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1. INTRODUCTION

The Singularity ExpansiOn Method [1],[2] (SEM) provides a con-

venient means for characterizing the electromagnetic behavior of a

body in the form of complex resonances and modal fields associated
with these resonances. The representation is complete in the sense

that the response of an object may be constructed for an arbitrary

incident field and an arbitrary observation point.

‘Although conceptually simple, the task of determining the SEM

quantities that describe a system can be very involved and time-

- _consuming. For any but simple geometries the complex natural

frequencies or ''poles'' are generally derived by means of iterative

‘ searching for the zeros of the determinant representing the dis-

cretized integral equation of the structure. These poles comprise

theyftindame‘n.tal q‘u'an'tities‘ in the SEM description. The Pyrony's

~method approach developed only recehtly by Van Blaricum and Mittra

[3] provides an alternative technique but requires the ‘knowledge of

‘complete current distribution on the surface of the body due to some

given transient excitation with a broad spectrum. This response
may be derived either through an analytical or numerical solution of
a mathematical modél of the system or through measured response
data; In the direct pole search procedure; we continue the mathe-

matical operator equation into the complex frequency domain and




seek the complex resonant freqQuencies for which this operator equation

has a homogeneous solution, cf. [2]. Either of these approaches em-
braces significant computational effort,

The high computational cost encountered in determining the SEM
poles in the method of moments integral equation formulation is due
to the fact that one seeks the complex zeros of a complex transcen-
dental equation which is obtained by equating the determinant of a
system matrix to zero. Ty'pica.lly,‘ generating a single determinant
value is a significant computation in itself. To date, most workers
have used a classical numerical analysis approach such as Muller's
method to s‘eek out the zeros éf the determinant. More recently,
Baum, Singuraju and Giri have exploited the principle of the argu-
ment in complex variable theory in order to improve the search
algorithms [4,5]. This approach, too, requires multiple calculations
of the determinant of a moment matrix,

In this note we report a new approach to matrix zero
searching which offers a significant computational gain over determi-
nant calculations. The method utilizes two significant features of
the moment-method-SEM approach, viz., (1) The approaching of
zero by a matrix determinant is equivalent to an eigenvalue of the

matrix app‘rbach‘mg zero; and (2) Good estimates of the eigenvector

and biorthogonal vector associated with this zero eigenvalue are




~available by way of only two determinant evaluations. These eval-
uations may be at an arbitrary point within a relatively large neigh-
borhood of the pole. The two estimated vectors may then be used
in conjunction with the moment matrix evaluated for any location in
a generalized Rayleigh quotient. This constitutes a variational form
for the appropriate eigenvalue at that complex frequency. This
keigenvalue can be used as the zero search objective for either a

classical zero search method or for the argument number method

of references [4] and [5].

2. RELATIONSHIP OF SEM QUANTITIES TO THE EIGENSYSTEM

The method described here is applicable to systems which can

be described by a linear operator equation, usually an integral equa-

tion, of the form

L7-% (1)

where s is a complex frequency variable s = ¢ + ju, &L, is a linear
6perator depending on s, f is some unknown field quantity, and g is
the excitation field. For example, a simply connected perfectly

conducting scatterer would have an unknown surface current density

T, .Cs would be an integral over the scatterer with a dyadic greens

function kernel (depending on s) and g would be the incident field.




When the method of moments is used to discretize (1), the -

following matrix equation results.

[M(s)] [£] = [g]

where [M(s)] is a matrix comprising interactions between bases and

testing functions which approximates the operator, [f] is a vector of

- weights for expansion of f in the bases, and [g] is a vector which

results from applying the testing functions to E.

(2)

The SEM representation seeks those values of s for which there

is a- homogeneous solution to (1), and hence to (2). That is,
sn @ [M(s)] [£,] = [0]

or within the moment method approximations
’tsn?n = o .

The function ?;1 which obtains from an expansion in terms of [fnj i’s.
termed the naturaf mode corresponding to the pofe s,. For all of
the perfectly conduCting objects of finite extent thus far studied by
way of SEM, the poles and natural modes constitute a complete de-

scription of the electromagnetic behavior of the object. Typically,

planewave coupling coefficients are tabulated as well,  They reflect

the response of each mode as a function of aspect angle of an

(3)

(4)




incident plane wave. In practice, it is possible t§ determin’e and
‘retain,only‘r a finite collection of the poles and associated quantities.
This translates into band limitations on the excitation‘waveforms for
which a response can be accurately constructed.

