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Abstract

Three pole and residue calculation techniques are compared
by applying the methods to simulated data. Each method works well
when the data consist of a damped sinusoid plus noise. But when
the data include effects from pulser asynchronism and ground
reflection, accurate pole calculation is more difficult. For the
methods to produce accurate results under some EMP test conditions,
it will be necessary to use incident field data and information

about the SEM coupling coefficients and natural modes of the body
exposed to EMP.




Section 1

Introduction

Several investigators have looked at the problem of calcu-
lating poles and residues from experimental data (refs. 1, 2, 3,
4). The common cbnclusion is that each author's approach gives
accurate results when the data consist of damped sinusoids plus
noise. Recently, poles and residues were calculated for data from
the ATHAMAS pipe test (ref. 5). It was observed that the data
recorded under actuai EMP test conditions are not simply sums of
damped sinusoids. Because of pulser asynchronism and ground
reflection, the data contains damped sinusoid responses but
delayed by various amounts. These delays introduce a number of
poles into the data that can interfere with or prevent the calcu-
lation of poles due to the illuminated test body response.

If the delay is due to pulser asynchronism, then the effect
is contained in the incident field wavefbrm. In principle, at
least, this effect can be unfolded by simply dividing the response
Fourier transform by‘%he incident field Fourier transform. (Of
course there are practical problems if the latter transform has
zeros.) But it is worth noticing that the ground reflection
problem cannot be handled so easily.

To show this, consider the case of a delta function excita-
tion on a finite size, perfectly conducting body in free space.

The Laplace transformed surface current can be expressed (ref. 6)
as

Y(r,s) = Iz: e (T1:) V(s - )77 (L)

where
nk(Tl,sk) is the coupling coefficient

Vk(?) is the natural mode vector



and
Sy is a natural frequency of the bddy

If the total incident field consists of direct and reflected

components, then the total response will be the superposition of
the responses from each field component

¥(T,s) = § [n.(T,,8.) + e 5P k(s) no(T,, s)| © (?)(s‘-'s )‘1’
k[k 1’5k k' 2 k] K K (2)
where

nk(Tz,sk) is the coupling coefficient due to the reflected
wave

K(s) is the reflection coefficient
and
D is the time delay between the direct and reflected waves

The constant D can be computed from geometry, and it may be
possible to measure K(s). But the coupling coefficients are
unknown except as factors in Y(r,s). Because of the time delay D,
the time domain response actually consists of damped sinusoids
starting at t = 0 plus more damped sinusoids starting at t = D.

As will be shown below, this makes the problem of computing the
S more difficult than if no reflected wave is present.

The author has been experimenting with three different
pole extraction techniques. This memo contains:

(L Results on the performance of each technique when
random noise is present, and

(2) Some initial results on how delays in the data affect
each technique.




Section II

Damped Sinusoids with Noise

The three techniques are Prony's method (refs. 1, 4), the
interative premultiply method (ref. 8), and the prefilter method
(refs. 7, 9, 10). These methods are discussed in the references
and will be described briefly here. - |

Originally, Prony's method was used to fit exponential func-
tions to data; Several numerical analysis texts (see ref. 11, for
example) have examples showing that the technique is extremely
sensitive to inaccuracies in the data. More recent work (refs. 1
4) has shown that by "overfitting" the data, good results can be
_obtgined. For example, if a signal consisting of a single damped
sinusoid (two exponentials) plus noise is analyzed, it might be
necessary to fit a system of order 15. The calculations involve
solving 15 simultanebus linear equations and factoring a polyno-

mial of order 15. Details of the calculations are left to the
references.

H

The iterative premultiply method (ref. 8) attempts to mini-
mize the mean équared error between the data and a sum of eXponen-
tials. A direct approach to this minimization problem requires
the solution of a set of coupled non-linear algebraic equations.
The premultiply method attempts to find the solution by an intera-
tivé technique. For a signal consisting of a single damped
sinusoid plus noise the method fits a system of order 2 and
factors a second degree polynomial. But the iterative procedure
requires repeatedly solving linear equations approximately of
order 40. The overall computation is about five times that
required by Prony's method.

