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Abstract

This report studies a methodology, based on Prony's algorithm,
for extracting complex frequencies and associated residues
directly from transient response data. The methodology is not
new and has been receiving increasing attention due to its
potential usefulness in a variety of different applications in
quite diverse scientific disciplines. Although this particular
study was to evaluate the potential usefulness of Prony's
method for analysis of System Generated Electromagnetic Pulse
(SGEMP) experimental data, the results obtained are of a much
broader nature. The report presents a classical derivation of
the matrix equation which result if one uses Prony's algorithm
in conjunction with a least squares criterion. The resulting
matrix is studied with respect to the nature of its eigenvalue
structure and an error analysis is developed which highlights
the importance of this structure. The influence of noise on
the eigenvalue structure and its impact on the determination
of the number of poles in the data are examined. Optimization
concepts relative to advantageous modification of the eigenvalue
structure of the Prony matrix are qualitatively discussed.
Difficulties associated with the two stage application of the
least squares method in conventional Prony analysis are cited
and an iterative method of removing this shortcoming described.
Numerical calculations illustrating the majority of the above
concepts are presented and discussed.

* The research in this note was performed under contract F29601-
76-C-0034 with the Air Force Weapons Laboratory.

**Presently with Sandia National Laboratories
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I. INTRODUCTION

This report studies a methodology based on Prony's algorithm (ref 1) for
extracting complex frequencies and associated residues directly from transient
response data, The work was motivated by an interest in establishing the potential
usefulnesses of Prony's method for application to experimentally generated System
Generated Electromagnetic Pulse (SGEMP) data, However, the results obtained are

of a much broader nature and hopefully will be of use to investigators in a variety of
scientific fields.

Since SGEMP experimental data is inherently noisy, this study concentrates
heavily upon this problem and its implication with regard to the Prony methodology.
As a result, throughout this document it will be assumed that Prony's algorithm is

being applied in conjunction with a least squares criterion,

jThe structure of this document is briefly outlined as follows:

In Section 2, the Prony methodology is developed and symbol convention is estab-
lished. In addition, properties of the eigenvalue structure of the matrix are briefly
examined, | _

In Section 3, an error analysis is developed which results in analytic expressions
for estimating the accuracy of extracted frequencies. In addition, the nature of the
results of this section provide insight for latter discussion with regard to determina~-
tion of the number of poles in the data and to optimization concepts directed at advantageous

modification of the structure of the Prony matrix,

In Section 4, the perturbation of the eigenvalue structure of the Prony matrix due to

the inclusion of noise is studied. Analytic estimates for the expected values of all cigen-

values are obtained along with supporting bounds on their corresponding standard deviations.

1. R. Prony, "Essai experimental et analytique sur les lois de la dilatabilite de
fluides elastiques et sur celles del la force expansive de la vapeur de 1'alkool,
a differentes temperatures, " J. 1'Ecole Polytech, (Paris), vol. 1, no. 2,
pp. 24-76, 1795.°

[97]



Section 5, addresses the eigenvalue structure of the unperturbed Prony matrix,
Two obviously ill conditioned problems are examined with respect to the defective
nature of their eigenvalue strﬁcture. In addition, potential methods of eigenvalue struc-
ture improvement by adjustment of problem structuring parameters are cited along with
a qualitative description of the underly rationale.

Section 6, studies the errors introduced into the eigenvalue structure and extrac-
ted frequencies due to the presence of both random noise and a low amplitude neglected
signal component sufficiently buried in the noise to be undetectable to the analyst.

Section 7, discusses an iterative technique which uses the results of a conventional
Prony analysis as a starting point, The goal of this iterative technique iis to remove the
errors introduced by the two stage application of the least squares method associated
with conventional Prony analysis.

Section 8, presents an assortment of numerical results and supportive discussion
which illustrates the majority of concepts and theory developed in the earlier sections.

Finally, in Secfion 9 the author summarizes the results of this effort, discusses

the limitations of the developed theory, and suggests potentially profitable avenues for

additional study.



ITI. DEVELOPMENT OF PRONY'S METHOD

As has been adequately discussed in reference 2, there are many cases for which
the transient response of a system can be expressed as a finite sum of exponentials,
In this section, a methodology for extracting the poles and corresponding residues of each
signal component directly from transient response data will be presented. The methodolog

is termed Prony's method because of the important role an algorithm first documented by

Prony has in the development.

Prony's method can be developed in several different ways as has been discussed
by Van Blaricum (ref 2). The development presented here is a classical one and is|
presented both for establishing a founda.tion'upon which subsequent discussion will

build and for the sake of completeness,

Suppose one is given transient response data represented as a set of ordered pairs

(yk, tk; k =0, n), Further suppose the data is unlforfnly spaced in time such that

tk=to+kA k=0, n (1)

It is desired to represent the data in terms of a finite sum of exponentials given by

i s.t
yt =2 a et (2)
i=1 | -

where ai and S are, in general, complex,

By equation (1), one can then write

m
+Ak
y) =% a e’
i=1
or m K
yt) =X b oz k=0, n (3)
i=1 ! .
where the quantities bi and z, are defined by -
b, = a.e sito
oot i=1, m (4)
s.A

z. = e 1

2. Van, Blaricum, M.L., Mittra R., "Techniques for Extracting the Complex
Resonances of a System Directly from its Transient Response, ' Interaction Note 301,:
December 1975,
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One wishes to use given transient response data in conjunction with equation (3) to
determine the system unknowns, bi and Zgo To implement a solution one can use the

following algorithm due to Prony, The zi's are taken to be the m roots of the polynomial
m X i | | |
z o+ Z a, 7 m-L 0 :
& % (5)
Defining = 1, equation (5) can be rewritten as

o 2 =0 : (6)

m
i=0

Cne then generates m +1 equations by multiplying the (k+ j)th eqguation in equation
(3) by "m—j for j=0, m,

Adding these m +1 equations and using (6) one obtains
t + : ’ =
Vo vy )e g+ ......_+y(tk+m)ao, 0

Since ao =1, the above can be written as

m _
Since one can employ the same scheme for any k contained in the interval [0, n—m] ,
one has a total of n-m+1 equations in the m unknown aj. For a unique solution one must

require that
!
i(8)

n+l1=2m

Throughout this document this condition will be assumed satisfied.

The actual transient response values (y (tk); k=0, n) of equation (7) are unknown,
What is assumed available are the transient response data values (yk; k=0, n) which are

only expected to be approximations to the corresponding y (tk) values.

Thus if one introduces given transient response data into equation (7) equality in

general will not hold. Thus one is lead to define the kth deviation as



m

O =j2=:1 “ Yktm-j * Yk+m ®

To achieve a solution, a classical least squares procedure will be followed, One

first defines the sum of the squares of the deviation to be

n-m
2 2
s® =3 8, (10)
k=0
and then requires that
2s” .
Ja =0 j =1, m (11)

Thz resultant system of equations can easily be shown to be

m n-m n-m

y i=1, m (12)

=1 % kB0 Tmork-i Yk = EO Ymik-1 Ymek

Equation (12) is a coventional matrix problem of the form

R&a=T1H | _ . (13)
where
n-m

R =

i] kz=:0 Ym+k-i Ym+k-j

n-m ‘ : (14)

b, ==Y, ¥ P

i k=0 m+tk-i “m+k

Examining equation (14) one observes that R is real and symmetric and hence has
real eigenvalues with corresponding eigenvectors which span the mth dimensional vector
space. Further since.fw~ is real, one immediately concludes that if R is nonsingular
then equation (13) has a unique solution; @ which is real, Since & is real, the m roots of
equation (5) can in general be either real or complex. However, the complex roots

must appear in conjugate pairs.

As pointed out above since R is real and symmetric it has m real eigenvalues. An

even stronger conclusion with regard to R can easily be obtained,

Consider the eigenvalue problem



2 PR

=A
R G y Sy (15)

Since the eigenvectors of R can be taken to be orthonormal one can perform an

inner product on equation (15) with the vector Q,y . This yields
A LY M e § .
— Lo Q
(Q,Y » RO, ) A,Y'(,Y, L )

Y =2 ! \
(Q , RQ ) = A'V. (16) -

Thus one computes

A =n£:m<§l:y sz )2 ' ' (17)

Y e M=l mEk-iTyi
By equation (17) one conclﬁdes that if R is nonsingular then R has positive real num-
bers as eigenvalues ani thus is positive definite. This property of R is a result of the fact
that it is a Gramian matrix,
Returning to the development of the methodology for extracting poles and residues,

the rest is rather straightforward.

One computes R and_f; from equation (14) using given dafa and solves equation (13)

for the coefficients of the polynomial given in equation (5).

Equation (5) can then be solved for the m values of z using any one of several
polynomial root-finding methods. Once the z's are obtained equation (4) enables one

to compute the complex frequencies by the expression

i

In z.

L
Si = A

(18)

It is important to note that one is guaranteed a unique solution for the vector ] ,
and also for the m rcots of the associated polynomial. However, in general, the

resulting values of the complex frequencies are not unique.

10



This is most easily seen by observing that

exp (s/_\) = eXp((S:’: 22])A) k=0,1, «cc0
where here j = /-1. Since by equation (4)
Z = exp (sA)

it is apparent that the angular frequency, corresponding to s, 1s uncertain by an amount

+ 27nk
A

A

Since the computed frequency is constrained to lie within the interval}[o, _1r__:|
the above uncertainty implies frequencies exceeding the Nyquist criterion which requires

that the highest frequency present in the data be sampled at least twice per period.

The conclusion is that within the constraints of the Nyquist criterion the complex

frequencies obtained from equation (4) are also unique,

It only remains to compute the residues. This can be done in a straightforward
manner by considering the values of z, previously obtained as knowns in equation (3)

and then performing another least squares solution for the unique b,'s. Once determined,

i
the values for bi coupled with the known values of 8, and t0 enable one to compute the

ai's by equation (4).

In the above development it has been assumed that the transient response contains
only simple poles. As pointed out by Van Blaricum, the method extends quite nicely to
the case of multiple poles, the only real complication being in the added complexity one

encounters in formulating the second least squares problem for obtaining the residues.

Although the methodology derived ahove seems rather straightforward, there are

numerous difficulties en ' untered in application,
Some of the primary ones will be discussed below,

The first problem is that onz must be confident that the transient response is indeed
characterized solely by contributions due to simple or multiple poles, This point is

adequately treated in reference 2 and will not be reiterated here.

11



A second problem is that the methodology itself is quite sensitive to error in
the transient response data. Previous investigators have noted signal-to-noise ratio

in excess of 100 are commonly required for satisfactory results,

The third problem is perhaps the most difficult and is closely linked to the second
problem mentioned above. The methodology assumes that m is known or can be deter-
mined. For relatively noiseless data the problem is trivial and simply corresponds to
determining the rank of the R matrix displayed in equation (14). This can be done by
successively increasing the value of m until one observes that the determinant of R
vanishes or equivalently a zero is introduced as an eigenvalue. Numerically neither
will actually happen due to round off errors associated with specific machine charac-
teristics. However, except for extremely ill conditioned problems, the drop which
occurs in the computation of the determinant of R or in the-value of its lowest eigenvalue

as one progresses from the mth order to m+1th order R matrix is sufficiently dramatic

to allow identification of the correct value of m.,

On the other hand, for applications to real data the problem of determining m can
be formidable. Rather modest noise levels can completely obscure any meaningful drop
in either the determinant or the smallest eigenvalue of R as one progresses from the

mth to m+1th order matrix,

A fourth problem is in the theory underlying the development of the methodology.
Two successive least squares problems are formulated, the second based on assuming
the previously obtained frequencies are fixed and correct. Suppose such a procedure

provides a solution of the form

R m/2 .

. m/: o
Y =2, a e isnow,t
=1 '

Defining
n
2 A2
=2 [ Y]

k=0

one can easily show that the conventional Prony analysis provides

12



882

aai = 0 i=1, m/2

However, in general, it is not true that

s _  as®  _ 0
aa, ow B
i i

Although their is no guarantee, one might expect that, if obtainable, a least

square solution which simultaneously provides

o8> o a8

da T Bw =0 1=1, m/p2
i i i

could be superior,

It is the author's feeling that most of the problems encountered in applying Prony's
method are related to the four mentioned above, As previously stated, an adequate
discussion of the first problem area is available elsewhere. The other three problem

areas are the subject of the remainder of this document.

13



III. ERROR ANALYSIS

In Section 2, it was shown that to implement Prony's method one must solve a
matrix equation of the form

A -

Ra@ =D (19)

Equation (14) of Section 2 provides the preséription for computing the matrix R
-
and the vector b from given transient response data. In this section, the order of the

system (m), will be assumed known and the given transient response data will be repre~-
sented as

Y k k=0, n

where Vi is defined to be the true transient response at the kth point anc ek the error

associated with the given data at the k,ch point,

The error will be assumed to consist of stationary random noise having zero mean

. 2
and variance ¢ , and in addition will be assumed to be uncorrelated between points,

Equation (19) can be written as
® +E)T = BA(') +3 (20)

From equation (14) one can easily show that if all error terms are associated with E an
JA
5, then

n—m'
2y

N = +
Eij k=0 m+k-i €m+k--j ym+k-j €m+k~i
‘m+k-j “m+k-i (21)
n-m
612—2 ym+k-i ‘m+k + ¥m+k Em+k-i
k=0
2
* ‘m+k “m+k-i - 22

14



' Y
Assuming that E and 3\ are small perturbations on the errorless quantities R0
\

and bo’ equation (20) can be written to first order in the error terms as

S\ -1 Y L
&= o R~ (Ex -73) : (23)

where Ez\o is defined to be the solution to the errorless matrix problem

2 -1 >

@, = R b | (24)
Let us define a vector X as
X=E28 -3 (25)

Using the fact that 5?0 is the solution to the errorless matrix problem described

in equation (24) it follows that

n-m ' m

% %% Umik-d " emsi- Zg % “mrke) (26)

where o = 1 and=ozj. (j =1, m)correspond to the components of the vector _o?o.