Baum recently presented an interpretation of the SEM repre-
sentation as described above in terms of classical eigenvalue theory
[6]. His interpretation may be summarized, in part, as follows.

Consider the matrix eigenvalue problem associated with (2):
M(s)] [()] = A (o) [£()] . o G
Let sy be a pole of (2), i.e., in (3)
[M(s)] [£5(s,)] = [0] . - ®

It is evident from (6) and (5) that there is a zero eigenvalue in the
eigensystem of (5) and that [fo] is the eigenvector assl)cia.ted with
fhi.s zero eigeﬁvalue. At issué, of course, is the question, ''which °
eigenvalue of (5) goes to zero?'" Baum elaborates on this point in
' [5] and constructs an ordering scheme associating poles and eigen-
valueé. It is sufficient for our present purpose to draw two con-
clusions:

(1) At each pole an eigenvalue of the moment matrix goes to

ze ro.




)\O(s) -+ 0, as s % sy

(2) This zero eigenvalue is associated with the eigenvector

which is identical to the natural mode at the pole.

fo(s) -+ fo, as s = So -

In principle, it is possible to use ko(s) as the objective func-
tion of a zero determining scheme. However, in practice, one is
forcved to rely on numerical schemes for computétion of the eigen-
values of [M(s)]. The ordering of the eigenvalues returned from.the
algorithm will change from one value in s to another so that it is
not, in general, possible kto track the behavior of é .single eigen-
value as a function of s. Also, the computational costs of eigen- .
value de‘term‘mation are even greater than that of determinant eval- -

uation.

3. A STATIONARY FORM FOR
The generalized Rayleigh quotient

1 [hi(s)] [M(s)] [£5(s)] (
Ai(s) = 7)
if®) [b(s) ]t [£;(s)] |

can be shown to be a stationary form for A;(s). The vector [h;(s)]
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xs the b10rthogona1 vector correspondmg to [f (s)] ‘That is, it is
the elgenvector of [M(s)] associated Wlth )\i(,s). (Tj'hé symbol +
denotes transposed con‘Jugate.) In other words the é“quality in (7)
‘bo‘lds to first order. \;Vh'eﬁ [M(s)] is Hermitian [h;] = [£;] and this
‘expression becomes the familiar Rayleigh quotient. In this case,
the 'eig‘envaluesy are ‘real and the stronger result“that’(’?) is an

upp:er bbund‘to fhe eigenvalue c;‘ﬁtains.

The statlonary form (7) may be used to apprommate the van-
ishing eigenvalue provmded estimates for [h;(s)] and [f (s)] are avail-
.able.,” An observatwn of the beha.vior of the moment matrix points
to akmeans fof obtaining these estima.fes;

Let T den’ote‘a tfiangularization oper#tor conséituting ‘Ga.Lusse"an
elimination with rﬁ#ximum element pivoting. - Consider the result of »
‘this obératof applied to [M(so)]f the moment matrix at a pole

location. Namely,

[T(s)] =TM(s)] . (8)
s=s0 v

This matrix has the following form

| ln

(9)

0 th.l,n-1tn-1,n

o 0 o0 0 @
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The determinant of the moment matrix is given by the product of the
main diagonal elements of [T].

A‘t a simple pole the moment matrix must have a zero deter-
minant. In the triangularized form (9) the zero of the determinant
is manifest as a zéro in fhe lower right pésition of the matrix. The
maximum- element pivoting feature of the triangularization oper'ator‘
assures that the zero occurs here. The naturaly mode [fi] i‘s deter-
mined by prescribing an arbitrary non-zero value for the last
eler;lent of this vector and ''backsolving'' the homogeneous matrix
equation based on [9] to determine the remaining eleménts of [fi]'

As a point of interest we; might note that since all of the
eleménts in [M(s)] and [T(s)] are analytic in s, in the neighborhood |
of a simple pole, t, (s) is liﬁear in s - sg.