The prefilter method (refs. 9, 10) involves filtering the
data with an adaptive filter and solving linear equations. It
requires the specification of a known forcing function as the
input to a linear system whose output is the measured data. For




the simulation study discussed below the forcing function was
taken as a delta function at t = 0. But for some applications
that will be discussed later, the incident field function is a
more appropriate forcing function. If the data consists of M
damped sinusoids plus noise, the method requires solving 4M linear
equations, factoring an Mth order polynomial, and repeatedly fil-
tering the data. The method requires about 1/3 the time required
by Prony's method.

Each method was tested on the signal

y(nT) = exp(-nT) sin(3.14nT), n = 0,1,...,N-1 (3)

where
T
N = number of data points

sampling interval

To simulate the effect of measurement noisé, a sequence of pseudo-
random numbers was generated and added to the y(nT). The random
numbers ‘were independent,vuniformly distributed with mean zero and
standard deviation a given percent of the peak value of y(nT).‘

The three methods were tested with several different noise
levels. TFor a given noise level, a test consisted of generating
fifty different simulated data sequences. The choice of fifty
as the number of trials was arbitrary, and the random numbers were
different for each sequence. Then poles were calculated for each
of the fifty data'sequences. Finally, the average and variance of
the poles were calculated.

The results are displayed in tables 1 and 2. The premulti-
ply and prefilter methods give identical results in this case.
Based on these two tables, it would appear that the two iterative
methods produce more accurate results. This is quite noticeable
at the higher noise levels. A random noise level of about 1% is
what can be expected from normal EMP test data (see ref. 12, for
example). At this low level of noise, each of the three methods




Table 1. Pole mean and variance for 50 trials vs percent noise.
Signal poles were -1+j3.14 and N = 50, T = .04 on each
run. Prony's method using 20 poles total.

' | Mean Imaginary
Percent Mean : Imaginary Real Part Part
Noise Real Part Part Variance Variance
h -1;000 3.140 .168E-3 .110E-3
5 -1.007 3.143 .432E-=2 " .290E-2
10 -1.034 3.154 .182E-1 .126E-1
15 -1.079 3.173 .441E-1 .313E-1
20 -1.142 3.199 .862E-1 .634E-1

Table 2. Pole mean and variance for 50 trials vs percent noise.
Signal poles were -1tj3.14 and N = 50, T = .04 on each
run. Iterative premultiply method or prefilter method
using two poles. :

Mean Imaginary
Percent - Mean Imaginary Real Part Part
Noise Real Part Part Variance Variance
1 -1.000 3.139 .715E-4 .240E-4
5 -1.003 3.136 .183E-2 .600E-3
10 -1.013 3.133 .766E-2 .241E-2
15 -1.029 3.131 .185E-1 .547E~-2
20 -1.053 3.131 .364E-1 .985E~2




gives acceptable results. For reference, graphs of some of the
functions used in the simulation are shown in Figures 1 through 6.
Fourier transform magnitudes are included also. Just to show how
well the prefilter method can work with noisy data, another set
of 50 trials was made with N = 200, T = .01 and 20% noise. Even
with this high noise level, the mean pole location was -1.007:+j.3.134
with variances of .612E-2 for the real part and .264E-2 for the
imaginary part. These simple examples indicate that for accurate
pole calculation, low level random noise is not a problem. Other
types of instruméntation error found in EMP test data are dis-
cussed in reference 12. These other errors are not considered
here.
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Section III

Delays

The most serious problem in analyzing test data using any
of the three methods is the presence of non-sinusoidal data com-
ponents. Each method models the observed signal as a sum of
complex exponentials plus random noise. If the actual signal‘ié
not in this form, then a number of extra poles and residues must
be fitted to account for non-sinusoidal signal components. One
common source of these components is the pulser used to generate
the incident field. Experience has shown that the waveform from
the ATHAMAS I simulator cannot be represented by a low order sum
of complex exponentials (ref. 5). As a result, the total mea-
sured response of a test object at ATHAMAS I consists of damped
sinusoids from the object response plus comﬁonents from the
pulser that cannot be represented easily by damped sinusoids.