By equations (23) and (25)

2 —
o

- -J — -
a, R X | v 27

Expressing X in terms of its projection.on each of the orthonormal eigenvectors of Ro“

one obtains
X,0)0
Yy Ty
A

m
@3 = -3
=1 Y

(28)

where )\,Y' is the eigenvalue associated withﬁ\,y . Using equation (26) and the previously stated

-\
properties of the error, it is trivial to show that the expected value of (X,ﬁ\,y ) is simply

\
(R, )y = (a-meno” (3,8 e

Combining equations (28) and (29) one obtains the expected value of the error vector

15



‘ m @ O |
) 4 — Q BRI
% Ty\ - 0{3 > = - (n—m+ 1) 0'2 E (_&_X._Y___l S_i (30)

"Lhis x%esult that the expected value of the error vector is non zero even for
the case of &ero mean error is termed biasing and hés long been recognized as a
potential pr{bblem associated with Prony's method. However, for application to most
practical pl{oblems the average error vector only has meaning if the variance of
(33, ?iy ) is émallu For this reason it is of interest to compute < (_X), ﬁ'Y )2 >. The |
derivation ﬂs sufficiently lengthly to be omitted from the main text but is provided in

the Appendifca The best result yet obtained by this author is that
Sy 2N RN 2 4 4 o 39
<(X'Qv) PRGN (<€ )" o ) (n -m+1) (0‘0’97)

v o2 1+ (a‘o, @) (2m(n-m+1)02 + (m+1)AY) ' (31)

| . R
4\ . . . s o .
where <e >1s the expected value of the fourth moment of the noise at a specific point,

The conclusion is that, depending on the specifics of the problem under investiga- O
tion, the expected value of the error vector given by equation (30) might provide a rather

poor indication of the error to be expected from but a few statistically independent

calculations,

However, one is really interested in obtaining an estimate of the accruacy of extrac-

ted roots of the polynomial
m

P() =Y, z % a =0 " (32)
i=0 : |
Differentiating the above one obtains

. -1 m-~j
dz ~ - (P (z)) Y. do. z (33) :
=)

Where P~ (z) denotes the first derivative of P (z) with respect to z. Assuming z corres-

ponds to the unperturbed root of P (z), one computes, to first order, that the expected

error, <d z> » 18
<dz> = - (P' (z))n1 § <dozj> Zm—j (34)

16



An obvious application of Schwarz's inequality results in the bound

/2
'1{ @ -2 | (35)

However, again this bound is only of practical value if one or several computa-

tions of ||&- 5\0" can be expected to approximate ||<&\ - 6130>|| reasonably well. With

this concern in mind one is lead to compute

.12
{a?> = |pr (=] § e zm_]‘ >
=1
 om ‘
<ldzz|>s |P’(z)l"2 __:_Z_lri_j__l_ <?02\-'o%, o~ aA0> (36)

From equations (35) and (36) one concludes that to estimate the error in the roots

of equation (32) it is desirable to have knowledge concerning both “|<5\- @ ||> and
. o [

< (@- a‘o, o- ‘02‘0)> .

" From equation (30) one determines that/

K-8« @-m+1)o’|d n(

o\ 1/2
Ay ) (37)
y=1

From equations (28) and (31) one computes that

m
(@-3, d-3)) s a-men’ ot @7 55
r=1

-2

Ms

{
-
<

reemenet (143 )(2m+<e>/v -1)

2
m

+ (m+1) 02(1 + ”E\b” )Z A, : ' : (38)
y=1

Thus to first order, if o and <€4> are known, one can use a computed vector a
and the computed eigenvalues of RO + E as approximations to 'o'z\o and the A ,Y's to evaluate
the bounds given by equations (37) and 38). These resulting bounds in conjunction with
computed root locations of equation (32) and equations (35) and (36) provide bounds by

which one can estimate the accuracy of the computed root locations. The author's

17



1
|
|
|

numetrical experiments to date have only addressed the adequacy of the bounds given

|
by eqﬁations (37) and (38). These experiments, which will be described latter in this
repor

t, have proved quite successful, at least for the sample problems studied to date.
|
Thus, although the utility of the error analysis presented has not been completely

estab{ished, preliminary results are encouraging.
|

As was pointed out above, the preceding error analysis assumes that the variance
and the expected value of the fourth moment of the noise and in addition the correct rank

of Ro‘are all known. The following section addresses these issues.

| 18
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IV. THE PERTURBED EIGENVALUES ’

As discussed at the end of Section 2, for the noiseless case, the order at which
the R matrix acquires a zero eigenvalue provides a criteria for establishing the
correct value of m in equation (3). Further, as observed at the end of Section 3, one
is hopeful that the perturbed eigenvalues of the R matrix of correct order are adequate
approximations to the eigenvalues of the noiseless R matrix for use in the bounds

generated in the error analysis. The objective of this section is to study the statistical

properties of the perturbed eigenvalues of the R matrix.

Let us again define R =R+ E where R is noiseless and E is an error matrix.
Suppose one studies the eigenvalue problem
R_+E)Q., = A0 39
Ry + E)S2y = Ay Sy | ’ (39)
' Employing the first order, Rayleigh—Schrédinger perturbation method (ref 3)

one obtains that

(9 (©) =00 |
A=Ay ¥ @ ys BR) (40)

(o)

where A" 5, and ?f(o.)}, are solutions to the system

B 0) =0
ROQ(O)»Y = 20 80, ‘ (41)

Throughout this section, it will be assumed that the Ro matrix is of order equal
to the number of poles in the data or greater. By the properties of the RO matrix des~
cribed in Section 2, one knows that the set of unperturbed eigenvalues consists of non-
negative real numbers. From the preceding section one recalls that the E matrix of

equation (41) is simply

n-m
Eii =2 Ym+k-i “m+k-j+ m+k-j ‘m+k-i
k:o .
Temtk-i CmAk-j (42)

3. Merzhacher, Eugen, Quantum Mechanics, John wiley & Sons, Inc., New York,
December 1960, :

19



by equations (41) and (43) one obtains

m

(0) m
A=A +}:(ZQ (©) )(! ©)
YV kNl i 'ymfk“i Zﬂﬂi metk-j

m m
+ 3 R0l

of AY 1s simply

) ((o) !n-m m m
< ‘v>= Ay +'Z
k=0 j=T i=1

Assuming the noise is uncorrelated between points implies that

Gy -3, s omey o

2, .
where o is the variance of the noise,

turbed zero eigenvalue of Ro (Y= m), equation (46) implies that

<7\m> = (n-m+1) o2

in reference 2. In reference 2 sample problems are studied in a Monte Carlo fashion to

verify| equation (46). In these same studies the standard deviation of Am is computed and

For convenience, let us repfesent the components of QY(O) as Qi(o), i=1, m. Then

o |
() D (o)
+(]_Z=:1 2 ym+k--j)(;?:=:1 2, €m+k-i)

i j m+k-~i €m+k-—j

Since the nois2 is assumed to have zero mean, one observes that the expected value

(0) .(0)
0 07 Cemtk-1 m+k-3p

For m one greater than the true rank of Ro and for the expected value of the per-

The above is identical to an expression derived in a different way by Van Blaricum

(43)

(44)

(45)

(46)

for the problems examined, shown to be reasonably small with respect to <)\m> . Hence!

for these specific problems a single computation Am can be expected to be reasonably

close to the theoretical value predicted by equation (47). However, can this result be

expected for other problems?

20
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To answer this question, one desires to compute or bound the standard deviation
associated with )\m., Further, due to the importance of the non zero eigenvalues of R
in the error analysis expressions, one is also concerned with their standard deviations.

The best bound obtained to date by the author for the standard deviation of the 'Yth eigen-

4
+ (n-m+1) 04 gf'z +4m -5 47)

ot

value is

2 2
0,° s 4mo 7\7(0)

The derivation of the above expression is rather lengthy and therefore is presented .

in the appendix, As in the preceding section, the quantity<e4> is the expected value of

the fourth moment of the noise,

- . N
It is informative to examine the value of <€4> / o for two different type noise.

The noise utilized in reference 2 was normally distributed. From reference 4,

for normal processes with zero mean it is known that

& %G 9y = & & D DG P& | > €4>'g (48)
Thus if all indices are allowed to be identical one obtains
&= adt (49
or for normally distributed noise

(A fot - s, (50)

The noise utilized in the present author's numerical studies was uniformly distributed

and can be represented by
e = Bx (51)

where x is distributed uniformly on the interval from [- 1/2, +1/ 2] o

4, Crandall, Stephen H,, Mark, William D,, Random Vibration in Mechanical
Systems, Massachusetts Institute of Technology, 1963,

21



+1/2
A
0’2 = E2 f X 2 dx
-1/2
A
2 - E2/12 ' (52)
and l 4 4 "/ 4
A
<e > = E f X dx
| ~1/2
A
D = /80 (53)
or fon uniformly distributed noise,
<e4>/ o = 1.8 (54)
Returning to equation (47) one can express it in another form as -
' : 1/2
o ‘ .
- i 4 4
o = O72) NS by N
Y 1/2 4 ) - + <A - [+} (5"’)
(a-m+1) 4 vty

T)vhere from equation (45) one recalls that

2
<>\V> = AYO + -m+1)0 (56)

For A,yo = 0, equation (55) simplifies to

A ~ 4 1/2
0")’ < _.._..<...1>.._..1_/_é ..(.EZ.}_ -5 +4m (57)
(n-m+1) -

From equation (56) and (57) one observes that the standard deviation of the perturbed

/2

1 R
zero gigenvalue of RO increases with n by the factor (n-m+1) " . Also for a single O

Q-
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computation of xy to be representative of <7\y> one must use a reasonably large number of

data points in comparison with m.

However for sufficiently large }\y(o)’ equation (47) implies that
2 2. (o)
o, < A
y S dmo » (58)

and therefore the standard deviation of the higher eigenvalues is independent of n except
for the variation of A,y ©) itself. In the next section, it will be shown that A () is

Y
expected to he an increasing function of n, Since from equation (58)

(0) (0)\-1/2
%N 20 Y m (}\,y ) |

Thus one observes that for all eigenvalues a single computation of 7\7 becomes a
better approximation to <A‘Y> as n hecomes larger,

On the other hand from equation (56) one observes that the expected value of 7\7

. . o .
becomes a progressively poorer approximation to A y as n increases,

Regardless, for n much larger than m, one expects that as m is taken larger than
the correct rank of 'Ro a chain of eigenvalues having magnitude of approximately (n-m+1)

0'2 will develop. The spread in magnitude of members of this chain should be of order

5 o2 (n_m+1)1/z <<€4>/G4._5 . 4m> 1/2

The problem of determination of the correct rank of the system is thus eqhivalent

to determining when this chain begins. Since the expected value of the non zero eigen-~

values is
o 2
<>\.),> = A,y + (n-m+1)0

The problem of determining the correct rank becomes formidable if A,YO is small
with respect to (n —m+1)02, Further, under the above condition, one suspects that the
first order perturbation analysis itself is inadequate for this eigenstate. As will become
apparcnt in the next section there are things the analyst can do to alter the value of A,YO

in an advantageous manner in order to facilitate the determination of m,
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I
V. THE EIGENVALUE STRUCTURE OF R_ | | )
o
» , ®
&'rom the results of Sectlons 3 and 4, it should be very clear to the reader that
the nahre of the eigenvalue structure of R is very important with respect to the accuracy
of Pr(ifny s method and with respect to the problem of determining the correct order of

the Sﬂstema In this section, two obviously ill conditioned problems will first be studied

with respect to their impact on the eigenstructure of Ro. “These problems are ones which

have tLeen observed by the author to present numerical problems and by their very nature
this s*xould be expected, '

The first ill conditioned case is oue in which there exists a very weak or low inten-

sity signal, x(t), in the response data. In this case the true response can be written as

T = y©) + x(t) - (59)

wher# X (t) can be thought to be a small perturbation on y (t).

The second case is one for which two system poles are closely spaced.

Let us assume the system has poles at 84 and 8y where |t (s1 - s?)l«l over the| O
time window to be studied.

‘Then defining Sr\(t) to be the total response one can write

Tt = ae 1t + aze Sat
/\ A
= oSt ( .-s)t +a, (sz~$)t)
St At
o~ (a +a2)+te (al (s1 s)+a2 (sz—s))
‘ A
s

Choosing s = a T a , one obtains
1 2
A at 2 At A2 A2
=~ - - + S - S GO
Yt = e (al + az) + 5 e (al (s1 S) a, (sz S) ) (60)

24




Therefore the response can be approximated as simply the sum of contribu- :

tions due to a simple pole located at the residual weighted mean of the actual poles and

a second order pole at the same location having very small amplitude.

Thus for both cases mentioned above the situation is basically the same in that
the response can be reasonably well approximated at a lower value of m than is strictly

correct by an expression of the form
A
yi =y +x(t).

Let us assume that the matrix Ro is constructed of the y (t) values and has order

m. Thus if the RO matrix constructed of the y (t) values of order m+1 is examined it

will have a zero eigenvalue.

For x(t) sufficiently small one can again use first order perturbation theory
to estimate the shii: in the zero eigenvalue. Note this time the shift from zero is due to
neglection of a true signal component rather than random noise in the data, As before onej

can write for the perturbed zero eigenvalue that |

A= ( (0) E o )) | 1)

.
where §2 ©) is the eigenvector associated with the zero eigenvalue of Ro.

However for this case, letting m correspond to the order of E
n-m

Eij :z ym+k-ixm+k"i + ym+k"i m+k-i

k=0
Xm+k-j “mtk~i O (62)
Hence n-m 2
(0) ’ 4 (63)
A= 2(; m+k-i 9, >
k=0 1

Again Schwarz's inequality provides a useful hound

(8 ) S0

k=0 \i=1



—
. o, .
and since Q is normalized.
: m n-m

\ 2 . . :
.
A‘S¢=§J Z X m+k-1i ' (64)

i=1 k=0 |

J‘ThuS for both cases previously introduced, computation of the eigenvalues of the

corrqut rank R matrix is expected to provide at least one eigenvalue less than 3. .
2

If there is noise in the data and if ¥ is nearly equal to or smaller than (n-m+1)g
one should expact to have difficulty in determining the correct order of R0 and should

expect‘ problems in determining the true locations of poles in the data.
|

| .
Because of the above discussion and the results of Sections 3 and 4, one desires to

maxirﬁgize the smallest non zero eigenvalue of Ro" The remainder of this section addresses

|
optimization concepts directed at achieving this result.,

Assuming that m'is tentatively fixed, the parameters which influence the eigen~

structure of R0 are the sample spacing A, the time to corresponding to the first data

point, and the length of the data set n.

From equation (64) one suspects that the eigenvalue introduced by a low intensity

signal is roughly proportional to the sum of the squares of its magnitude over the data

space;

}Suppose there exists a low amplitude signal

| x(t) = a e_at sinwt

Therefore one can write

X (tk) = a exp ( --ozto - aAk) sin (o.)to + wAk)

|
The first observation is obvious, If to is taken to large, the e ato term can
significantly reduce the magnitude of x (t) over the data window. The second observation is
of equal concern, Suppose one selects to such that sin cotoz 0.’ Then if wA~7 then sin wtk
can remain reasonably small until k becomes quite large, However, when k becomes quite
large the exponential damping may be significant, Thus one wants to avoid sampling in such

a way that in the early part of the data, signal strength is low.
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The sensitivity of the eigenvalue structure of R0 to sample length'n and the
importance of this parameter is less obvious. In conventional least squares procedures'

the rule of thumb is to use as much data as available, In Prony's method this can be

disastrous.

