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Abstract
An improved Prony algorithm is described which produces a lower sum
of squares of residuals than the usual Prony Algorithm. Indeed, the new
algorithm produces the lowest sum of squares of residuals possible. A
simple numerical example is used to compare the new and old algorithms.
Within the context of the new algorithm, a technique to constrain poles

is also described.
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1. INTRODUCTION

The decomposition of a function into a sum of decaying sinusoids;
that is, exponential analysis, can be a useful tool for the analysis of
measured data, and for the rational-function approximation to frequency-
domain data. The most popular algorithm for exponential analysis is a
modification to the original algorithm established by Prony in 1795 [1],
[2]. It is not the purpose here to justify exponential analysis; rather,
we use this note to document several improvements to the modified'Prony
algorithm which results in better "fits" to data.

It is always possible to exactly fit 2N, finite, equally-spaced
data points with N decaying exponentials; indeed, the original Prony
algorithm will do this. Modification to the original algorithm is necessary
where a finite sum of exponentials is desired and the number of terms is

less than required to exactly fit the data. In this case, one looks for a
"best'" fit.

Other modifications are necessary to force (constrain) a subset
of the poles to have specific values. For example, if it is known that

certain poles are present in the data, then these poles can be forced to

occur.

In order to illustrate the advantages of the new algorithm, we
first describe the usual Prony algorithm and then proceed to derive the

new algorithm. We also include a method to constrain poles.
2. CONVENTIONAL PRONY ALGORITHM

Like Dudley [2], we view the problem of exponential analysis as
one of system identification. Accordingly, it is assumed that the system

model is defined by a difference equation which has a polynomial as




solution. The variables in the polynomial are related to the desired expo-
nential coefficients.

The actual data, when substituted into the model, does not in
general satisfy the difference equation, but results in an error or residual.
The coefficients of the difference equation are found by minimizing the

sums of squares of these residuals.

Let the model difference equation have N coefficients, resulting
in an (N-l)th order characteristic equation and N-1 Prony poles. When the
data are substituted in the difference equation, the following equation

results

Do =3¢ (1)
where D is an MxN matrix of equally-spaced data (in general, M>N),

’& is an Nxl vector of coefficients,

¥ is an Nxl1 vector of residuals.

We desire to find the solution & which minimizes the sums of squares of

the residuals; i.e., minimize the inner product (g g}

From equation 1, this inner product is
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Here A is the NxN matrix of the resulting quadratic form.

>
Obv1ously, a trivial solution to equation 2 is u— 0. In order

to obtain a non-trivial solution it is necessary to constrain a. The common

Prony algorithm imposes the constrain oy =




To proceed, we addend the constraint (aN-l) with a Lagrange
multiplier (A) to equation 2, and equate the derivatives with respect
to oy and A to zero. Of course with the trivial constraint Oy . 1, we
could immediately reduce the dimensionality of o by one, and equate the
partial derivatives with respect to the remaining components of o to zero.
We also note that additional constraints, such as those constraining poles,

can also be addended by additional Lagrange multipliers.

3. NEW PRONY ALGORITHM

. . » _). . . .
It is important to note that the vector o contains the coefficients

of the characteristic polynomial. Since we are interested in the roots of
- : 3 ] 3 ) + 3 . - -
this polynomial, the direction of the vector o is the important criteria,
0 . . - + -
and not its magnitude. - In other words, once the proper direction of o is

determined, changing its magnitude will not alter the roots.

As was illustrated in the previous section, the common Prony
algorithm searches for the direction of o which minimizes the quadratic
form of equation 2, while constraining the tip of the o vector to be on
the hyperplane oy = 1. Obviously then, in the search for the minimizing

-). - 3
o, all directions cannot be covered.

. > . . .
A much better constraint on the o vector is to constrain the tip
> . . .
of the o vector to be on a hypersphere. In this case all directions are

covered. Indeed, it is easy to see that such a constraint is the best of

all possible since there can be no other direction which will yield a lower

value for the quadratic form of equation 2.

