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ABSTRACT

We consider the problem of finding the poles z,, 22,...{

2z associated with the z- transform of the sequence
h :

y = (yo,yl,yz...) of samples Yy = Y(kT), k = 0,1,2,...

n
' t) = a_expin,t), t >0
odf the transient T(t) v‘:i LY EXPLG )
emitted by a given n-th order linear system. In principle,

exactly the same poles can be extrécted from the sequence
=TIy wvhen T is a sequence-to-seyuence transformation of
he form I = Y(E) where E is the shift operator and Y(z) is‘
nalytic and zero free on the unit disc |z] <1 . Sucha
reprocessing operator T can be chosen so as to suppress
dditive noise or to selectively enhance one or more of the
poles without annihilating the others. Using such prepro-
cessing operators we obtain a common conceptual framework for
all of the previously used schemes for transient analysis
including those of Prony, Van Blaricum & Mittra, and Jain)

and we provide a theoretical basis for several promising new

algorithms,

This work was sponsored by the Rome Air Development Center under contract
F30602-78-C-0148,

pproved for public release; distribution unlimited.




1. INTRODUCTION TO TRANSIENT ANALYSIS ‘ (:)
Let

n svt
(1) ¥(t) = H  age ~, t >0
v=1

denote an n-th order approximation to the transient emitted

by a physical system in response to some initial excitation
cf.[1]. (In the appendix wé present a mathematical model for
a damped vibrating string which serves to illustrate the kind
of phenomena we wish to analyzé.) We consider the problem

of numerically determining n and the complex frequencies
Sys...ss from a knowledge of the sequence y:(yo,yi;yz,...)

of uniformly spaced samples
(2) 'y, = Y(kT), k = 0,1.2,...

where T > 0 is the sampling interval, We shall assume that

Y is real valued so that the av’s”and s,,'s occur in coﬁpiek

conjugate pairs, and we assume that Y is nondegenerate 1in

the sense that the sv's are distinct and the av‘s are

nonzero. We further assume tnat the sv's all lie in the

left half plane so that Y(t)—=> 0 as t —> = . By substituting

t=kT in (1) we see that the samples have the representation

n
(3) yk = z a\)Z\E{, k=o,1,2,o.o

where

Vv
(4) Z = e s V:l,.,,,n




with
(5) lzyl <1, v=1,...,n.

Since Sys...»S occur in complex conjugate pairs the same is
true of Zys...s2 SO that the coefficients co,cl,...;cn of

the corresponding characteristic polynomial

(6) c(z) = Co + Cyz F oo ¥ cnzn;cn(z—zl)...(z—zn),anR,cnfo,

‘are all real valued. We shall assume tlhat the sampling

interval T is sufficiently small so that Zys...,2  are

distinct and so that the inversion of (4)
-1 :
(7) S = T ZDZ ’ V=1,...,n

A% \Y

can be effected unambiguously without undue regard to aliasing.
We shall find it convenient to introduce the shift

operator E which is defined so that
(8) El(ygsyys¥osees) = (¥15¥ps5¥q5000)
or equivalently

Eyk = Yy41? k=0,1,2,...,

and we shall let I denote the corresponding identity

operator. We observe that

E(l,Z;Z2,...) = Z'(l,zyzz’---)'




o that the application of the operator E-zI amnnihilates the
ower sequence (l,z,zz....). This being the case, since (3)

Xpresses y as a linear combination of n such power sequences

9) (E-z])...(E-zD)y = o.

orresponding to Zysee.r2, Ve must have
| y using (6) we may rewrite (9) in the form

r equivalently

c(E)y:(cOI+clE+...+ann)y=c0y+cl(Ey)+...+cn(EDY)=0
10) Ye =0

11) Y=[Y1 Y2 -+ Yn+t1

here the data matrix
Yo ¥y -+ Vg

as the columns y, Ey,..., Eny And'where e = (co,ci,...;cn)T.

ince we have assumed that the a,,'s are nonzero and the z,'s

re distinct, the first n columns of J are 1inéafly indépeh—
‘ ent, J has rank n, and (apart from a scale factor) the null

ector ¢ is uniquely determined.. |

These observations suggest the following approach to the
ransient analysis problem. Given the samples
y = (yO’yl’y2"") we attempt to make some slight over-

stimate of the system order n and form the data matrix (11).

e numerically investigate the null space of J and, if.