As observed in the preceding section the expected value of the shift in the cigen-
values of the perturbed Prony matrix increases linearly with n, For damped signals
one knows that the true eigenvalues approach a limiting values as n increases since
the contribution of near zero data values to the R0 matrix is minimal., Thus if one takes
n excessively large, the expected value of the eigenvalues due to noise and the expected

value of the shifts in the perturbed eigenstructure increase with respect to the limiting

values of the unperturbed eigenstructure.

In addition, kecause of the above observations, it is important to know whether the
true system eigenvalues are non decreasing functions of n. Again first order perturbation

theory can provide some insight.

Suppose the addition of the n+1 data point is considered to result in a small change

in the value of R computed with n data points.

Thus one expects the eigenvalues to shift by an amount approximated by

N 2
A= (Q,Y »yEQ, ) : (65)
where now
1ij’= n+1-i n+1-j (66)
Therefore ) | .
Ax_y=<§ ynﬂ_ini(w)zz 0 (67)
Ai=1

Based on equation (67) one suspects that all the eigenvalues are non decreasing

functions of n, at least for n reasonably large.

A
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‘This section has attempted to point out that the eigenvalue structure of the Prony
matriLz is dependent upon what the author prefers to call problem structuring parameters.
Thesg arc: the number of data points, n; the sample spacing, A; and the time corres-
ponding to the first data point, to" The analyst has some flexibility with respect to selec~
tion of these parameters, If n is fixed and taken sufficiently large to control the variance

in the eigenvalue distributions, the first order analysis provided in Section 4 suggests that

to and A can be optimized by maximizing the lowest eigenvalue of the perturbed matrix,
Also,

[y

2 .
the discussion concluding Section 4 implies that an approximate value of o is rela-

t1vely‘ easy to obtain and hence the theory of Section 4 coupled with observed changes in the

pe1‘cufbed mgenvﬂue structure for various n can be helpful for ascertaining the optimum

value ‘of n,



VI. NEGLECTED SIGNAL STRENGTH

In Section 3 and 4, the error matrix E and error vector o -Tfo associated with
Prony analysis was assumed due only to random noise, This section will address the
eigenvalue structure of R and the error vector 5\-'6?0 resulting if the order of the sys~-
tem is taken smaller than is strictly correct. For such a value of m, the R matrix
can be written as the éum of a Ro matrix generated by the contributions due to a sub-::t
of the actual poles in the data and an error matrix E due to both random noise and to

neglected signal strength, With the above guidelines, the error matrix is simply

n~-m
n = +
Lij Zz Ym+k-1 Ym+k-j ym+k-j Ym+k-i
+
mt+k-i Ym+k-j . (68)
where
v = X +¢€ (69)

In equation (69), X represents the neglected signal strength and ek the random

error present at the kth data point,

One desires to estimate the impact of the presence of xk on the perturbation of

the eigenstructure of R,

Again, to first order one writes that

r =2 9 v @ L ED) (70)
Y Y i Y Y

Performing the expected value operation of equation (70) yieldsE

n-m m m

<>"}'>:X’Y(O) + (n—-m+1)0'2+2 Z E Q 9
k=0 i=1 j=1 = 7

71
(*marc=i Fmek-g * % Tmric-t Fmokej) o
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For

A’Y ©) _ 0, equation (71) implies that

, o D-m/m 9
A )= -m+1 + . . . 2
Qy)7 omenie kzo<21 i xm“H) -

The contribution to é'y> from the neglected signal is clearly bounded by

n-m | 2 n-m m 2 '

Therefore, if the neglected signaz is such that
n-m

m
2 2 :
X < n-m+1)0o (74)
=1

k=0 i m+k -1
One concludes it will have a reasonably small impact on the expected value of the
perturbed zero eigenvalue. The above conclusion is not true for the higher eigenvalues.

From equation (71) ore can write

<}"y> = 7\7(0) + (n-m+1$02 + <py (75)
wherL
(o) , \1/2
6] < 2 (7\y z,b,y) t (76)

and

n-m 2 n-m m 2 )
LY (Z 2y xm+k-i) <2 2 *mek-i (7

k=0

Thus the per turbatlon in the expected value of the higher eigenvalues can potentially
L ificantly increased by the presence of the neglected signal. However, from Section
4, 01 e recalls that the standard deviation associated with the higher eigenvalues can also
ch larger than the expected value of the eigenvalue perturbation, Thus judgment
of ’rh£ impact of neglected signal strength must take into consideration changes in the
variance of the perturbed eigenvalues, It can be shown that the presence of neglected
signll strength results in equation (:18) of Section 4 being modified as given below!

o:yz < 4m 02(}\,),0 + \QYU

4
. (n-m+1)cr4{g€_4’2 +am - 5} (78)
‘ g
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Where |<,0,Y | is bound as described by equations (76) and (77). The development,
of the preceding equation can be found in the Appendix. From equations (76), (77) and
(78) one concludes that the neglected signal has minimal impact on the variance of the
perturbed cigenvalues, Thus in practical situations in which only one or several satisti-
cally independent sets of data are available, the presence of neglected signal strength

should have relatively little impact on the error of computed perturbed eigenvalues,

One must now investigate the effect of neglected signal on the error analysis pre-

sented in Section 3. With neglected signal the error vector of equation (25) is modified

so that

n-m m .
— ! m
) kz=o i=21 i (Pm+k-1 " Ymak-1) 2 % Ve | (79)

73=0

!

Therefore one computes that

n-m m
< R z]_Q'Yl Ym+k-1 T Fmak-1) 22 % *m+k-i

k=0 j=0

+@-m+1o” (@8 ) | (80)

Trom the above one concludes that the neglected signal can pctentially have a

P N
significant effect on <X R Siy> . However, as in the case of the eigenvalue analysis, one

must also understand how the expected value of the second moment of equation (79) is

- modified.

As is shown in the Appendix the inclusion of neglected signal results in the modifica-

tion of equation (31) to the form..

= 2 =2 ) (v A \2
< ,Qy)>s <§;,Qy> < > n mFl)(ao,Q())
+ 0' (1 -+ (a , @ )<2m (n—-m+1)cr + (m+1) A )

- A 1 2 )
+4 (m+1)0'2 1+@,ad,) (zp,y + (wyxy) / ) (81)
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Wh(JrG
n-m m 9
| 3 Y xmtk-j . - (82
' k=0 j=0

-
‘ Therefore, one concludes that although the variance of (X ,Q,y) is rather insensitive

)O'

to neglected signal, the second moment can potentially be greatly magnified resulting ;

. . . -
in ephanced errors in the solution vector @ .



VII. ITERATIVE IMPROVEMENT

As mentioned in the text concluding Section 2, Prony's methodology consists oft
two successive applications of least squares criterion, The first is in the determina~
tion of the coefficlents of the polynomial whose roots correspond through a trivial
transformation to the system complex frequencies. The second least squares pro-
cedure is applied in the determination of the residues and for this determination the;
previously computed frequencies are taken to be fixed. This section describes an

alternative least squares solution criteria,

Let us assum=2 that the result of first least squares application provides m distinct
complex roots. These must necessarily correspond to m/2 complex conjugate pairs.
- .th ) .
Writing the i™" complex frequency in terms of its real and imaginary parts, one has,

= e + i
Si oy ]wi (83)

where j = \J -1;. Therefore, a solution of the form

m/2

y(t) = z e _ait (ai sin wit + Qi cos w; ) (84)

is expected under the above restrictions,

Often from physics considerations, causality requires that the ﬁi =0,i=1, m/2.
In problems for which Qi is truly zero, neglect of this constraint has been found to

seriously degrade the solution accuracy for noisy data,

For the remainder of this section, it will be assumed that the correct formulation

of the system response is
m/2

y = z a e moyt sinwit ' (8%)
i=1

Let us define the sum of the squares of the deviations between y (tl") and Vi to be
s




n

‘ 2
Sz, - z (Y(tk) "yk) : (86)
k=0

Since the last step of the Prony methbdology is computation of the a_ 's by a least
i

. 2 . . :
squales procedure applied to S~ as defined in equation (86), one is assured that within
machine accuracy

9 .
8s _ _
oa = 0 , q=1, m/2 (87)

iTowever, since the complex frequencies are assumed known, it should be obvious
that in general |

2 2
8. 0 , B, q=1, m/2 (88)

aozq Bwq

This is indeed the case as later numerical results will adequately demonstrate.

The basis of the iteration methodology to be described is that one might expect

882 882 BS2
da - ¢ - —5:)* =0 9

that T solution satisfying the property that

might be superior to that achieved through implementation of Prony's methodology.

Numerical experiments performed to date seem to support this contention as will be

seen toward the end of the next section,

This iteration methodology for establishing the property stated in equation (89) begins

' ‘ 2 2.2 2
with The numerical computation of the partial derivations 89S, 9. S , 9S_ , andf
2 2 2
2”s” . %y ha 0wy
2 q
ow
q

Symbolically letting Bq represent either aq or wq' one assumes that the variation
in S2 with respect to a small change in ﬁq’ all other parameters remaining fixed, can

be approximated as
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' 2 2 2 2
2 2 28 A 9_S
+A) = 8 + A 90
§ (B, *8) (ﬁq), apq S aﬁq2 (90)

The quantity A must be restricted such that the higher order terms are indeed

negligible.

Using cquation (90) one determines the maximum reduction in 8 which can be

achieved by optimum selection of g within the restricted interval,
q

The above process is applied for each cvq and wq. The one parameter that promises

. e el o2 .o
the maximum reduction in S~ is then modified.

The resultant frequencies are then assumed fixed and a least squares process is

applied to evaluate updated values for aq which is guaranteed to provide additional reduc-

tion in Sz.

The process outlined above is then systematically continued until the condition stated

in equation (90) is achieved within machine limitations.'

Numerical experiments with this iteration technique have been limited iﬁ scope but
results to date have been quite impressive. Additional effort is needed to optimize the
methodology and to marry it with the error analysis results developed in previous sec-.
tions. Timing studies have not yet been performed but obviously time requirements are
directly proportional to the accuracy of results obtained from the conventional Prony
methodology. Numerical experiments with extremely ill conditioned problems such as two
root locations close together or with a signal component of very low intensity have provided
interesting results upon iteration, For the low intensity component prbblem, 82 becomes
relatively insensitive to this component and the minimum with respect to its frequency
components becomes very weak, As a result, poorly defined starting values can result
in this term being iterated out of the solution, The iteration process usually accomplishes
this by continuallly increasing the damping associated with this term,

Similarly, depending on starting values the iteration process can remove from the

solution one of two nearhy poles using the remaining one to approximate the response

contribution of both,



The reader should note, however, that the development and majority of experimenta~

tion with the iteration process preceded in time; the theoretical results and understanding

of Prhny limitations described in the previous sections. Result from these earlier sec-

tions

indicate that problems ill conditioned in the sense described above, will result in

similar problems with respect to establishing the presence or absence of such components

by P

\ .

rony's methodology,

From preceding sections, the reader should note that because of the expected

error properties of Prony analysis, one might not employ all the data to determinc the

pole

locations, Error characteristics might dictate that only every second or third data

poirt be used and that a sample length significantly smaller than that available be employed.

The iteration process described above, apparently does not suffer from these limitations

and all available data can be incorporated. Inclusion of data points dominated by noise

seems to have no adverse effect on the iteration process.

36

O



VIII. NUMERICAL RESULTS

In this section, the author presents the results of numerical experiments which
either illustrate concepts rather qualitatively discussed in earlier sections or examine
the appropriateness of theory developed. Because of the importance of unperturbed
cigenstructure of the Ro matrix, the author has chosen to present data illustrating the

sensitivity of this eigenstructure to problem structuring parameters first.

In Secticn 5, the problem structuring parameters were defined to be the time
corresponding to the first data point, to; the number of data points, n + 1; and the sample
spacing, A ., Tablz 1 studies the sensitivity of the minimum eigenvalue of the Ro matrix

to the parameter, t , for three different transient responses with other problem struc-

o]

turing parameters

r3

emaining fixed., For function 1, a simple sinusoid, the variation

in }\min is small since the average signal strength is constant in time and thus shifting
the data window to latter time has relatively little effort, For function 2 and 3 there

is a somewhat more pronounced effect due to removal of relatively intense early time
data and substitution of dampéd later time data. Tables 2, 3, and 4 display the sensiti-
vity of the minimum eigenvalue (and for table 4, the maximum eigenvalue also) to varia-

tions in sample length, n, with other problem structuring parameters fixed as specified.