The hypersphere constraint was mentioned by Golub in a private
communication to Dudley [2], in the context that this constraint gave
> . P
equal weight to all components of a, rather than stressing a single com-

ponent. It was not pointed out, however, that this constraint will yield




the lowest possible minimum. Furthermore, the constraint was dismissed

as being nonlinear and not particularly easy to apply.

A review of quadratic forms [4] indicates that the hypersphere
constraint is about as easy to use in practice as the hyperplane constraint.
For convenience, we choose a unit radius on the hypersphere, so that the

constraint takes the form

N
Zuiz-1=o. (3)

i=1

We wish to minimize equation 2 subject to this constraint.

Using the Lagrange multiplier A, we minimize

>T - 2 2 2
o A a-A (a1+az + .. ..+uN-1)

Accordingly we equate the partial derivatives with respect to the components
-> . F—

of o to zero; that is,

=T

o
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- . = 0; = e
3“1 Ao Zkal i 1, N (4)

But it is easily shown that

2 o
3o, &
1

>
Ao = 2(ailu1+aizu2+...., a

so that equation 4 is

Ad-2=0




In other words, the A values are the eigenvalues of matrix A.

At this point, we note that equation 2 is a non-negative, definite
quadratic form, due to the nature of (3, g). Thus the eigenvalues of matrix
A are all positive (20). Furthermore, the associated quadric surface is

ellipsoidal.

Now multiply each member of equation 4 by oy and add all the

equations; the result is

N
:E: oy A a - ZA(a + 22+ ...+aN2) =0 . (5)
i=1 1

H

It is easy to show that the summation term is

N
T
E oy 9 A 3 2 & A a
i=1 so‘i

Therefore, in light of the unit hypersphere constraint, equation 5 reduces to

T Aad-r=0. . - (6)

We have thus arrived at the following conclusions:

->T - . ]
1. The extremes of o A o, subject to the constraint
>
|a| = 1, are equal to the eigenvalues of matrix A.
The lowest extreme (minimum value) is therefore.

).

-equal to the lowest eigenvalue (Amin



g o

> . - . .
2. The vector a which causes this minimum value is the eigen-

vector corresponding to A . .
P g min

3. Simultaneously in finding Amin’ we have found the minimum

value of the sum of the residuals squared.

Therefore, to solve the original minimization problem, we find the eigenvalues

of A = DID and the eigenvector corresponding to the minimum eigenvalue.

We note that the appearance of zero eigenvalues is correlated
1 to 1 with the rank of matrix D. That is, if the rank of D is N-k, there
will be k zero eigenvalues (with unique eigenvectors). The appearance of
small eigenvalues is thus associated with the order of the system, i.e.,

the number of exponentials.
4, CONSTRAINED POLES WITH THE NEW ALGORITHM

In the previous section, the coefficient vector o which minimized
the quadratic form &T A O with the constraint |&| = 1 was determined. The
purpose here is to illustrate a method to determine the vector o which
minimizes the quadratic form under additional linear constraints. 1In
particular, these linear constraints result from substituting specific

poles (x) in the equation

X + ... +0 =0. (6)

Complex poles result in two, real, constraint equations; however, for two

conjugate complex roots, only two equations are necessary.



([)s In general, if there are K<N constraint equations, the lineat

constraints have the form
> v : )
(ck,u) =0 ; k=1, 2, ..., K.

N . ‘
The vector o, then, must lie in the intersection of the K planes which are
orthogonal to the vectors Ek.