A means to obtain estimates for [f;] and [h;] results from an

observation about J [M(s)] in the neighborhood of 5o In this neigh-

borhood, it is observed that the upper triangle of [T(s)] varies
slowly in s. Therefore, we may take as an estimate of [T(sy)],

[T(s)] with t,,(5) replaced by zero:

T(s ~ |T(s , s e N(s .

[T(s)] ~ [T()]), o (s9)
Having this estimate of [T(so)] allows us to backsolve the resulting
triangular homogeneous system of equations for an estimate to the
natural mode. By the same process, we estimate [h(so)] from

[M(s)]T.

(10)
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4. AN EFFICIENT COMPUTATIONAL APPROACH TO POLE SEARCHING

The results above can be used to construct a pmle-searéh proce-
dure which is more economical than directly searching for the zeros
of the determinant of the moment matrix. The methcﬁd depends on a
reasonable initial estimate for the pole location ‘being sought. This

: | ) .
estimate may be determined f;-om physical insight, fnpm tracking the
pole trajectory with respect to a geometric parametelir, or from
Baum's argument number bisection [4,5] of a region ;)f the le'ff haif
of the s plane until a pole is localized. |

At this first estimate point, the moment matrix; is c’omputed.
Both the matrix and its tranjugate are triangularized iby nﬁmerical

| e O
application of the & operator. The lower right elempnt in each of
the triangularized matrices is set to zero and the resulting kh‘on’m.-
geneous systems of equations are backsolved for estimates of the
’ |

natural mode [fo] and its adjoint companion [hy]. Let us denote

these estimates [fa] and [ha]'
\

Next, these vectors are used in the variational form (7) with
[M(s)] to approximate A(s), viz.,

[ho It [M(s)] [£a]

A(s) . (11) ;
(s (b, IF [4,]

10




Thus, the eigenvalue at any value of s in a region in the vicinity of a

pole may be calculated through one matrix - vector product and two

vector - vector products, a total of N? + 2N complex ''operations, "

"Operation" is used in the usual sense in the context of matrix com-
putations; that of a multiplication followed by an addition,

The A\(s) approximated by (11) is used as the objective function

for a complex root locating algorithm such as Muller's method, It

is equally applicable to the argument number approach of [4,5]. The
computational economy appears in the form of the reduced number of

calculations to derive the search objective function from the moment

2 42N operations for the approximation of A(s)

pointed out above stands in contrast to the-:l,: N3 + O(NZ) of opera-

matrix., The N

tions for calcﬁlating a determinant. It is both simpler é.nd more
economical than direct ‘eigenvalue computation, tco. In addition to
being costly, eigenvalue computation leaves- the problem mentioned
above of picking from the eigensystem the eigenvalue which should go
to zero in the region ‘of. the s plane in quesﬁon. Because the es-
timates [f,] and [h ] approximate the natural mode and adjoint natural
mode for the nearest pole, the approp;iate ei‘genwialue is automatically
selected.

We are quick to point out that there is one immediately identi-

fiable liability in the approach suggested here. That is, in taking an

11




estimate-dependent objective function, we forego any guarantee that

convergence in the zero search will converge or that'a point con-

verged upon is an actual zero of the matrix. A later example illus-
trates this feature. It is essential that the method be used only as

a companion to either determinant or exact eigenvalue calculations to

verify the results obtained. The estimate-dependent feature of the

method may be improvéd upon by periodically updating the estimates

[£,] and [h,] within the iteration.

In summary, the algorithmic approach is as follows:

(1) At an initial estimate of the pole, calculate the moment
matrix for the system. Also form the tranjugate of the
moment matrix. o

(2) Triangularize these matrices and backsolve them for
estimates of the eigenvector and its compamon b1orthog-
onal vector ‘at the pole. o

(3) For any s in the vicinity of the pole, the vanishing eigen-

value may be approximated by the genera]hzed Raylexgh
quotient

_ [halt [M(s)] [fal]
A(s) = : Tt [fa] .