In table 2, a simple sinusoid is studied. The staristep increases in Amin with
A= .5 ig a result of the sin (t (n+1) 7/2) vanishing for n odd. The fact that the columns
for A= _,3 and A= .7 are identical is a result of the sets of transient response data
being simply of opposite signs. For the damped sinusoid displayed in table 3, the
damping destroys the abovestated equivalence between A= .3 and A=.7. Also, due to
the damping, one can observe a weak reduction in the rate of increase of Amin with
n as n becomes larger cspecially for the case A= .7, This latter property is somewhat
more apparent in table 4 since the most weak signal component is heavily damped for
n =29, It should also be noted that the change in Amax is much more dramatic and

increasing since the composite signal strength remains appreciable,
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Table.1. Sensitivity of Minimum Eigenvalue to to

FUNCTION 1: y (t) = sin 7t
FUNCTION 2: y, (t) = e 0%t ginnt

; -2t -.3t
FUNCTION 3: Yg ty = 1.0e sin (.5 7wt) + .50 e sin (nt)

+.25 6 amn (1.57t) + .10 e % gin (2mt)

STRUCTURE PARAMETERS:

Functions 1 and 2: A= .4, n=49, m=2

Function 3 +&=.2, n=49, m=8

to Amin of y 1 Amin ofy 2 Amin ofy 3

0 .1675 x 10° .7394 x 107 ,1500 x 10
.1 .1664 x 102 .7215 x 10° .1492 x 1070
.2 .1651 x 10° .7070 x 101 ,1489 x 107°
.3 .1641 x 102 .6979 x 107 .1491 x 1070
.4 .1637 x 102 .6948 x 107 .1488 x 10>
.5 .1641 x 10° .6963 x 10" ,1489 x 1070
.6 . 1651 x 10° .6996 x 10° .1483 x 10™°
7 .1664 x 107 ,7007 x 10 .1397 x 10
.8 . 1675 x 102 .6960 x 10" 1184 x 10°°
) .1680 x 102 .6847 x 107 .9620 x 107°
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Table 2. Sensitivity of Minimum Eigenvalue to n for Sinusoid

FUNCTION:

y() = sinnwt

STRUCTURE PARAMETERS: m=2, to =0

n ?\min withA=,3 Amin with A= ,5 lmin with A= .7
40 <7912 x 101 .1900 x 102 7912 x 101
41 .8244 X 101 «2000 x 102 .8244 x 101
42 « 85687 x 101 02000 x 102 - 8567 x 101
43 8373 x 101 .2100 x 102 . 8573 x 101
44 .8788 x 101 .2100 x 102 . 8788 x 101
45 . 9189 x 101 «2200 x 102 . 9189 x 101
46 . 9265 x 101 « 2200 x 102 09265 x 101
47 . 9359 x 101 +2300 x 102 .9359 x 101
48 9762 x 101 «2300 x 102 S L9762 x 101
49 . 9961 x 101 «2400 x 102 . 9961 x 101
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Table 3. Sensitivity of Minimum Eigenvalue to n for Damped Sinusoid

FUNCTION: y(t) =e

=05t .
sinm

STRUCTURE PARAMETERS: m=2, to =0

A . withA=.3
min

A . withA=.5
min

n . Amin with A= .7
40 ,4698 x 107 .8501 x 10° 2742 x 10
41 ,4800 x 107 .8643 x 10" .2764 x 107
42 4895 x 101 .8643 x 10" .2782 x 10
43 4897 x 101 .8772 x 107 .2783 x 10%
44 .4958 x 107 8772 x 107 .2794 x 107
45 .5066 x 10" .8888 x 107 .2813 x 10"
46 .5086 x 10' 6888 x 10" .2816 x 10"
a7 5110 x100 .8994 x 10 .2820 x 10"
48 .5211 x 10° .8994 x 10 .2836 x 101
49 .5258 x 10° .9089 x 10° .2843 x 10"
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Table 4. Sensitivity of Minimum and Maximum Eigenvalues

to n for a Sum of Damped Sinuscid.

FUNCTION: y(t) = 1.0 ¢ °2 St

sin (.57t) + .50 e " -sin (7t)

+ .25 e P gin (150t + .10 6"

sin (2rt)

STRUCTURE PARAMETERS: m=8, to =0,A=,2

B Amin Amax .
20 1381 x 107 .2055 x 10°
21 1382 %10 2186 x 102
22 1411 x 107° .2307 x 102
23 1424 x107° .2399 x 102

(D 24 L1424 x 1070 2450 x 10°
25 .1426 x 10™° . 2463 x 10°
26 1427 x 107 .2464 x 102
27 1427 %107 . 2487 x 10°
28 .1427 x 107° .2550 x 10°
29 .1427 x 107° .2632 x 102
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- In general from the preceding four tables, one observes rather minor sensitivity
of the minimum eigenvalue of th'e Ro matrix to t0 and n, Certainly if a highly damped
component is present in the transient response data, the sensitivity to to would be
magnified considerably. The sensitivity of the eigenstructure of the Ro matrix to the
pafameter is much more dramatic as demonstrated by table 5. Clearly for the
sixpple and damped sinusoids the optimum displayed A is the same and corresponds
to ‘ A= .5 which is 50% of the Nyquist criterion, With t0 = 0, one is therefore sampling
at khe maximum, the minimum, and the zero crossings of each cycle. One should also
ob.%erve that with a starting time of to =0 and with A=1,0 Amin of ¥y and y 9 vanish
sin[co now one is sampling only on the zero crossings. For function 3 in table 5 the
Nyquist criterion corresponds to A= ,5 and a zero value of Amin results due to samp-
ling of the lowest signal component at its zero crossings. Also based on the data given,
onja observes that the optimum A is 80% of the Nyquist criteria or A= ,4, Calculations

of F\min fory 3 were also performed for sample spacings violating the Nyquist criteria.
As

one might expect, for damped waveforms, there is no apparent advantage in this
plobr and in fact the zero eigenvalue at A= 1.0 is a result of sampling two signal com-

poﬁents only at zero crossings,

ble‘m structuring parameter is A and the analyst must he especially careful of its

Based on the preceding tables, the author suggests that the most important pro-

sel‘ection.,

‘ Also in Section 5, two ill conditioned problems were discussed and rather crude
anetlytic arguments made to explain the nature of the ill condition. Tables 6 and 7 dis-
play numerical results with reinforce the comments made in Section 5, In table 6,

the weak signal component problem is numerically studied as a function of weak signal

str‘ength and resulting impact on the eigenvalue structure. The minimum eigenvalue
is ?bserved to drop two orders of magnitude for a factor of ten reduction in weak
sig’jnal strength, Table 7 addresses the ill conditioned problem in which two poles are
clo%ely spaced. Here one observes a drop in the smallest eigenvalue of almost four

orders of magnitude as the frequency separation parameter is reduced from .1 to .01,
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Table 5. Sensitivity of Minimum Eigenvalue to A

FUNCTION 1: y, (t) = sinnt

FUNCTION 2: y, () = e 2 it

I

-0 2t -. 3t

FUNCTION 3: y, (t) = 1.0 e " sin (.57t) + .50 e

sin (7t)
+.25¢ ° at sin (1.57t) + .10 e * ot sin (2 wt)

STRUCTURE PARAMETERS

TFunctions 1 and 2: n=49, m=2, t0=0

Function 3 : n=49, m=8§, to=0

A }‘min of y1 Amin of y2 Amin of y3

.1 .1136 x 107 .5162 x 10° .1358 x 10

O .2 ,4531 x 107 .1166 x 101 .1500 x 10~

.3 ,9961 x 10 .1709 x 10% .3275 x 107

4 .1675 x 102 .2151 x 10" .2794 x 1072
.5 2400 x 10° .2483 x 10" -, 4590 x 107 1°

.6 .1675 x 10° .1428 x 107 .2907 x 100

1 .9961 x 10™ .7290 x 10° .1028 x 107°

.8 4531 x 107 .2951 x 10° .1632x 1070

.9 .1136 x 10° 6710 x 1071 .5480 x 10
1.0 .1000 x 10”7 .1030 x 10718 ~.3760 x 107 1°




Table 6.

Eigenvalue Structure -vs- Weak Signal Strength

FUNCTIOXN:

yt = o0

sin (wt) + € e 05t

sin (wt/2)

STRUCTURE PARAMETERS: m=4, n=49, to=0. yA=,4

€ A Ag A3 A4

2 2 0 -2

.100 . 2468 x 10 .1546 x 10 .1631 x 10 .5128 x 10
2 p) -1 -2

075 . 2469 x 10 .1543 x 10 .9193 x 10 .2883 x 10
_ p) 2 -1 -2

050 . 2472 % 10 .1542 x 10 .4090 x 10 .1280 x 10
2 | 2 -1 -3

.025 . 2476 x 10 .1542 x 10 .1023 x 10 .3194 x 10
.010 .2479 x 10° .1543 x 10° 1636 x10°2 | .5103 x 1072

44

O



imb Table 7. Eigenvalue Structure -vs- Frequency Structure

FUNCTION: y(t) = .b e-'OSt sinn7t + .5 e-'OSt;sin'rr(l—e)t
STRUCTURE PARAMETERS: m=4, n=49, to=0. y A=.4
€ A1 A A3 A4
- 2 1 ) -1 ~2
.100 .1265 x 10 .7883 x 10 .7645 x 10 .9539 x 10
2 1 -1 -2
.075 1346 x 10 .8265 x 10 .3375 x 10 .4504 x 10
2 2 -2 -2
.060 1718 x 10 +1052 x 10 .7060 x 10 .1011 x 10
. 025 $2242 x 102 01375 x 102 . 3898 x 10“3 . 6467 x 10'"4
2 -5 -5
.010 .2443 x 10 .1512 x 10 9395 x 10 .1681 x 10
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|
| Two of the most important messages for the analyst performing Prony énaly sis
in th%; presence of noise that this document attempts to convey are the importance of
proptr selection of sample spacing and the danger of using an excessive number of data

points that are dominated by noise. Table 8 attempts to reinforce these messages with

numerical examples of recovered complex frequencies in the presence of noise, Com-~

puter generated noise was added to the given function and the perturbed problem was

solved using three different sets of problem structuring parameters, The discrepancies

are not as dramatic as they could be but the noise level is rather modest, From the

structure parameters given in table 8, the reader should note that problem 1 utilizes

a good sample spacing with a reasonable number of data points, Problem 2 is identical
to }'»:Pblem 1 except that the number of data points has been doubled. The computed
frequencies are rather similar except for those associated with the weakest signal com-~
ponejlto Computed damping factors are rather poor for both problems with respect to
the two most weak signal components. Problem 3 is identical to problem 1 except that
the jample spacing is halved, Consistent with the results observed in the previous

tables the deterious effect is much more pronounced,

The next six tables (tables 9 through 14) present numerical results in support of

the theory of the perturbed eigenvalue structure developed in Section 4, In all these
tables, the highest indexed eigenvalue was computed using the RO matrix of order one
- greater than the true number of poles in the data, Twenty Monte Carlo runs were
performed for this eigenvalue study. The remaining eigenvalues were computed for
the R matrix of correct order and 10 Monte Carlo runs were used for their study. In

each [table is presented the unperturbed value of the respective eigenvalues A (O), the

Monte Carlo generated estimate of <7\'7> , and the Monte Carlo generated estimate of
the standard deviation associated wit]éx A'y' The column labeled theoretical mean is the
valui which results from evaluating ébquation (45) of Section 4, The theoretical bound

on standard deviation is evaluated by equation (47) of Section 4, One observes that ’
the tjy.eoretical means reasonably approximate the experimental results within the ].imfts
impof;ed by the observed standard deviations and number of samples generated, Further,

the theoretical bound on the standard deviation in general provides an estimate that is

higher by no more than a factor of two than computed results.
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‘w’ Table 8. Problem Structure Parameter Importance

FUNCTION: y(t) = 1.0 e 2  sin (.57t) + .5

STRUCTURE PARAMETERS:
Problem 1: A= .4, n=49, m=8, to=0,,
Problem 2: A= ,4, n=99, m=8, to=0.
Problem 3: A=,2, n=49, m=8, to=0.

NOISE DESCRIPTION: E=.10 (0=2.9x 10

2

e t sin (nt)

"'04 e
+.25 e t sin (1.57t) -+ .10 e ot gin (2 7t)

)

Frequency Comuponent .Inp'ut Value | Problem 1 Problem 2 Problem 3
011 -.2 -.1980 -.2050 -, 3401
) ' o, -3 -.4808 ~.5308 -.1474
Ol3 -.4 -, 8495 -.6599 v-lbe 877
014 -5 -. 9574, -.9848 - .-~2.568
o, 1.571 1,582 1,576 1.644
W, : 3.142 3,102 3.035 3.577
w3 4.712 4,883 5.008 10.13
@, 6.283 6.630 7.854 | 15.02
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Table 9. Monte Carlo Study on Eigenvalue Structure of
Damped Sinusoid with Low Error

FUNCTION: y(t) = e 00 sin (rt)

STRUCTURE PARAMETERS: n=49, A= 4, to=0, m=2 and 3

NOISE DESCRIPTION: E =,0178 (0= 5.1 x 10" )

Unparturbed Standard | Theoretical |Theoretical Bound on
Parameter Value Mean Deviation Mean Standard Deviation
7\1 ,1391 x 102 1391 x 102 .36 X 10."1 «1391 x 102 o4 x 10—1
A, 1304 x 100 |.7393 x 107 |,15 x 1072 .7395 x 10" .40 x 107"
A, 0 1255 x 10 2|41 x 1070 | .1241 x 1072 | .54 x10"3
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Table 10. Monte Carlo Study on Eigenvalue Structure of

Damped Sinusoid with Medium Error

FUNCTION: y (t)

.05t
e

- =

sin (mt)

STRUCTURE PARAMETERS: n=49, A=.4, t0=0, m=2 and 3

-2
NOISE DESCRIPTION: E =,.178 (0= 5.1 x10 )

Unperturbed Standard Théoretical Theoretical Bound on
Parameter Value Mean Deviation Mean Standard Deviation
2
Al . 1391 x 102 .1400 x 102 .37 x 100 1404 x 10 .54 x 100
A i394 x 100 | L7507 x 10t |15 x 100 | L7521 x 10" .40 x 10°
, _ 0 -
>\3 1] .,1254:x100 .41 x 10 1 .1241 x 10 .54 x10 1
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Table 11.