The idea is to find a new set of orthonormal coordinate vectors
. -
such that K of them span the space occupied by the vectors Cre We then
perform a coordinate transformation on the vector o with the matrix formed

by this new set of orthonormal vectors. If this matrix is designated by

B, then the transformed vector'& (designated %j is
> > -1
B=Ba=>a=8"%

Thus, in the new coordinate system, the quadratic form is

->T >
o Aa

@B AR | ' Q)

el astE - /

Since B is formed from orthonormal vectors,

so thdt equation 7 can be written

T AG =2 BABE . (8)



In the new coordinate system, the constraints take the form of
zero coordinates; that is, the vector § has K zero components. Therefore,
a new quadratic form can be determined by setting the 15t K rows and

columns of BABIT to 0. The eigenvalues of this new submatrix are determined

b4
and the minimum found together with the corresponding eigenvector. This
eigenvector is then re-transformed back to the original coordinate system,

and the roots of the associated equation found.

In order to implement the above procedure, we must find the
matrix B. Designate the vectors of B by b. One way to find the b's is

as follows:

Let b, = ¢
et b; = ¢,
Then, another vector can be formed as a linear combination of 31 and 32;
i.e.,
b, = do,+ ¢
2 T 94T %

Furthermore, 31 and gé must be orthogonal; therefore

> > > > > >
(b,,b,)) =0 = d(cl,cl) + (cl,c
> >
(cl’cz)

PSR
(cl;cl)

1 2) 2)

=>d=

Thus, %2 is known. Similarly a Srd and higher order vectors can be found;

i.e.,
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> >

(b;sbg) =0

>

(bz’bs) = 0 2

and e and f can be found.

In this way, K orthogonal vectors can be found which span the
space of the Zk's (constraint space).

The set of b's must be completed by the addition of N-K orthogonal
vectors so that the complete set spans the space N. Again, one method to
do this is as follows:

The additional vectors are determined by the relations

> o>

(bl,bi) =0

> > ‘

(bZ’bi) =0 i=K+1, K#2, ..., N
> o>

(bi-lbi) =0

These relations must be successively solved for the components
of gi starting with i = K+1. In general, the set of'équations are under-
determined, so that N;i-l of the components are arbitrary. Of these arbi-
trary components, N-i-2 may be set equal to zero, which will aid in the

solution process.
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When all of the vectors b have been determined, they are normalized

by dividing each by its magnitude. The matrix B is then formed using these

vectors as rows, i.e.,

B = . constraint space

5. SOME NUMERICAL RESULTS WITH THE NEW ALGORITHM

In order to compare the new algorithm with the old, a computer
program was written for both on a DTC microcomputer. To compare the two
methods, a data set of 20 points was generated by contaminating the function

£(t) = e F 4 e %t

with random noise. The resulting data points are plotted in Figure 1.

As can be seen from this data, the noise level is very high.

Table 1 is a direct comparison of the sum of the squares of the

residuals between the old and the new methods for various extracted poles.

As expected, in every case the new method '"fits'" the data better than the old.

Table 2 is another interesting comparison. Here, the sums of the
squared differences between the original data and the "fitted'" exponential

model are shown. Householder [3] has proposed this criterion; however, in

12



order to determine the poles, an iterative sequence seems to be necessary.
The new algorithm also tends to fit the data better with this criterion;
however, it does not always do so. This is a clear demonstration that

this criterion and the sum of the residuals squared are not the same.

13
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TABLE 1

'SUMS OF SQUARES OF RESIDUALS
' SUMS

01d
Algorithm
- 1.49871
1.16492
.885874
.470922
. 330947

TABLE 2

SUMS OF SQUARES OF DIFFERENCES

01d
Algorithm
1.83369
1.34773
1.48551
1.98595
.673739

15

New
Algorithm
1.393

.951039
.642379
.36817

.237466

New
Algorithm
1.63449
1.57332
1.59467
1.54028

40347



6. CONCLUSTONS AND RECOMMENDATIONS Q

A reasonable simple scheme for implementing a new Prony algorithm :
has been devisaed. The new algorithm yields a sum of squared residuals equal o

to or lower than the usual algorithm.

A computer program using this algorithm should be written for a
large digital computer, incorporating the pole constraints. The effects of
noise, and the use of various smoothing and filtering schemes can then be ?

determined.

. O
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