ds' exists.
r=r' | :

12




APPENDIX B. CONVERGENCE OF L J to LF

In this appendlx we prove that for any element J of C(Ss),
II(L-L )J[] approaches zero as N approaches infinity; that is,
given €>0 AN, such that VN>N [[(L—L )J||<e. Our procedure
will be to divide the surface S, into disjoint surfaces S and
Oe' where O is the union of open discs about the Py .We
then estlmate the magnltude of the integral of f(L—L )J[ over
each surface.

Recalling the rule from analysis that the magnitude of a sum
is less than or equal to the sum of the magnitudes, we have that

H(LL)JIIZ—maXZ_/E: If(r ')[3&*') -3 (E )] |as'

+ EZJ/;,“)Iﬁ(r r' )[J(r )-F, u:)]gds'

(B-1)
We now proceed to show that each of the sums on the right-
hand side of equation B-1 may be bounded by e/2.
One can show, via the triangle inequality, that
|3ED-F, @) IsITEO+ITED 2113 (-2)

The estimate of Equation A-5 then shows that it is possible
to choose 0E so small that, independent of ;, the magnitude of
the second sum in Equation B~l is less than e/2.

We now show that it is possible to pick N0 so large that the
first sum in Equation B-1 is also bounded by €/2. By our




construction of S we have that r' is bounded away from {p 1.
This guarantees that J, él and e2 are uniformly contlnuous on

Se’ and hence for fixed n it is possible to choose d so

i(N)
small (N so large) that |J(r')-dJ(r, ;) l<n, and |J (F')-3 (¥, i) lsn
for r' in Sémki. But ‘

3@ - T, @ 12F@) - FE)| + 13;(®) - FE) |s2n (8-3)

Hence, by Equation A-5 it is possible to set N0 sufficiently
large to guarantee the required bound for the first sum of

Equation B-1, and we have proved what we set out to prove.

14



APPENDIX C. PROOF THAT {LN} IS COLLECTIVELY COMPACT

In this appendix we prove that {L } is collectively compact.

By the definition of collectlvely compact we must show that

{L } maps the unit ball, B, of our Banach space, C(S), onto

a relatlvely compact subset of C(S) We will use the

‘Arzela Ascoli Theorem to show that {LNB} is relatively compact.

We recall from Appendix A that AL(r,r')3(¥') = v(L,T )/lr—r'l
where v is bounded and is continuous as a function of ¥ over
any set excluding T The modulus of continuity is proportlonal
to [IJII and on compact subsets of S can be bounded without
regard to any characteristics of J other than its max1mum
magnitude. With this in mind, we proceed to show that {L B}

-

is equlcontlnuous.

Consider |(r,J) (x)) - (Lyd) (£,) |- We have

B e G A
V(rl.r ) V(rz.r') ‘
| (L J(r ;-n x| = f - —=*——Jas'| (c-1)
r —r'l |r2-r'] -

To prove that its magnitude is less than any preassigned ¢
for. sufficiently close ;l and r;, we partition S into disjoint
sets O¢ and Se where O¢ is an open disc centered at ;l' We

choose o, to be small enough to guarantee that

> e P I ' v ’ -
f Iv(rl,r')l N IV(rz,r')l as' <eg/3 - (C-2)
%\ 11,7 7,72 | .

This will always be possible since v is a bounded function of
its parameters.

15



It remains to show that the integral over'Sebcan also be made
less than 2¢/3.

’ x“?('r’l,'r") V(Z,,T") ’

§ ¥

f > >, S >, ds
S_ ]rl~r4| |x,-x*| L (C-3a)

(Z -1 -2 -2 D3E, LT v@E,, 20 =330
- 2 17t 1t 1 2 :
o > > > > + > ds'f (C-3b)
s (JE,-2]) (|7 -2 2 ,-3 |

sf : 6 3 ds' + ﬁ 3 ds' (C-3c)
Se 172 e 5 .
where § is the minimumvdistance from ;l to S , and 6 is the
minimum distance from T, tos_. If we assume that r, is

2 € 2

contained in OE,then 61 and 62«are nonzero. For sufficiently

small ;2-;1, the first integral of C-3 can be made less
‘than €/3 by virtue of the factor |r —+é| The second integral
can also be made less than g/3 by virtue of the continuity of

v with respect to its first parameter.

We have therefore shown that L J is uhiformly continuous in
a manner which does not depend on N or on any characteristic
of J other than [IJ[|<1. By the Arzela Ascoli Theorem, a
uniformly bounded, equicontinuous set of functions is
relatively compact with respect to the Banach space of
continuous functions and hence {L } is collectively compact.

'Since our proof is equally valid for L, we find that L is
compact.

16
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