Damped Sinusoid with High Error

Monte Carlo Study on Eigenvalue Structure of

FUNCTION: y(t) =

-, 05

e t sin (rt)

NOISE DESCRIPTION: E =,562 (0=1,6x 10~

STRUCTURE PARAMETERS: n =49, A=.4, t0=0, m=2 and 3

1
)

Unperturbed Standard Theoretical |Theoretical Bound on
Parameter Value Mean Deviation - Mean Standard Deviation
2 2 1 2 1
KJL .1391 x 10 <1498 x 10 (.12 x 10’ .1517 x 10 .18 x 10
1
A, L7394 x 101 . 8662 x 101 .62 x 1()0 »8657 x 10 .13 x 101
0
A,g 0 . 1246 x 1()1 .40 x 100 . 1237 x 101 .54 x 10
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Table 12. Monte Carlo Study on Eigenvalue Structure of a
Sum of Damped Sinusoids with Low Error

|zi

&,

FUNCTION: y(t) = 1.0 e 2t sin (.57t) + .5 e—'3t sin (t)
+ .25 e-'4‘t sin (1.57t) + .10 e-'St sin (2 7t)
STRUCTURE PARAMETERS: n=49, A= .4, t =0, m=8 and 9
NOISE DESCRIPTION: E = .0003 (0=87 x 10 )
Unperturbed Standard Theofetical Theoretical Bound on
Parameter Value Mean Deviation Mean Standard Deviation

A 114 x 102 | 1114 x10% [ 11 x 1072 | 1114 x 102 .16 x 1072
A, ,5208 x 107 | .5208 x 10" |.48 x 10™° | .5208 x 10 | JA1x1072
A, L0654 x10° | .0654x10° [.23x10™° |.0654x10° | .48 x10”°
Ay 7135 x10° | . 7135 x 10° |.23x 107 | .7135 x 10° Alx 107
A, | 1285 x10° | L1254 10° Loz x 107 | . 1255 x 10° 17 x 1072
Ag 7102 x 107 | 7100 x 107 82 x 107 | L7102 x 107" 13x107°
A, 1220 x 101 | 1230 x 107 25 x 107 | 1220 x 1071 54 x 10"
Ag 279411072 | . 2796 x 10| 16 x 10~F | 2794 x 1072 2x 107
Ay 0 .2856 x 10|77 x 107 | .3075 x 107 .28 x107°
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Table 13. Monte Carlo Study on Eigenvalue Structure of A

Sum of Damped Sinusoids with Medium Error

FUNCTION:

S

y =

-..2
1.0 e t
v .o5 e At

-.3t
sin (.57t) + .5 e 3

sin (1.57t) + .10 e "2t

sin (mt)

‘RUCTURE PARAMETERS; n=49, A=.4, tOFO, m=8 and 9

sin (27t)

wd
NOISE DESCRIPTION: E =.003 (0=8.7 x10 )
Unperturbed Standard Theoretical [Theoretical Bound on
Param cter Value Mean Deviation Mean Standard Deviation
A 114 x 102 | L1113 x 102 | .87 x 1072 1114 x 10° .16x107)
1 1 -2 1 -1
7\2 ,9208 x 10 05207 x 10" | .47 x 10 .5208 x 10 .11 x 10
}\.3 . 9654 x 100 . 9653 x 100 023 X 10“.2 . 9654 x 100 .48 X 10'"2
- 0 -
A4 .7135 x 100 7132 x 100 023 x10 2 #7135 x 10 .41 x 10 2
A5 .1255 x 100 .1253 x 100 .92 x 10"'3 «1255 x 100 .17 x 10“2
] ~1 -1 -3 -1 -2
AG 7102 x 10 .7086 x10 |,82x 10 7105 x 10 013 x10
- - - - -3
A,‘, 1229 x 10 1 1243 x 10 1,25x10 3 .1232 x 10 1 b4 x10
- -2 ‘ -3 - -3
7\8 « 2794 x 10 2 2840 x 10 2,16x10 < <2826 x 10 2 «26 x 10
-4] - -4
Ay 0 .2856 x 101,77 x 1072 | .3075 x 10 28 x107%
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Table 14. Monte Carlo Study on Eignevalue Structure of a
Sum of Damped Sinusoids with High Error

FUNCTION:

+ .25 e-.4t

y(ty = 1.0 e~'2t

sin (.57t) + .5¢ °

sin (L.57t) + .10 e "o

t .
sin (t)

STRUCTURE PARAMETERS: n=49, A=.4, t =0, m=8 and 9
(¢]

sin (27t)

NOISE DESCRIPTION: E=.01 (0=2.9 x10"°
Unperturbed . Standard | Theoretical |Theoretical Bound on
Parameter Value Mean Deviation Mean Standard Deviation

) 114 x10% |L1113x10% [29x107t |, 1114 x 10 .55 x 1071

Ay .5208 x 107 [.5204 x 10' .16 x 107 |.5208 x 101 .37 x 107}

A, . 9654 x ’100 .9652 x 10° [.76 x 1072 9658 x 10° .16 x 1071

A, 7135 x 100 [.7127 x10° |76 x 1072 | L7130 x 10° 145107}

A 1255 x 100 |.1253 x 10° |.31 x 1072 | .1259 x 10° .58 x 1072

Ag 7102 x10°L | 7077 x 107 .27 x 1072 | L7137 x 207 44 x 1072

A .1229 x 107 |.1300 x 10,88 x 107> | L1264 x 107" 18 x 1072

Ay ,2794 x 1072 |, 3185 x 10 2|.55 x 107 | 3144 x 1077 .91 x107°

Ay 0 .3158 x 107,86 x 10 | 3417 x 107 .31 x107°




Table 15 summarizes all studies available to the author on the statistical behavior

of the noise eigenvalue introduced by the perturbation of the single zero eigenvalue of

the Ro matrix of order one greater than is correct. The first four problems in table 15

correspond to example problems previously studied with guassian noise in reference 2,

The
tion

obta

first two example problems reported in reference 2 did not include standard devia~
data, The remainder of the data in this table corresponds to numerical results

ined by the present author with uniform noise as defined in Section 4. The majority

of these latter results are for problems described in the immediately preceding tables,

The

final two problems ‘Extra #1 and Extra #2) are the result of the present effort for a

simple sinusoid, y = sinwt with to =0 and n =99, For the calculations labeled Extra #1,

the sample spacing was A= ,5 while Extra #2 is the equivalent problem using A=,1,

Tor

both these latter problems eleven Monte Carlo experiments were performed, Again

. L. st .
equation (45) of Section 4 was used to evaluate the theoretical value of the m+1  eigen-

valu

le and equation (47) provided the theoretical bound on the standard deviation, For

the most part, the results are very favorable and speak for themselves. However, it

should be noted in all cases the data taken from reference 2 provides theoretical esti~

mates of the mean eigznvalue lower than experimentally observed. This observation

was

are

documented in referenee'z‘,! The present author's results with a damped sinusoid

consistent with this observation, However, the results for the sum of damped

sinusoids and the simple sinusoid provide the opposite situation. _

resu
cige

theo

devd
at th
ted 1

for {

The conclusion is that first order perturbation theory provides rather remarkable
1ts for the probl_ems examined to date., What is needed is additional studies using
nvalue structures with near degeneracies and with higher noise levels to stress the

ry into the region where it might theoretically be expected to break dolwn°

loped in Section 3 of this report. In each case the Monte Carlo runs were performed
¢ noise level stated in the tables. The bound associated with the norm of the expec~
value of the error vector was computed using equation (38), The bounds generatedf}

the individual components are simply the result of assigning all the error to one

component, The adjusted bounds assume the error is uniformly distributed among the

54

O

The next six tables present numerical results directed at evaluating the error analysis
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Table 15. Summary of Monte Carlo Studies on the m+15t Eigenvalue
Theoretical
Standard Mean Value of Theoretical Value Bound on
Deviation m+15t Standard of m+1st Standard
Problem of Noise Eigenvalue Deviation Eigenvalue Deviation
- p -1 -1 -1
Ex, 1 (ref 2) 1 x10 .154 x 10 .150 x 10
-1
.5 x10 .38(5}:100 .375x10O
.7x107} 757 x 10° .735 x 10°
Q
.1x10 ,154 x 10 .150 x 10"
.5x100 o386x102 0375x102
) ' -
Ex. 2 (ref2) | ,1x107" . 52x10 . 50 x 10
=2 - -
.5 x10 e1315{102 .125x102
- -2
.9x10 2 423 x 10 .405 x 10 -2
1x107t . 52x 10 2 . 50 x 102
2x107t . 21x107) . 20x107}
.3x1071 . 47x107} . 45x107"
4x107t .836 x 10 . 80x107"
- - -3
Ex. 3 (ref 2) .1 x10 2 » 22x 10 3 .,492x10—4 . 20 x10 -3 .10 x 10
-2 - - . -3
.3x10 .197}:102 .4;43x103 . 18){102 .90 x10
-2 -2 =2 ] -2
.0x10 . 546 x 10 .123 x 10 . 90 x 10 .25 x10
-2 -1 -2 -1 -2
.83x10 139 x 10 .315 x 10 .128 x 10 .64 x 10
1x107t 218 x 1071 .492 x 102 . 20 x 107 .10 x 1072
=5 - -4 -4
Ex, 4 (xef2) | .5x10 ° 546 x 1077 123 x 107 . 50 x 10 .25 x 10
- - -3 -3
.1x10 2v .,218){103 ,493x10~4 . 20 x10 10x10
- - - -3
.2x102 .871x103 .,196x103 . 80x103 .40 x 10
- - - -2 -3
Table 9 .51 x 10 2 1255 x 10 2 . 41 x 10 3 .1241 x 10 .54 x 10
. - - 0 -1
Table 10 .51 x10 1 . 1254 x 100 . 41 x 1¢C 1 .1241 x 10 .54 x 10
; 1 0
Table 11 .16 x 100 .1246 x 10]' . 40 x 100 .1237 x 10 .54 x10
o -G - -6 -6
Table 12 87x107F | L2856 x 1070 C77x1077 .3075 x 10 .28 x 10

[92)
[




TABLE 15 - Continued

Table 13 87x107° | L2856 x 1072 17 x 1070 .3075 x 10 .28 x 10
Table 14 .29x1077 | 3158 x 10 .86 x 107 L3417 x 10 .31 x 107°
Extra #1 . 1x10 7872 x 1070 11 x107° .8083 x 10™° 24 x107°
. 1x1070 | 7sr2x10” A1 x1072 .8083 x 1072 .24 x 107
Extra #2 C1x107% | 7663 x10” 13x107° .8083 x 1070 24 x107°
. 1x10 7663 x 10 13x10°° .8083 x 10> 24 x107°
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individual components of the error vector and thus is simply the bound value divided by
m. Again all results are encouraging when viewed with respect to the implied standard
deviations and number of samples used, In tables 16, 17, 19 one notes that the experi-
 mentally generated estimate of the : “+m of the expected value of the error vector exceeds
the theorctical bound. However in ecach of these cases the expected value of the second

moment of the norm of the error vector is relatively high.

The motivation for presenting the next four tables is independent of the previous
sections of this report. In tables 22 and 23 are displayed computed frequencies for
valucs of m one and twe greater than is correct for ten Monte Carlo trials. Thus the
roots labeled z 3 and z 4 Are extraneous roots resulting from the inclusion of noise, It

should be noted that although they vary much more than the valid roots Zys 2 they are

by no means random. Further if the analyst had but two of the trial results ,Zsay trial
numbers 7 and 8, thes variation in 23 is no more than that observed in the true root,
Similar results arz depicted in tables 24 and 25.,;' Unfortunately for the examples pre-
sented the extranecus roots for the most part fall on the real axis in the z plane, This
appears to be a characteristic of the sample spacing llOWever, and the author has obser-
ved similar behavior with respect to the lack of randomness of extraneous roots at quite
different phases. The fact that the extraneous roots have been observed to be quite
sensitive to sample spacing can potentially assist the analysf with their identification, .
However, due to the sensitivity of the eigenstructure of Ro to sample spacing, extreme

caution must be exercised,

In Section 4 the author pointed out that first order perturbatibn theory suggests
that for values of m in excess of the correct value a band of eigenvalues of roughly the
size (n~m +1)o2 would be ,generatedo The band should have a width on the order of
less than twice the standard deviation computed from equation 47. From table 26,
for m::12 one can compute the mean value of the four lowest cigenvalues to be 3,85 x
10—6., The width of the band is simply 7\,9 - 7\12 =3.7Tx 10—6,, From equation 45 of
Section 4, the expected value of these extraneous eigenvalues is estimated to be 3.20 x 10~6,

' -6
Evaluating equation 47, one cstimates that the band should have width less than 6.9 x 10

which indeod it has,



Table 16.

Sinusoid with Low Error

|
[

Monte Carlo Study of Solution Vector for a Damped

{

F‘«‘UNCTION: vity = e % sin (nty

STRUCTURE PARAMETERS: n=49, A=.4, t0=0, m=2 and 3

NOISE DESCRIPTION: E = .0178 (0=5.1 x 10 )

I .
f$ o Adjusted vy 2a1/2 Adjusted
b/ _ > .
‘4 ( o )i Koz ao>i| Bound Bound <(0! ao)i > Bound Bound
‘ | - - - - -2 -9
' -.6058 .20 x10 3 .22X103 °16X103 .63 x10 3 <61 x 10 .43 x 10
| - - - - ~2 -2
9608 ».,50}{10-3 .22 x10 3 <16 x10 3 .78 x10 3 61 x 10 43 x 10
' 2 1/2
ALY RN ; [ S
I@ha > Boud B2, Bound
- - - -2
.54 x 10 3 .22 x 10 3 .10x102 .61 x 10
58
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Table 17. Monte Carlo Study of Solution Vector for a Damped
Sinusoid with Medium Error
- 5%
FUNCTION: y(t) = e *° sin (nt)

STRUCTURE PARAMETERS: n=49, A=.4, t0=0, m=2 and 3

-2
NO'SE DESCRIPTION: E =,178 (0=5.1x10 )

. Adjusted L 2a1/2 Adjusted

. A = i roa 1
i ( ao)i |<oz ao>i% Bound Bound <( ao)i > Bound Bounc
1 | ~.6058 |.14x1070 | .22x107 | .16x107r | .18x107} 65x10 " |.46 x 1071
2 9608 |.20x107Y | .22 x 107" d6x10t | Laz2x10”) L 65x1071|.46 x 107}

H<6?-— o > ' B d < Z&\—;'&\ 2>1/2 Bound

3 | oun | ou
24x107) 22 %107} 29 x 10 65 x10 1




Table 18. Monte Carlo Study of Solution Vector for a Damped
Sinusoid with High Error

FUNCTION: y(t) = e

-, 05t

sin (mt)

STRUCTURE PARAMETERS: n=49, A=.4, t =0, m=2 and 3

’ ‘ -1
NOISE DESCRIPTION: E =,562 (0=1.6x10 )

O

R Adjusted vy 2e1/2 Adjusted
A = . \
( @) \ o~ ao.>il Bound Bound <<Ol - ao)i > Bound Bound
-, 6058 .12x100 .22}‘:100 .16x100 .13x100 .30x100 21 x10O '
.9608 | .15 x 100 .22 x 100 .16 x 100 +16 x :l.OO .30 X 100 21 x 100
2. 1/2
- N\ R0, S
H<@~ao>u Ikmm <W1—QJ‘> Bound
.19 x/10° 22 %100 .21 x 10° 30x10° |
- !
|
60




Table 19. Monte Carlo Study of Solution Vector for a
Sum of Damped Sinusoids with Low Error
Al \Tals AT . — e 2“ . ‘ e t .
FUNCTION: y(t) = 1.0 e- sin (.6wt) + .5e sin (mt)
e o4t -
+ .20 e t sin (1.57t) + .10 e ot sin (27t)

STRUCTURE PARAMETERS: n=49, A= 4, to=0, m=8 and 9 *

NOISE DESCRIPTION: E =

L0003 (0=8.7 x 10 2)

Adjusted 2\ 1/2 Adjusted
( '&\0) ; KCT\ - 5’30>i { Bound Bound <(E?- jo)i > Bound Bound
1 ~.1904 | 0 13x107° | L46x10” 13x 1072 .85 x 102 [.30 x 1072
2 L7715 | 0 13x10° | La6x107F | L12x 1072 .85 x 1072 (.30 x 1072
> 3 ~.0531 |.90x10™ | .1ax10” | La6x10™ | L16x1072 .85 x1072|.30 x 1072
4 5785 |.10x107° | .13x10° | L46x107t | L11x107 .85 x1072].30 x 107
5 0401 |.a0x10F | L13x10™° | c46x107 | Loex10” .85 x 1072, 30 x 1072
6 L4407 | 0 a3x10° | Laex107™t | L7rx107 .85 x1072|.30 x 107
7 0822 |.50x10™ | L13x10™ | La6x10™* | L37x107 .85 x1072 .30 x 107
8 3263 [10x107 | .13x10™° | La6x10™ | s1x10” .85 x 1072{.30 x 1072
U Ay L, 21/2
H<cv ~ o.'o)“ Bound <”a - (YOH > ' Bound
18 x 1070 13 x107 .30 x 107 .85 x 1072
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Table 20. Monte Carlo Study of Solution Vector for a