Another problem comes from the fact that the total incident
field at this simulator consists of direct and reflected waves.
The starting time of the latter may be delayed by 50 ns or more
from the arrival of the direct wave. This delay stretches out the
time that the incident field is turned on and generates additional
non-sinusoidal components in the measured data. Whether or not
these problems interfere with the calculation of object response
poles depends on a number of factors. Some of these factors are
considered in this section.

The next set of experiments involves the function
(y(t) u(t) + y(t - D) u(t - D)) where D is the delay, u(t) is the
unit step function, and y(t) is given by equation 3. This sum can
simulate the effect of pulser asynchronism for small values of D
and the effect of ground bounce for larger values of D.

This simulation is oversimplified. With actual test data,
the transform of y(t) would contain both incident field and object
poles. Also, for modeling ground reflection, a reflection

14




coefficient, K(s) # 1, should be included. But using a waveform

y(t) with only two poles, -1:+j3.14, keeps the analysis simple and
focuses attention on the effect of changes in D.

In each experiment involving delay, pseudo-random 1% noise
was added to the signal. (The required noise standard deviation
is a function of D since the peak signal value depends on D.)
The results of 50 trials are shown in Table 3.

Table 3. Pole mean and variance for 50 trials vs delay. Signal
poles were -1:j3.14 and N = 50, T = .04, 1% noise.
Premultiply and Prony's methods. ‘

, Mean Imaginary
Mean Imaginary Real Part Part '
D Real Part Part Variance Variance Method
.25 -.908 3.136 .568E-3 .801E-3 Premultiply
.5 -.985 3.121 .381E-2 .119E-1 Premultiply
.25 -.997 3.137 .161E-3 .574E-3 Prony
.5 = -.995 3.112 .251E-2 '.114E-1  Prony

The trials using each method were done with 20 poles. A

" number of poles in addition td the poles of y(t) are required to
fit the extra data structure due to the delay. Time and frequency
domain graphs of the signals are given in figures 7 through 10.

The mean pole values in table 3 were computed starting the analyéis
at time = 0. When the starting time for the analysis is changed,
these mean pole values change also.

From table 3, it can be seen that the iterative method works
about as well as Prony's method. Either technique gives results
that are acceptable for small values of D. As D increases, the
pole error increases. Figures 8 and 10 help explain why this is
so. For small D, the first null in the Fourier transform is far
away from the peak in the transform of y(t). But the null moves
closer to the peak as D increases. (For a reflection coefficient
of +1, nulls lie at odd multiples of 1/2 D.)

15
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It is interesting to see what happens when the first null
coincides with the peak of the signal transform. A graph of this
case is shown in figure 11 and the corresponding transform in
figure 12. Graphs for the 1% noise case are in figures 13 and 14.
The poles and residues calculated with Prony's method are shown in
table 4 for the noiseless case and in table 5 for the 1% noise
case. It is no surprise that the pples of (ynT) do not appear in
the tables. The only poles are those corresponding to the peaks
in the Fourier transform at even multiples of 1/2 D. (The radian
frequencies are even multiples of m.) In this example, it appears
that the effect of delay has completely obscured the poles of
y(t). However, a little common sense suggests that if the data
are analyzed from 0.0 to 1.0, that is before the delayed part of
the signal begins, it should be possible to find the poles of y(t).
This of course turns out to be true.

Alternatively, if D is known, then the analysis can be
started after t = D. If it can be done, this is the best choice.
For t > D '

y(t)u(t) + y(t-D)u(t-D)

exp(~-t) A sin(3.14t + B) (4)

for some A and B. So that the waveform for t > D has only the
poles of y(t), and no poles due to the delay. This argument gen-
-eralizes to the case where y(t) is a sum of damped sinusoids.