(4) Higher accuracy may be obtained in lengthy iterations by
periodically performing steps 1 and 2 at a better estimate
of the pole as it is obtained through iteration,

12




5. NUMERICAL RESULTS

As an initial verification of the Rayleigh quotient as an estimator
of the eigenvalue, the eigenvalues for a Hallen equation model of a

straight wire were computed directly and compared with Rayleigh quo-/

tient forms for s values in the vicinity of a pole. The s values used

are those along. a Muller iteration path which successfully located a
zero of the determinant of the moment matrix. The results of this
comparison are summarized in Table 1. = Rayleigh quotieﬁts based on
two different eigenvector /biorthogonal vector estimators are given.
The ''locally-based'' value is kgiven by an estimate of the vectors

from the moment matrix at the s value for which A(s) is being calcu-

lated. The ''start-based' value is based on the vector estimates

taken at the fir’st s value in the Table.

It is observed that the locally-based eigenvalue approximation
tends tdwardAzero in a manner roughly proportional to the determinant.
The start-based épproximation manifests a thresholding when the s
values are coincident with the pole to four significant digits. This
phenomenon should be tolerable so long as the zero search algorithm
appligs a criterion of convergence other than the absolute vanishing of
the objectivé function. For example, the Mullelf method algorithm
which we use terminates upon the magnitude objective function falling
below a preassigned error tolerance’  0/1 when the independent variable

——

is invariant to a preassigned number of digits.
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'EIGENVALUES AND ESTIMATED

SEARCH PATH IN THE MULLER ITERATION: THIN WIRE WITH RADICES/LENGTH = .005

TABLE 1

EIGENVALUES ALONG A DETERMINANT ZERO

ITERATION CALCULATED : LOCALLY—BASED START-BASED

PATH (s) EIGENVALUE RAYLEIGH QUOTIENT RAYLEIGH QUOTIENT
-.117 + 31.097° ,186 + §.043 .186 + §.043 .186 + j.043
-.096 + 30.898° (-.279 + §.129)x107* (-;2?9 +3.129)x10°F  (-.290 + 3.126)x10”
-.100 +vj0.997l ( .797 + j.zsa)xlo‘l ( .797 + j.zse)xlo‘l ( .788 + j.284)x10"
-.083 + j0.923° (-.189 + .000)x107>  (-.190 + 3.000)x107>  (-.128 - §.037)x10”
-.083 + 0.923% (-.348 + §.003)x107°  (=.429 + 5.077)x107°  (-.109 - 5.037)x10"
-.083 + 30.923% (-.373 - §.073)x1077  (-.2479 + §.1814)x10"° (-.109 - .037)x10”
-.083 ; 50.923%  (-.320 + 5.017)x1077  (-.4431 + §.205)x10"®  (-.109 - §.037)x10"

- NOTES ON MULLER ITERATION

1. Starting point given to algorithm -
2. Algorithm generated starting points
3. First prediction for zero

4. Convergence determined by stability

to 4 sig. dig. (3 shown)

1

1

2 .

2

2

2

CALCULATED
DETERMINANT

(.328 + §.003)x10°

(-.425 + §.306)x10"

( .143 + §.020)x10"

(-.316 + §.063)x10>

(-.449 - §.050)x10 L

( .657 - §.086)x10 1

(-.418 - §.025)x10™ L




Table 2 gives the results of pole location determined by Muller's
method iteration where the objective function is the start-based R'ayleigh
qﬁotient. The table also shows the starting of the iteration and the
pole values obtained by Tesche [2]. (These data are available in tabu-
lar foi-m in [7] also.) The agreement in pole values is seen to be
. excellent W'l\th nominal one percent departures for the first ten poles
given. - (The first ten are the ten lowest order layer one poles.) The
. last three values agree to about 2-3 percent., These poles are the
three lowest order klayer two poles. The 'less resonant' inner layer v
poles are more difficult than the first layer poles to obtain accu;'ately
in determinant based schemes, .too. It is significant that even ‘the
smaller real parts of the poles are accurately determined.. The start-
ing points used in this example are the well-known half wavelength
resonances of a filamentary dipole for the ten layer one poles.

Figure 1 shows the polé‘trajectory for the lowest order reso-
nance of a rectangular plate as the aspect ratio w/L is varied. The
solid curve was derived by means of Muller iteration on the determi-
nant of the moment matrix for the structure, The dashed line was
derived from a start-based Rayleigh quotient. The initial point marked
by‘x was the beginning point for determining the w/L = 1 pole location.
The w/L =1 polé was used as the starting point for the w/L = 0.9
pole. This tracing procedure was continued at w/L decrements of 0.1.
The largest error is indicated in the Figure ‘at the w/L = 0.7 pole -

an error of 0.47% of the magnitude of the determinant pole.