Sum of Damped Sinusoids with Medium Error

et s ~-.2t -
FUNCTION: 1.0e sin (.57t) + .5e -3t

¥y =

b .25 e " 4t

sin (7t)
. -.5t .
sin (1.57t) + .10 e sin (2 wt)
STRUCTURE PARAMETERS: n=4%, A=.4, t =0, m=8 and 9
o ;

~d
NOISE DESCRIPTION: E =.,003 (0=8.7 x10 )

) L Adjusted v\ 2a1/2 Adjustec
i ( ao) N \<a - cu0>i ! | Bound Bound <(Ot - ao)i > Bound Bound
1 |-.1904 |.12x107% | 13x107% | .46 x1072 J13x 107 .87 x 107 | .31 x 107
2 | om15 | L2rx10% | L13x10” | .46 x1072 J2x107) 87x107 .31 x 107
3 |-.0531 |.26x107% | .13x107 | .46 x 1072 16 x 1071 87 x 10| .31 x 107}
4 | 5785 |.25x107% | .13x107t | .46 x1072 11 x107 .87 x 1071 .31 x 1071
5 | .0401 |.23x10% | .13x107} | .46 x1072 .10 x 1071 .87 x 1071 .31 x 107
6 | 4107 |.19x107% | .13x107 | .46 x 107 .80 x 1072 87x10"Y .31 x 1071
7 | .0822 | .11x _10"2 13x1070 | .46 x 1072 .38 x 1072 87x107 | .31 x 107
8 | .3263 | .60x10° | .13x107} | .46 x1072 .50 x 102 .87 x10 | .81 x 107

"<§\ - >H Bound <H-d\ -@ | 2>1/2 Bound -

o ol
57x1072 13 %1070 .30 x 10T .87 x 1071

62




Table 21.

Monte Carlo Study of Solution Vector tor a
Sum of Damped Sinusoids with High Error

FUNCTION:

STRUCTURE PARAMETERS: n=49, A=,4,t =0, m=8 and 9
‘ o

NOIS

B DESCRIDTION:

E=.,01

sin (.5 wt)

sin (1.5 =t)

©=2,9x10 )

;...'3
.o t

T

3

sin (wt)

sin (2 wt)

Adjusted Adjusted
: Y N - i S N Ay 21/2 -
i ( ao) i \<oz ao/ ;| Bound Bound <(oz - ao)i > Bound Bound
1 -.1904 .18 x 10“l .15 x 100 D2 X 10..1 .43 x 10“1 .34 x 100 12 x 100
2 L7715 | .27 x 10 15x10° | .52 x107t 47 x 107t 34x100 | .12 x 10°
3 |-.0531 | .33x107" 15x10° | .s2x 107t 62x10°) ax10° | L12x10°
4 5785 | .32 x107F 155100 | .52x107t 53x10 " 34x10° | 12 x10°
5 0401 | .29 x 107" 15x10” | s2x107t 47 x 10T 34x10° | .12 x 10°
- - -1
6 4407 | .17 x 107t 5x10 | .s2x10”t .33x10 34x10° | .12 x 10°
7 L0522 | .81x10"2 .15 x 10° .52 x 101 15 x107" 34x10° | .12 x 10°
8 .3263 | .15 x 1072 15x10° | .52 x107" 15x 1071 34x10° | .12 x 10°
H<a‘-*A > Bound < @-a 2>1/2 Bound
“s N oun l‘ 0" oun:
- 0 0
65 x 107" .15 x 10° ,12x 10 .34 x 10




Table 22. Monte Carlo Study on First Extraneous root for

Damped Sinusoid

FUNCTION: ¥ (t) =

. |
s1nvt;

STRUCTURE PARAMETERS: n=49, A=,4, t =0, m=3
0
NOISE DESCRIPT:ON: E =,562 (0= 2,6 x 10™%)

Trial No,

A0 2y %3
1 301 +.883 j -2 355 + 0, j
2 .298 £,893 j - 672 + 0, j
3 282 %,894 j -.312 + 0, j
4 <300 £ ,887 j -.474 + 0, j
5 <294 £ ,897 j -.721 + 0.,
6 . 307 £ ,890 ~e465 + 0, j
7 . 302 £ ,903 j -.514 + 0, j
8 .3133:.8975 -.505 + 0, j
9 . 282 £ ,892 j -.425 + 0, j
10 .316 £,907 j -.616 + 0, j
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@ Table 23. Monte Carlo Study on Two Extraneous Roots for Damped Sinusoids

FUNCTION: y(t) = e

- 05t
S

Innt

STRUCTURE PARAMETERS: n=49, A=,4, t0=0, m=4

NOISE DESCRIPTION: E =,562 (0= 2,6 x 1072

Trial No,

Zys 2, Zg z,

1 .286 +,913 j 585 + 0, j -.766 + 0, j
2 0294 £ ,892 j 146 + 0. j -.737 + 0, j
3 .278 % ,900 j .128 + 0, j ~.430 + 0, j
4 . 287+ ,897] .401 +0, j - 732 + 0, j
5 295+ ,899 ] - 113 +0. j ~-.651 + 0, j
6 .295% ,914 j .328 + 0, j - 679 + 0, j
7 .296% ,905 j .283 0. ] -, 691 + 0, j
8 . 304 901 j .288 +0, j -.690 + 0, j
9 .313+ 881 j - 287 + ,421 j ~. 287 ~ .421 j
10 <297+ ,926 ] .58l + 0. j

-.850 + 0, j




Table 24. Monte Carlo Study on First Extraneous Root for
Sum of Damped Sinusoids

2t
4t

FUNCTION: y(t) = 1,0 e "““sin (,5mt) + .5 ej—"3t sin (wt)

sin (1.57wt) + .10 e_'5t sin (2 wt)

STRUCTURE PARAMETERS: n=49, A=.4, to=0, m=9

+ ,25¢e *

NOISE DESCRIPTION: E =,01 (o= 2,9 x 10™3)

‘I'rial No, z7’ Zg Zg

1 -.658 +,456 j <155 +0.j
2 -.678 £,463 j -.301 +0, j
3 -.677 £,486 0316 + 0. j
4 -. 670 £,450 j .068 +0, j
5 -.633 £,439j -.359 + 0, j
6 ~-.669 +,465 j ~.074 + 0, j
7 -, 675 £.,420 j - 087 + 0. ]
8 - 673,428 j -.0712 + 0, j
9 -, 648 % ,499 j - 112 + 0, j

10 ~-.631+ ,471j -.141 + 0. j
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Table 25. Monte Carlo Study on Two Extraneous Roots for a
Sum of Damped Sinusoids

FUNCTION:  y(t) = 1.0 e * 2 sin (.5mt) + 5e ° 3t oin (wt)

+ .25 % g (1.5wt) + .10 e~ % gin (2t)
STRUCTURE PARAMETERS: n=49, A=.4, t =0, m=10
NOISE DESCRIPTION: E =.01 (0= 2.9 x 10-3)

Trial No. z7, 28 Zg zlo
1 -.658+.487j | -.886 +0. j +,887 + 0, j
2 -.678% ,4983 | -.890 +0, j +,800 + 0, j
3 - 877+ 491§ | =718+ 0, j| | +.846 +0. j
4 -.665% ,470 j | -.867 +0. j .859 + 0, j
5 -.654% ,473§ | =,900 +0, j .811 + 0. j
6 -, 685+ 475§ | -,862 +0, j .851 +0, j
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Table 26. EREigenvalue Structure versus m

e 2‘- . o 3 . ~-4 -
FUNCTION: y(t) = 1.0 e " sin (.57t) + .5e t sin (wt) + .25 e tsm (1.5wt)
+,10 e " gin (27t)
STRUCTURE PARAMETERS: n=49, A=,4, to=0

NOISE DESCRIPTION: E =,001 (0=2,9 x 10~%)
]
ml M Ay Ag Ay A Ag A7 Ag Ag Ao M1 Mo
2 ,6’7x101 °13x101
1 1 0
31.81x10 |.23x10|.20 x 10
1 1 0 -1
4(,84x10 !.34x10 |.49x10 |.61 x 10
5 .84x10" .45 x 100 |.70 x 10°].23 x 10° L18x 10"
1 1 0] 0 -1 -2
.91 x1071,49x10 |.78x10 |.49x10 [.69x10 ~|.96 x 10
2 19 0 0 0 -1 -2
71.10x107},49x10" |, 79x10 |.71x10 [12x10 |.39x10 ~1{.45 x 10
.11 x1020.52x 107 | .96 x 10° | .71 x 10° 13x10° [.71x 1072 12x10 1], 28 x 1072
2| 1 1 0 0 -1 -1 -2 -5
1-11x107|.59 x 107 |, 10 x 10" [.83x 10 [ 15x10° |.72x10 " |.12x 10 " |.36 x 102 |.47 x 10
2 1 1 0. 0| -1 -1 =21 -5 -5
.11x10 {,68x107|.,10x10 {.93x10 L 15x 10 .86 x 10 .14 x 10 .46 x 10 .09 x 10 .34 x 10
125102 .70 x 10 |, 11 x 107 |, 93 x 10° 15 x 100 |.86x 1072 14x1070 |46 x 1072 60x10°].34x10°].30 x 10~° |
2 1 1 -0 0 -1 - - - - . -5
J13x10° (.70 x107 .11 x 10" |.93 x 10" L15x 10° |.86 x 10+ .,14x101L,46x102 601072 1,38 x 1070 ,33x105t23x105
. ) L .




2
Now suppose one doesn't know ¢, If one tentatively assumes that m=8, then
9 -
7\9 for m=9 provides an estimate of ¢ =~ 7\9/41 =1,15x10 7, The mean value of
the lowest eigenvalues of m=12 is estimated to be 4. 36 x 10'-6 which is still reasonably

consistent with the actual value computed. Similarly the band width is estimated to be

bound hy 9.4 x 1.0-6 which it is,

Now suppose an analyst assumes that m =7, Using the A_ value for m = 8 provides

. 8
. 2 =5

an estimate of ¢~ = 6,67 x 10 which implies the expected value of the noise eigenvalues

at m = 12 should be 2,53 x 10", The computed value is 9,23 x 10™* which is significantly
diffcrent, From the table, the band width is approximately 4,6 x 10"3‘> Using the estimated

2 -
value of o~ and eguation (47) one expects it to be less than 5,5 x 10 3

-]

Thus at the low noise level studied in table 26, one finds that equation (47) by
itself is of little use with respect to the determination of m. Equation (45) is some~
what more useful in that the incorrect assumption on m, results in a significant discre-
pancy between theory and computed result., However the most obvious difference between
assuming m =7 or m =8 is the nature of the distribution of the noise eigenvalues., The
assumption that the correct rank is 8 results in the 4 noise eigenvalues at level m=12
being rather symmetrically placed around their experiment mean value of 3.8 x 10"6.,
The assumption that the correct rank is 7, results in an obviously non symmetric
distribution of the 5 noise eigenvalues at level m=12, Table 27 presents a study identi-
cal to that of table 26 except that the noise level has been increased by a factor of 25,
It is now much more difficult to decide where the chain of noise eigenvalues begin., To
demonstrate, suppose that m and o are unknown, If one assumes that m=8, then Xg

. . . 2
resulting for m =9 provides an estimate of 0,

2 _ M

41

o >
= 6.59.%x 10 °

Based on this humber, the expected value of the noise eigenvalues of m =12 is simply
2

380 = 2,6x 10-3° Using the values from table 27, one computes the mean value
-3 .

of the four lowest eigenvalucs at m =12 to be 2.4 x 10 ~. The computed width of the

noise band hased on table 27 and the assumption' that m =8 is simply 7\9 - Ao =

12
2.2x 10"5‘, Trom equation (47) one computes that the band is expected to have width
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Table 27. Eigenvalue Structure versus m

2t

FUNCTION: y(t) = 1.0e " sin (.57t + .5e ° st sin (wt) +.25e °  sin (1,57t

+.10 e gin (2m)

STRUCTURY, PARAMETERS: n=49, A=.4, t =0
NOISE DESCRIPTION: E = ,025 (0=17,2 x 10'3)

04

|
2 .G7x101 °13x101
1 1 0
3|.81x107| .22x107} .20 x10
1 1 0 -1
4).,83x10|.34x107|.48x10 | .61 x10 A
1 1 0 0 -1
51.84x10°| .45x10° | .69x10 | .23x10° |.21 x 10
6 1.90 x107| .49 x 10%] .77 x 10°} .49 x10° [.66 x 1072} 12 x 1071
2 1 0 0 0 i o=l -2
7.10x10 |.49x10 | .78x10 | .71 x10 [.12x10 »40x10 "}, 74x10
2l 1l 0 0 0 . -1 ] -1| -2
81.11x10°7.561x10°|.95x10 | .71 x10 (.12x10 1.69x10 {.17x10 |.51x10
2 1 0 0 0 -1 -1 -2 -2
9 .11 x107|.59x10 |.99x10 | .82x10 |.14x10 L70x10 |.17x10 ~[.69x10 ~|.27x10
2 ' 1 1 0| 0| -1 -1 -2 -2 -2
.11x107|,67x107|{.10x107|.90x10 |.14x10 .81 x10 |[,18x10 |.75x10 ~|.36x10 - {.21 x 10
2 1 1 0 0 -1 -1 -2 -2 -2 -2
.12x107|.70x 107 |.10 x107| .90 x 10 |.14x 10 81 x10 ~[.18x10 |.75x10 ~|.36x10 “|.21x10 ~|.18 x 10
0 - - - - - -
13 x10%].70 x10° 1,10 x 10} .91 x 10° |14 x 10° L81 x 10 1,.18x10 176 x 1072 .36 x 102 24x1072 .20 x 1072 RE!
] i

O | - o ‘ "




less than 5.4 x 10-3., Thus the tentative assumption that rank of the Ro matrix is 8

appears to be consistent with theory. Now suppose onc assumes that m=7, and thus

estimates that

oF ~ 1,21 x10

Based on this number, the expected value of the noise eigenvalues at m=12 is simply
-3
4.61 x10 ~, Using the values from table 27, one computes the mean value of the

five lowest eigenvalues to be 3.4 x 10-3. The width of the band is computed from the
' 3

data to be 6.2 x 10-3., The width of the band is computed from the data to be 6.2 x 10

IFrom equation (47) one computes that the band is expected to have width less than 1.0 x

-2 . i .
10 ” which is consistent with the value above.