So there are two extreme cases. If the delay is small
enough that the first null is not near the signal peak, then sig-
nal poles can be calculated accurately. If the delay is large
enough that part of the data can be analyzed without including the
turn-on time of the delayed component then object poles can be
calculated accurately. Real data can fall into one of these two
nice classes. For example, the first null produced by pulser

20

exp(-t)(sin 3.14t + exp(D) sin 3.14(t-D))

O .

exp(-t) sin(3.14t) + exp(-(t-D)) sin3.14(t-D)
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O

Poles and residues for delay =

1.0.

Prony's method, N = 50, T = .04, 1% noise.

Real Residue

Table 4.

Real Part Imaginary Part
Order = 25 7
S(01) = -.4584541E+00 0. RESR
S(02) = -.4586901E+00 .6285066E+01 RESR
S(03) = - 4593837E+00 .1257002E+02 RESR
S(04) = -.4604932E+00 .1885474E+02 RESR
S(05) = -.4619509E+00 .2513915E+02 RESR
S(06) = -.4636677E+00 .3142315E+02 RESR
S(07) = -.4655377E+00 .3770671E+02 RESR
S(08) = -.4674443E+00 .4398979E+02 RESR
S(09) = -.4692674E+00 .5027239E+02 RESR,
S(10) = -.4708910E+00 .5655456E+02 RESR
S(11) = -.4736229E+00 .7539918E+02 RESR
S(12) = -.4731418E+00 .6911786E+02 RESR
S(13) = -.4722110E+00 .6283635E+02 RESR
Error = .1910876E-14

Table 5.

Real Part Imaginary Part
Order = 25
S(01) = -.4543685E+00 0. RESR
S(02) = -.4332706E+00 .6300913E+01 RESR
S(03) = -.4332822E+00 .1255303E+02 RESR
S(04) = -.2593198E+00 .1862412E+02 RESR
S(05) = -.1358998E+00 .2518019E+02 RESR
S(06) = -.3614176E+00 .3167691E+02 RESR
S(07) = -.6058316E+00 .3726772E+02 RESR
S(08) = -.9040764E+00 .7748416E+02 RESR
S(09) = -.2366074E+00 .6934989E+02 RESR
S(10) = -.9817263E-01 .6258574E+02 RESR
S(11) = -.6095423E+00 .5562955E+02 RESR
S(12) = -.1403990E+01 .4946278E+02 RESR
S(13) = -.1889965E+01 .4464958E+02 RESR

Error

.5111050E-14

W W wwunnwuuwnunn

.4886385E+00
.1613987E+00
. 3402992E-01
.1505037E-01
.8702552E-02
.5825886E-02
.4291344E-02
. 3388019E-02
.2823705E~-02
.2461044E-02
.2026719E-02
.2091442E-02
.2229566E-02

Poles and residues for delay = 1.0.

Imaginary Residue

RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI

Prony's method, N = 50, T = .04, 1% noise.

Real Residue

n W wwmnwwnun

.4890312E+00
.1585571E+00
. 3433383E-01
.1149291E-01
.5542985E-02
.6167102E-02
.6224874E-02
.1728919E-02
.1620911E-02
.9339772E~03
.9154154E-04
.8890758E-02
.8042634E-02

muw e

-.3695699E-01
-.2945564E-02
-.7700625E-03
-.2929915E-03
-.1335401E-03
-.6719601E-04
-.3572542E-04
-.1950994E-04
-.1069854E-04
-.8251581E-06
-.2776011E-05
-.5723246E-05

Imaginary Residue

RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI
RESI

“RESI

Wnn N

.3356953E-01
.2919439E-02
. 3733602E-02
.1480711E-02
.3171212E-02
.2291246E-02
.2506466E-02
.1439478E-02
-.2382959E-03
-.4358939E-02

-=-.4515599E-02

-.2438708E-02




asynchronism at the ATHAMAS I simulator was at a much higher fre-
quency than the fundamental mode of the cylinder used in the pipe
test. The same was true of ground reflection effects when the
cylinder was near the ground plane.