15




TABLE 2

COMPARISON OF POLES SEARCHED BY WAY OF GENERALIZED
RAYLEIGH QUOTIENT AND THOSE BY WAY OF THE MATRIX

DETERMINANT.

RAYLEIGH QUOTIENT ITERATION

STARTING oL
POINT =)
e’

0.000 + 31.000%
0.000 + §2.000%
0.000 + 3§3,000%
0.000 + j4.000%
0.000 + j5.000%
0.000 + §6.000%
0.000 + §7.000%

0.000 + j8.000%

0.000 + §9.000%
0.000 + §10.000
~2.000 + §0.000
22,250 + §1.500

2,400 + j2.600

1

DERIVED sL
POLE =
cw

-,082 + j0.924
-0.120 + §1.908
-0,146 + 2,900
-0.169 + 33.882
-0.187 + j4.878
-0.204 + §5.864
-0.219 + j6.863
-0.234 + 37.854
-0.247 + j8.847
-0.259 + j9.850
~2.207 + 3.000

-2.464 + j1.334

=2.707 + §2.346

THIN-WIRE WITH RADIUS/LENGTH = .005

DETERMINANT

DERIVED oL

POLE =
cT

-0.082 + j0.926
~0.120 + j1.897
-0.147 + §2.874
~0.169 + j3.854
-0.188 + §4.835
-0.205 + 35.817
-0.220 + j6.800
-0.234 + §7.783
-0.247 + j8.767
~0.260 + j9.752
-2.174 + j0.0

-2.506 + j1.347

-2.725 + j2.477

NOTES: 1. Taken as the pole locations of filamentary dipole for first
layer poles. . , :

2. From Tesche [2], [6].
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IMigure 1. Pole (rajeclory iteration by way of Rayleigh quotient
as compared 1o the pole trajectory dervived from determinant zeros.
The structure is a rectangular plate and w/I. is under variation.
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Figure 2 provides some insight as to the dependence of the pole
obtained by the iteration on the starting po‘int”of the iteration., The
cross indicates the determinant derived pole for the rectangular plate
with w/L = 1. The bullet points indicate various starting points for a
start-based Rayleigh quotient iteration. Lines connect each starting
point with the pole value to which the iteration converged., It is seen
that a good estimate of the pole is necess\vary to get an accurate finalw
estimate of the determinant value. Further, it‘appears that the direca-
tion from the starting estimate to the correct pdlt’aginfluences the out-
come of the iteration. This is likely a function of tilé contours of the

determinant value in the region in question.

6. CONCLUSIONS

A method has been developed whereby one may derive a new
search objective function for locating SEM poles. This search objec-
tive is more economical to calculate than either direct numérical
eigenvalues or the qgfterminant of the moment matrix. To the authors!'
knowledge this work represents the first results which improves the
efficiency of computing the search objective itself. = Other works such’

as [4,5] have dealt with improved use of the determinant objective.

The method is variational in character and rests on the ability
to estimate the natural modes of a system. This estimate;dependence

introduces some risk into the search for poles. As a result, it is

18
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Iigure 2. Dependence of the convergence point of the Rayleigh
quotient iteration on starting point for the lowest order resonance
of a square plate.
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likely that poles obtained by the method presented will have to be
verified or perhaps refined by means of determinant calculation. The
methods potential utility lies in the determination of poles for large
bodies where the comi)\.;tatioﬁ“costs are significant.b It should“dbe fnost
useful as a companion to determinant-based searches and argument
number methods in order to reduce computational costs.

Several methods have the potontial for providing a good initial

estimate for the pole location:

1. Estimation derived from ’/p;hysical considerations;
2. A crude localizing of the pole based on argument number
methods;

3. Tréjectdry tracing such as that indicated by Figure 2
herein;

4, Utilizing a low-order moment method solution and deter-
minant search. '

The authors are grateful to Professor D. R thton at the Umversxty

of M).SSLSS).ppl for the last suggestion above.
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