Thus at the higher noise level equation 45 still provides a degree of usefulness
for deciding upon the correct value of m as does the nature of the resulting distributions.
However for slightly higher noise levels one expects the problem of determining m to

be quite formidahle,

The last two tables, table 28 and 29 present results of incorporating the iteration
methodology described in Section 7 at two different noise levels. Again, for the most
part, the results speak for themselves, At the higher noise level of table 28, iteration:
results in nearly a factor of two reduction in S2 while in table 29 the reduction is some~
what less. The tables adequately point out that Prony results in frequency components

which to not correspond to minimums in the sense described in Section 7.
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Table 28.

Iteration Results Using Medicre Input

FUNCTION: y(t) = 1.0e °

2t

sin (.57t) + 5o °oF

sin (7t)

+.25 ¢ gin (1.57t) + .10 ™% sin (2mt)

PRONY STRUCTURE PARAMETERS: A= .4, n=49, m=38, t0=0°

ITERATION STRUCTURE PARAMETERS: A=,1, n=250, m=8, t =0.

NOISE DESCRIPTION:

E=,10 (60=2.9x10 )

2

Parameter Input Value Prony After Iteration
011 -2 -.1980 -.1938
o, -3 -.4808 -.3081
013 —04 o 8495 ) 3839
@, -.5 -, 9574 ~.8699
w, 1,571 1.582 1.569
w, 3.142 3,102 3.144
W, 4,712 4,883 4,707
w, 6.283 6.630 6,425
a 1.0 . .9644 . .9763
a, .50 . .5906 .4955
2, .25 . .3329 . .2401
34 .10 .. 06154 01447
asz/acx1 ~.1608 x 10~ 5552 x 10 11
882/8a2 -, 6834 x _100 .1423 x 1011
' - -12
882/8a3 -.7055 x 10 1 -,3906 x 10 1
' - -13
'asz/am;4 -.3880 x 10 21 7458 x 10 1
8S2/E)wl 4546 x 100 | -.1819 x 1071




TABLE 28 ~ Continued

- After Tteration

Parameter _Input Value Prony
05”00, -.4824x10° | -.1754 x 10712
882/80.:3 .8058 x 101 | -,1203 x 10712
8% /50 a 4350 x 102 | .9049 x 10"13
asz/aa1 .1662 x 10 1| L1807 x 1071
882/8a2 -.4683 x 107 2| 1506 x 1072
852 /pa . ~.9373 x 10 2| -, 3604 x 10712
asz/aa4 1777 x 1072 | -, 4429 x 10712
s2 .3740 .1977
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Table 29. Iteration Results Using Good Input

FUNCTION: y(t) = 1.0 e_'Zt sin (,57t) + .5 e-"gt sin (mt)

—04 . e :

+ .25 e t sin (1.567t) + .10 e ot sin (27t)
PRONY STRUCTURE PARAMETERS: A=,4, n=49, m=8, to=0
ITERATION STRUCTURE PARAMETERS: A=.,1, n=250, m=8, to=0

NOISE DESCRIPTION: E = .01 (0= 2.9 x 10™°)

Paviisior Input Value Prony X After ‘Iteration
o -2 . ' ~-.1996 2~.1994 !
a, -3 ~-.3138 3008 t\
o, —od | -.4134 |- 3992 | l
o, -.5 -.4925 ~. 5158 |
v, 1.571 1.530 i1.1571 !
o, 3,142 3.144 3{3.142
w, 4,712 4,705 1%4.712 |
w, 6.283 16,275 6. 291
a, 1.0 - .9969 ‘» 59977 |
a, .50 .5093 <4996
a_ .25 . 2518 12498
a;; .10 .09773 1,1020
252 /0, | ~.1139 x 10° =.9201 x 1%
! 0 ‘ -13
as?‘/aaz -, 1461 x 10 —;,6169 x 10 |
. /8&’3 -~ 2435 x 107 %,5290 x 107
as”/oo, 1293 x 1070 | L2275 x 1071
os” Jocy 7621 x10° |~ 1051 x 107"

T4

Bt “:«‘1“1\« gt



TABLE 29 -~ Continued

Parameter Input Value Prony After Iteration
asz/am2 ,5532 X 10"!1 ~.5259 x 10713
asz/aw3 ~2547x 100 | L4328 x 10713
82 /50 . -.3704 x 102 | -.1875 x 1071°
asz/aal .3493 x 10712 | 3358 x 10712
asz/aaz -.1656 x 10"1.1 | .1372x 107!
352/aa3 -.1654 x 10”2 L ~.5157 x 1072
852 oz, 3205 x 10 12 | -, 2639 x 10712

% .3295 x 102 | 1989 x 1072




IX. SUMMARY AND CONCLUSIONS

In Section 3, a first order error analysis on the solution vecfor @ was developed
hased on the assumption that the correct rank of the unperturbed system was known,
Equation (30) of this section indicates that the expected value of the solution vector
should deteriorate as the minimum eigenvalue of the unperturbed niatrix approaches the
noise level, n-m+1) 02, However, if but several statistically independent runs are
availabie, one must be concerned about the statistical spread of the solution vector
2bout its expectad value, Equation (38) of Section 3 pruvides some insight with respect

to this problem. The term in equation (38) which is proportional to ¢ dominates only
if

Assuraing n is reasonably large in comparison to m, one concludes that the statistical
spread in solution vec:ors is most significant at low noise levels with respect to the
magnitude of the lowest eigenvalue of the unperturbed system. This behavior is apparent
in Tables 16 through 21 of the previous section, Both theoretical bounds and experimental
values display this tendency for < Hif—‘cfonz> 1/2 to more nearly approximate

|l<5Z\—- 6?0>“ at the higher noise levels,

In Scction 4, first order perturbation theory was employed to study the statistical
properties of the perturbed eigenvalues. Again the perturbation was due solely to ran-
dom noise, It was found by equation (45) that the expected values of all perturbed eigen-
values simply shift upward by a value of (n-m +1)02,, This conclusion also holds for the
unperturbed zero eigenvalues, Equation (47) indicates that the statistical variation of_
the perturbed zero eigenvalues can be controlled through problem structuring parameters
and that in general this variation can be made to be reasonably small with respect to its
expected value of (n-m+ 1)02, However equation  (47) also indicates that the positive
unperturbed cigenvalues have a much greater statiétical spread, Again this effect has

heen observed in tables 9 -through 14,
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The results of Sections 3 and 4 seem to indicate that the behavior of the Prony
methodology with respect to noise is relatively insensitive to the exact statistical
character of the noise. Thus results with uniformly distributed noise should differ
little from guassian noise or any other distribution so long as it is symmetric, has
zero mean and the same variance. It should be expected that, if noise is somewhat corre-

lated between adjacent data points, error sensitivity would be enhanced,

In Section 5, two ill conditioned problems were discussed with respect to the
deterioration of their associated unperturbed eigenvalue structures. In addition, pro-
blem structuring parameters were defined and their expected usefulness with respect to
advantageous modification of the unperturbed eigenvalue structure discussed. Numeri-
cal examples of the above topics were present early in Section 8, Toward the end of
Section 5, first order perturbation theory suggested that the eigenvalues afe non
decreasing functions of the number of data points ﬁtilized.; This conclusion holds both
with respect to the perturbed and the unperturbed Prony matrix, Furthermore, although
the proof will not be documented in this report, this conclusion is rigorously true indepen~
dent of the assumption of first order perturbation theory, Similarly, it can be shown that
the eigenvalues are non decreasing functions of the order m of the matrix, as is numeri-
c_ally supported by the results displayed in tables 26 and 27, Based on the results of
Sections 3, 4, and 5 and the supporting numerical studies in Section 8, one suspects that
the correct rank of the unperturbed Prony matrix will be extremely difficult to determine
if the minimum po.sitive eigenvalue of the unperturbed matrix is nearly equal to the noise
level, (n-m-+ 1)0-2. Even if this rank was known, the accuracy of the corresponding solu~-
tion vector might be unacceptable, When Prony's method is being applied to experimental
data, the possibility will usually exist that small eigenvalues associated with the true
system response are so completely obscured by noise that, regardless of problerh sfruc-
turing parameters, there existence can not be detected. In such cases, the analyst might
well choose a value of m less than that value which is strictly correct. Hence, the error
in the i‘ocovered solution vector will be due to both random noise and neglected signal
strength, It is this realization which motivated the analysis presented in Section 6.

The results of this section indicate that the presence of neglected signal can potentially

alter the expected value of perturbed eigenvalues and the solution vector to a much greater
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degrec than the contribution due to random noise. The variance associated with these
quantities is affected but to a lesser degree. For applications to experimental data,
the potential existence of neglected signal strength is a real possibility and therefore
accuracy assessment should most likely be based upon the assumption that neglected
signal strength is present. Numerical studies are needed to confirm that neglected

signal strength has the potential pronounced effect indicated by the results of Section G,

Section 7 described a simple iterative technique for improving the complex fre-
quencies and residues recovered from a conventional Prony analysis. Though results
to date have been very encouraging, additional numerical experiments are needed.,
First, it would oe interesting to perform additional studies on the behavior of the itera-
tion technique for the case where an extraneous frequency is introduced. Second, little
effort was expended during this investigation relative to optimization of the iteration
methodology, Furthermore, the iteration methodology seems to permit inclusion of
parameters to address uncertainties in zero time, time tie correction, DC shift, and
rotation, This possibility has not yet been numerically explored. Third, the iteration
scheme, unlike Prony, does not require the data points to be equally spaced énd does
not appear to be sensitive to the inclusion of data points dominated by noise. Thus,
statistically independent random samples of data points could be studied in a Monte Carlo
fashion, (Dr. Carl Baum first pointed out this possibility to the axjthor)o Also especially

suspicious data points can be removed.

The numerical results supplied in Section 8 are of limited scope and are all res-
tricted to artifically generated noisy data. Additional effort seems [appropriatc to remove

both of these limitations.

With respect to the overall research presented, heavy reliance was made upon the
validity of first ovder perturbation theory., The author knows that this restriction can,

to a degree, be removed but has had insufficient time to explore this aspect.
Several other avenues of investigation presented themselves rather late in this

effort and therefore have not been evaluated.

First, suppose that the eigenvalue structure dictates that only every fourth or
fifth data point be utilized. It can easily be shown that if Yie satisfies equation (7), then
the sum Yie * Ve also satisfies equation (7). Thus, two data points, too closely spaced
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to be of use in conventional Prony analysis, could be added to form a modified data
base upon which Prony's method could be utilized, This scheme can result in an effec~
tive doubling of signal strength, if Yie is comparable to Yie-1* However, if the noise is
uncorrelated between points, the standard deviation of the noise should increase by only
the factor \/2— The net result is an enhanced signal to noise ratio for the modified data
base, Second, suppose that as above the eigenvalue structure limits the analyst to a
spacing corresponding to every four or five data points, Thus one can think of the
entire data base as consisting of four or five sets spaced on the optimum A . Rather
than using cach set individually, 82 in equation (10) can be constructed as the sum of
the contributions of each of these sets, The result would require the solution to the

matrix problem

R@ =D

where R and _13\ arz composed of the sums of corresponding terms for each data set con-
sidered individually. Thus all available data is simultaneously utilized in the least
squares procedure but at a sample spacing that is greater than the spécing between the
raw data points, Intuitively one expects that such a scheme bould provide enhanced

accuracy but again this possibility has not yet been adequately investigated,
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APPENDIX

In Sections 4 and 6 of this document, bounds are given for the variance of the pertur-
bed cigenvalues of the R matrix. In Section 4, equation 47, the pe%*turbation is due solely
to random noise while in Section 6, equation 78, fhe perturbation ié due both to random
noise and neglected signal strength, Similarly, Section 3 (equation 31) and Section
6 (equation 81) provide bounds for <(')_(\, Q. ')/)2> with random noise and with neglected
signal strength, respectively. The purpose of this appendix is to provide the details
associited with the cevelopment of these bounds. The developmenf of the bounds on

the variance of the perturbed eigenvalues will first be addressed,

- =2 (o )
Let us represant the components of the unperturbed eigenvector § ,( ) associated
. . o . . .
with the wnperturbed eizenvalue A () as ., i=1, m., The eigenvector will be assumed
normalized and therefore

m )
2

Z ¢, =1

i=1 1

(A.1)
Now, to first order one knows that the perturbed eigenvalue 7\7 is given by
a2, (@ ea @) (A.2)
Y Y Y Y

- Assuming the error matrix includes contributions due to both random noise and

neglected signal, one can write

n-m
] = v _‘_ . : .
i 2. Ymak-1mrk-3 © Ymak-j m+k-i
k=0
A.3
Vm k=i m+k-j (A.3)
where
o= d + Ao 4:
Vk I}\k € k _ ( )

The term %, represents the neglected signal at point k, while € K is the contribu-
< ‘
tion due to random noise at point k., The noise is considered uncorrelated between data

. 2 ‘
points and is taken to have zero mean and variance o , It follows that
<<z > = 0 (A.5)
k
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0 k# 1,; ‘
G % - e

N
k# k

Further, as the development progresses, the expected value of the fourth moment

of the rar-lom noise will be encountered, Thus it is convenient to define
4
€*>= /e € € (A7)
& e €%
The variance of Ay is defined to be
2 2 2 |
-G, -G , =
From eqt ticn (A, 2), one obtains that

< (5,5 PR 0O e

Using equations (A.3), (A.4), (A.5) and (A.6), one reéognizes that

n-m m

m
=(0) Lo (0 -
<(szy -EQ'Y )> Zki_io 1;1 Ym+k-i % ]L;l mtk-j %
n-m m 2
2 (Z e )
r om0 | (A.10)
and that
n-m m m
<( (©) EQ (0))> <{? Z; 1};1 Ymak-i % ]z_:l Vm+k~j %
m 2) 2
_ A.11
*(121 Vm-ﬂc—i“i> } > e

Using equation (A.10), equation (A.11) can be rewritfen as

<(S—2\'Y(O)’ E ﬁy (0))2> - <{<(_Q\y(0), E-Q-\y (0)>> 1) o
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n-m m

m .
+ 2 Z (y i _.+X __)a. Z € Q.
=y & Twmtk-i Tmtk-i ey Tmtk-j Ty
n-m m 2
+ (Z m+k-i“i)} > (A.12)
k=0 "i=l