It is not difficult to find examples where the delay effect
confuses the calculation of object poles. One such example comes
from the pipe test with the cylinder at 00-10-30. At this location,
the delay is about 47 ns. Figure 15 is the graph of a surface
current measurement. Figure 16 is the corresponding Fourier trans-
form magnitude. Poles were calculated from thié signal using each
of the three methods. The poles vary greatly when the portion of
signal analyzed is changed. If the first 40 to 100 ns is analyzed,
poles with positive real parts are found. This is reasonable
since the signal amplitude‘is increasing. When 200 ns starting
at t = 0 is analyzed, the poles have negative real parts. When
more data is added, new pole values are calculated. The location
of frequency domain nulls prevents calculation of second and
higher order cylinder resonances. The fact that the computed pole
values change as the length of signal analyzed is changed causes
doubt about the fundamental resohance values. The approach taken
in reference 5 was to analyze data over the whole record length.
The pole values change little when the data length is close to its
maximum value. But it is not possible to conclude that the result-
ing low frequency pole pair represents the first cylinder natural
mode.

The explanation for these difficulties follows from looking
dat the incident field waveform shown in figure 17.

The delay D = 47 ns produces a peak in the Ex field trans-
form (figure 18) near 10 MHz. In accord with Murphy's law this
frequency happens to be quite near the peak in the response trans-
form (figure 16). So this is an example of a peak caused by the
ground reflection effect interfering with a response peak. (The
graph in figure 17 is for the Ex field at 00-09-30. The cylinder

26
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was centered at 00-10-30. So the incident field actually seen by

the cylinder has a peak even closer to the first cylinder
resonance. ) .

On the basis of equation 4, it would seem reasonable to try
to analyze this response data starting from some time after D =
47 ns. This was done. Again each method failed to produce consis-
tent results. The problem here seems to be that the incident
field does not stay near zero for times between 47 and 300 ns. In
this time range the field doesn't appear to be easily represented
by complex exponentials. So its presence interferes with the cal-
culation of response poles. After 300 ns the signal to noise ratio
of the response waveform is low and only a small length of record
is left. 'These two factors probably account for the inconsistent
results of the pole calculations.

There is a basic problem with trying to approximate the wave-
form of figure 15 by a sum of complex exponentials. It is simply
that this waveform is not a low-order sum of complex exponentials.
Equation 3 suggests what should be a better approach. Rewriting
equation 3 in a scalar form and allowing for an incident field
Laplace transform f(s), the total response can be written as

A, B,
_ i -sbh 1
y(s) = £(s) [gs-si + K(s) ™ ] *—s-si] ®)

The Ai and Bi depend on the coupling coefficients, natural mode
vectors, and sensor orientation. In the general case Ai # Bi and
they need to be estimated separately. Equation 5 suggests that

the problems with delay and incident field can be overcome by
modeling the signal generation process in a way that explicitly
separates these componéhts from the object response parameters:
This approach will requiré accurate data on f(s), D, and K(s).

Time domain data corresponding to f(s) is available from field map
data, D can be calculated from the test configuration, and K(s) can
be estimated (see ref. 13).
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Section IV

Conclusions : (:)

This note is concerned with experimental results. It is
necessary to be careful about interpreting the results too gener-
ally. For example, it is possible that for some combination of
waveform, sampling interval, noise level, etc., one pole calcula-
tion technique might be vastly superior to all others. But on the
basis of much more experimental evidence than has been shown in
the tables, the following conclusions appear to be justified:

(1) For the kind of random noise level expected in EMP
testing, Prony's method (using extra poles) works about as well
as either of the two iterative methods. The iterative methods
are better than Prony's method when the noise-level is high.

(2) When the data contains delayed damped sinusoids, poles
corresponding to object resonances that are far from delay induced
peaks or nulls can be calculated accurately.

(3) The total incident field structure can interfere with (:)
or prevent accurate calculation of object parameters. It may be
possibie to "unravel'" the various data components by using infor-
mation about the incident field, SEM coupling coefficients, and
natural modes.
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