Assuming the noise is symmetrically distributed about its zéro mean equation

{A.12) simplifies to

(o, mo, S = (e, © °’)> G

+<po > - (n~-m+1) 2 o4 (A.13)
where
n-m m m
= y - 91
- Z (yn+k -1 Xm+k-i) % Y fm+k-j % (A-14)
k=0 i=1 j:.:]_
n-m m

1230 ~ €mrk-i ) . (A.1%)

Combining equations (A.9) and (A.13) one concludes that

2

2 2 | 2 4
= DR - (n-m+1l) o A.16
oy = 47 + 7 - memt) | (A.16)
Using equation (A.14), one can write

n-m-j n-m-q

<¢2>:§§>’52 oo oo Y Y

i=1 p:::l j':. ) k-— _1] l('.:—.q
A ‘ . N
<€m+k €m+k> ° (ym-l-k—kj-i-i- xm-!]k+j-—1) (ym+k+q—-p

< A A.17
+>‘m+k+q-—p) ( )

Definiag
k= Max (-j, -q)
k. = Min (n-m-j, n-m=q)

2
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Equation {A.17) reduces to

,‘-l

2 m

Gl Y e X ¥ O

j=1 qg=1 d k~k i=1

2 (ym+k+q-p " xm+k+q-—-p)a

p:‘.l

Applying Schwarz's inequality one can conclude that

. m m n-m m
<¢ >s o’ 321 5; |0‘ o |1§)(121 m+k~i+xm+k—i') ai)z

Recognizing ihat

72|aa|s

j=1 =1

and that by Schwarz's inequality

-m m 9
1-4 <\z]:; mllx--1 m+k~i)ai) =52
k=0 i=

(o)  1/2
+
(7\y %’ 43,
where

=20 <Z Xm+k~i°‘i)

k=0 i=1

One concludes that
[, (0) (o), 1/2

&< m (@ 1 a o, O

Y

.
m+k+j-i

+.¢y)

X N a2
m+k+j-i""1i

o

(A.18)

(A.19)

(A. 20)

(A,21)

(A.22)

(A.23)

' 2
Recalling equation (A.16), one still must obtain <zp0 >,, From equation (A,15),

one can write
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nm m m

¢o - E E Z % a]. €m+k-i Em+k-—j
k=0 i=1 j=1

By symmetry the above can be written as

n-m m
2

2
zpo z:Z:Olemkk1

k=0 i=1

+ 2 o, o, . € e
p i a1+r €m+k-i m +K=-i~T |

Thercfore

; ‘ 2
T4y <(,(Z 29y ai+r€m+k-i€m+k“i"r) >

=0 i=1
-m~-i n-m-p 9 9 .
<€ m+k € m+k

m ; n
53> aizaz

il p=1 P =i k=-p

m-1m-r m-r n-m-i n-m-p

+4, 4 ai ai+r P p+rz Z < m+k

:1 1:1 p:]. {_.-1 1\__,_

€ A A
m+k=-r €m+k €m+-k--r>

= (n--.m+1)2 04 + (n-m+1) ( €4> - 0'4>

m~-1 m~r m-r

4
42 E Z aiai+rapap+ro (n-—m+1

r-<1 i=1 p=1

+

H

i -p|) | | | (A.24)

From equation (A, 24) it is clear that

<z,’102> < (n—-m+1)2 04 + (n‘-m+1) <<e4> - 04)
+4(n-m+1)a Z (“ Q. 2

i 1+r|
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Again by Schwarz's inequality and equation (A.1) the above provides the bound

<zp02> < (n--m+1)2 04 + (n—m+1)( e4> - 04)-
+ 4 (m=1) (n-m+1)(r4 | (A.25)

Thus combination of equations (A.25) and (A.19) with (A.16) yields the desired
result that |

4
2 0 (0) 1/2 . <; \
Ty ¥ dmo ()‘y( ) 3( - 'Y) ) ) F (n=m+1) crl. ‘;22 + 4m -5 (A, 26)
Where
n-m m 9
! o=
pﬂ.’ 120 <Zl *m+k-i ai) (A.27)
N 1= .

Therefore, one observes that equation 47 of Section 4 results from equation (A, 26)
by substituting ?;')_Y = 0. Equation 78 of Scction 6 is identical tb equation (A, 26). It stili
remains to develop the bounds presented in the text, for << X, Qy)2> . The error vector
X will be assumed due to random noise and neglected signal. Thus one recalls from

Section 6 that:

'd - ;i_ . 2
ki Z (ym+k-i Vm+1\-1) Z O‘ej vm+1<-j (A.28)
k=0 1=0
Where
K + A.2D
v k Xk € k ( )
Thus one can write
:\_s 5\ T T A.30)
£ . = N + T .
Where
n-m .
\, 31
Z Z Y ki E aj V]n—l-]{-—-j : (A.31)
k=0 i=1



n-m m

=2 2 Va4 % f

% Vink- (A.32)
k=0 i=1 §=0 |
By equation (A.29) and the assumed properties of the noise one observes that O
n-m m m '
T = A
() "X X o % 2 % Xy (A.33)
k=0 i=1 - =0 j -
n-m m m
'r =
< 2> Z Z *mk-i @ 2 % Xk v
k""O i=1 j:
-}—:m m m .
+ 2 2 Qo (A.34) -
k=0 i=1 =0 < m-+k~i m+1\-3>

The second term in equation (A.34) reduces to
K
(n—m+1)cr2 (Q , '07\ )
Y o

7 = i 3 i
Where ao is the vector having components a,, i=1 o

Using the above observa-
tion, equation (A.34) becomes |

n-m 1]’1

<1‘> « Q;Ifrl o x + oo 2!\_.) Ry O
2 m-+k~i i.z i (n~m+1)o (Qy )

m+k~j
k= —1 §=0 )

Now from equation (A.30) one can write

<(‘\"§\y)2> =<T12> +2<T1 T2> +<T22> ’ (A.36)
From equation (A.31) one computes that

m 1m m n»m n-m

2y =1y v % SE T )

i=1 p- 1 =0 g=0 k=0
A A
Qi Qp aj CYq ym+k—i ym%-k—-p ° <€m‘+k~j €m+k-—q>

As was done in the development of equation (A.18), onec defines

k 5 = Min (n-m-~j, n-m-q)
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and writes
’ k

9 : m m 2 m
T =2 N + 0
COEICYS g 202 B Vi ®
0 g=0 k=k 1 i=1 _

m

D DU A o)

p=1 mtk+qg-p p

Applying Schwarz's inequality and recalling the definition of ?\,Y one obtains that

2\ . 2 2 m m
< r o A
COERCY RN W I AN
]::0 q:.-:o
Another application of Schwarz's inequality establishes that

2 2 2 A A "
<T1 > > + (m1)o”n, (1 + @, ao)) | (A.37)
where the fact that czo = 1 has been utilized,

Recalling equations (A.31) and (A. 32) one notes that

R T

n-m m m
< ZO 12; y m+k~1 ?;O a]. €m+k-j
n-m m m

°Z E *mek-i @ Z 5 €mik-j
k=0 i=1 |

m

+.Z::1 em’*lv—lﬂlz j m+k—-] >

Applying similar techniques to those used in developing equation (A.37) one obtains

that :
n-m

<T T2> <T1>< 2> (m+1)(1 !(oz ) ))( E_f:o
m 1/2 '
(3> *mttemi i) 2)

i=1
n-m m 9 1/2
* 02 [ m (m+1) < L (ﬁo’ & ) z (Z i xm-l-k--i) J
k =0 i
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Further use of Schwarz's inequality along with the observation that

m x2 m ‘XZ
Z mik-i Z m+k~i
i=1 i=0

enables one to write

<T1 T2> < <T1> <T2> + ( m+l +y/m (m+1))(1 +(a,a ))

0O o

2/ DM m o 1/2 a
g (}‘Y Z Z X m+k-i) (A, 38)

k=0 i=0

Returning to equation (A, 32) one can write that

Therefore

n-m m m
I2 B 2: Z xm+k--i 24 Z x1rn+k--j aj
=0 i=1 j=0
m m

.{. >
Z% X ntk-i%h ;/;O €m+k=%

m m
+2 € mk-i 25 Z * k-3 %
i]. J:::O
n m
+.Z €m+k-—i9i Z: 6n‘yi—]‘;—-j aj
i=1 j:o
< 2> (n_-m m % 2
CROE 03D MENNI D ) )
- EA I
2 k=0 in1 m+k-i 1j=0 m+k-j " j
2 4 n-m m m
+ 2 (n-m+l)o (Q'Y’ao > >

X . Q. }: X .,
BN I +Hi~-
o m+k-i*1 120 mtk-j ]

n-m § m 9
+ D20 % .Q. }: A
<<kr=0 | m+k-i*“i =0 m-+k~j ]) >
n-m m m 9
+<<Z 20 Sk 2 Fmik—Y
k:::o 1:-:1 ]..:0
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n-m m m 2
+< ZO E;l €mtk-i @ Z m+k-j ) >
=0 i=

n-m m m
+ 2 '
<<E Z * ki 2 ij‘z‘(; e.m+k-j o j)

k=0 1i=1

-m m m '
(Z 2 € m+k-iﬂij§) Xm+k-j°‘j>> - (A.39)

k=0 i=1

The majority of the terms above can be bounded by recognizing their similarity
to terms encountered in the development of equation (A.38). Thus one can immediately

write utilizing equations (A, 39) and (A. 35) that

<T22>5 <Tz> - (11"1'114-1)2 ot (ﬁ')”at\) )2
- n-m m

Z Z x2 m-+k~i

k=0 i=1

+ (m-'!-l)(l + (5‘0, 'c'ﬁ‘o)) 0'2

n-m m‘

m(l-l-( ’ )U z Z Xm+k-i

i=
n-m m

i— 2/m (m+l) (1 + (aJO, ﬁo)) 0'2{ Z 12; mik-l

k=0

9 ]/2 n-m m
1%—?0 12() % m+k—i} 4<(E Z €mk-i @

k=0 1i=1
2 € o 2>
4 LY} 3
0 m-+k-j 3)

Again using the fact that

m

2

- S >

E E X
—_ e
i1 m-k~i 20 m-+k-i

2 ? 2 4 O -3 2
’ < r - - Q
<f2 > <F2> (=-mt+l) © ( s ozo)
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onc can write that



- n-
+ (m + 2 \/E (m+l) + m+1)<1 + (Tfo, ?fo))az S -
' k=0 i=0
n-m m 9
<(g-:0 :z € m+k-i 4 E €m+k ) >

m+k-i

(A.40)

Combining thz results of equations (A.37), (A.38), and (A.40) with oquatmn (A. 36)

implies that
<<T‘\_§y) 2> S< T1>2 T2 <T1 ><T2>+<Tz >2
+ (1 + (b?o, b‘z‘o ))qz [(m+1)7\y + 2( m+l +vVm (m+1)—)

\,{

n-mm o 1/2 _
+ +2 +1) + m+1
A X m+k~i) (m Jm (m+l)+ m )

k=0 i=0

€
w

2 1 .. R 4(5- o )2
m+k—~i} + IO (n-m-1) 0 {3%,%,

[y
1
[

Where

-m m m 9
E<<Z Z €m+k-i 9 Z € mik~j & ) >
k=0 i=1 =()

—
‘7 = r _*_ rl"
SENEECHIRCY

and performing a little algebra reduces equation (A, 41) to the form

<(§§",§iy)2> s<(:‘2,§2—;)>2 (1 +(3,a )) I:(m+l)7\

n-m m

+4 (m+l) 3 D x> ke

Recognizing that

k=0 i=0

n-m m 9 1/2
*4 (mt) Afyz 2_4 * mak-

k=0 70

90

n-m

2

k=0

(A.41)

(A.42)
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Z ‘1- -\ 2

+’1‘0 - m-m+l) 0 (R, E) (1,43)

" M &3 ary -
From cquation (Ao42), one cin wrile

m m n-m-r 2
<<Zl E Qa 2 €mik € mike Iiv-j I) >
i-1j:0 1

Jk=-1

\thl‘(} r = ]\]in(i, j)
Therclove

m m m m , n-m-r n-m-s

Z Z Z }-J i j ) q Z AZ “mk Emork- |i-j|,

i1 J :() p- -], q =0 k=—~1r k=8

A e A A 44)

‘el Cmidc - |1)-q\> ( _

Where s = Min (5, g

By the properiias of the noise, the only contributions to ’1‘0 occur when

li=3] = |p-q
Thus equation (A.41) can be wriften as

m m n-m-i n-m-p

2 2
Z y 91 i"p p ?_}-1 E—p <€ mtk € m+ﬁ>

m m n-m-Ir n-m-s

—lZZ‘Qayz_'QaqEAZ

€m+k Smk- |i—jl
i=1l j=0 p=l =0 KFim

ifi a/p
m R “mak - |p--q|>
4
= (n-mtl)o (L ,a') + (n-m-+1)
Y ©
4 4 R m m m m
. —3
(ED-0") @,3) +Z Z 2,a, le 2,
j?’-'i ofp

n-m-r n-nm-

Z‘
ke &

TS

“mik “mik - li—j\ Em‘{: 6111"‘1/\} - |}')"C1\>
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To bound the one remaining summation term above, one makes the following
. c . . c 4 -
arguments, Since |1 - ]l # 0, the noise term is either zero or 0, For i, j, and p
fixed there are at most two values of ¢ which will provide non zero terms (ql =p -+ li - j[

and 4y = P - |1 -]

Thercfore
. 2 4 v 42 v 4 4 4 2
I s (n-m+l)” 0 (szy,ao) + (n=m-+1) (<e > o )(ano)
gm m m
+ (n~m+tl)o Z Z Z |Q Q ‘ _ \ T '
1--1 j::o p:l 1 p ] p + ll ]| P |1 ]I
A

Again by Schwarz's inequality ene concludes that

)2

4 T -
+ 2 m (n-m+1)o (1 (@, ao)) (A, 45)

1, oomin’e’ (@ e @emen (Y- o) (8.3

Combining equation (A,45) with (A.43) and rearranging one obtains the desired

result that L ;
. ! i )
= (Ba )" « omafe’y - ), %)

i
i

+ 02( 1+ (6?0, 6'20)) (2 m (n-mv+1)G‘2 + (m-kl)hy)

2 N memo g
+4 (m+l)o (1 + (E\!O, 'E?O )) [ g: Z x mtk-i
k=0 {=0 ‘
| !
n~m m !
o2 \l/2 »

+ A Y . z A, 46
+( L4 2:o = "““Lk—i) ] 10

Equation 31 of Scction 3 is easily recognized as equation (A.46) with

n-m m 9

2 2 ke = o

=0 120

Equation 81 of Section 6 is equivalent to equation (A.46).
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