,necesséry, rédnce n so as to obtain an essentially unique‘
‘null vector c. After effecfing the factorization (6) and
using (7) ve then obtain the desired sg' .i'Almdst all of
the presently used nonlteratlve schemes for computing the
s,'s from the Yic 's fall wlthln this conceptual framework
For example, when we use the well known methqd of Prony, -
we ignore'all bﬁt the first n rows of Y and ;fter arbi-
trarily setting'cn=1-wé solve the résulting'system of

linear equations

[Yoo y1i-=9a % | [°

. Yy Y2 +++ Yns1 * ol
(12) |. | . =1
’ ' | a1 *

_yn~1 Yp =-* y2n-lj _1 Lov

to obtain the remaining components of the appréximate null
vectof €. | |

Perhaps the most naturél approach to finding a null
vector for 3 (esPecially when J has been contaminated with
n01se) is to determine € so as to minimize the Euclidean
length of Ye subject to some normalization of the Eucl1dean
length of c,1or equivalently; to minimize the Rayle1gh

quotient

' 2
(13) "‘-thTﬁc _ Y e l|2

e el

(In so doihg,we avoid changing'an intrinsically hbmogeneous



-y

| problem into an inhomogeneous one as in (12) by the

| imposition of a constraint ¢ =1 on one of the components of

| c.) Any minimizing e for (13) must be an eigenvector

| belonging to the smallest eigenvélue of the symmetric

' nonnegative semidefinite (n+l) x (n+l) matrix :jT:j,

. cf.[8,p.266]. 1In the ideal noise free setting where the

| system order n is known, both Y and 3Tfj will have rank n,

| the minimum eigenvalue of 5T3'wi11 be zero, and the corres-

| ponding eigehvector ¢ (unique to within a scale féctor) will

| be the desired null vector of Y . In practice, we do not

| know the system order and we can only approximate the elements
| o

4 (378 = Yy Yo B3 = 0L 0

| k=0

' due to noise contamination of the data and to the use of

| finite precision arithmetic on our computer so ourbcémputéd

| 3'rtj will not have either a zero eigenvalue or a null vector.

| Nevertheless, by using well known numerical methods [7] we can

| effect the eigenvalue decomposition

= T T T ‘ T
0 (13) Yy = Agvgvg + MM+ L+ A v v

| where Ay > A > ... > A, 2 0 are the eigenvalues and

| vo,vl,...,vh a corresponding orthonormal set of eigenvectors

' for ETS . If we purposely use a value of n which is a bit
purp y

\too large, we can analyze the distribution of the kk's and

‘theréby ascertain the correct system order, e.g., when n is



(16) Y = oonovg‘+ 01V o + 0

‘tion (15). Assuming ol

correctly chosen ve might expect to lLave Xn-l > > ln and
kn ~ 0. Tae éorreSponding v, 1s then a'good choice for e,
This approach has been successfully developed by VanBlaricum
and his coworkérs, [1,9].

As an alternafive to the eigenvalue decomposition (15),
we can use a singular value decomposition of Y to thain

the e which minimizes (13). The data matrix Y can be

‘represented in the form

T a vT
nunn

where Og 2 oy e 20 20 afe the singular values of J ,
1

S n+
where vo, vl, a8 vh are orthonormal vectors from R

v

s ahd
where w., 9y, ..., @ are orthonormai sequences, (Indeed,
Vor Vyr eeeo vh‘are again an orthonormal system of eigenvectors
of UT_:j as in (15) with 0 = 111(/2, k:O,l.,...,‘n énd v
nk=w;{3‘vk for each k for which ok¥ 0.) Tne c 'S and v, 's
can be compﬁted directly from the elements of the data
matrix 3 without first forming:jTg, cf.[2,3], The distri-
bution of the ok’s can be used in the same way as that of
the Kk's to help determine the system order, and the right
singular vecto; v, sérveé as an approximate null vector ¢
for 5..

In principle, the singular value decomposition (16)
should result in a somewhat better conditioned estimate of

the approximate null vector ¢ than the eigenvalue decompoéi— '

_1 > 0,» it can be shown that when y



if replaced by Y + & in (16) the resulting perturbation Ae
w?ich results in the normalized approximate null vector

¢ = v, satisfies thé bound

an Neely o 99 e, +oiel,)

e ”2 %n-1 7 %

w#ereas vhen thj is replaced by_ﬁ.rj‘+1d in (15) we have

t#e corresponding bound

as) 2oy < o g, + ey,

" ¢ ”2 Xn—l B An

w#th both bounds being sharp. The condition number
2
0]

2
-0
n

o

E 1T -x 2
n-1 n 8]

n-1

a%sociated with the null vector computation based on (15) is
u%ually many orders of magnitude larger than the corresponding

céndition number

(%O) “e = __ 00

‘ n-1 n
a%sociated with the null vector computation based on (16).
0# the other hand, when using the eigenvalue decomposition
w% must store only one copy of (a suitable iruncation of)
tﬂe data sequence y = (yo,yl,y2,...) to use in computing the
elements (14) of EJT:j , and this symmetric (n+1)x(n+1l)

mitrix is then used as the input to a routine which performs




the eigenvalue computations. In contrast, we must assemble
Y (which requires n+l times as huch storage as y) to use
as the input for a singular value decomposition anaiysis.
‘When the system order n is large and when many rows of Y
are known and available for use, this additional storagé
requirement for the singular value decomposition may very
well prohibit its use,

The above formulation of the transient analysis problem
has been strongly influenced by a recent paper of Henderson
[4] and by Volume I of the technical report [1] of Auton
and Van Blaricum, An unusually complete annotéted biblio-
graphy of related papers and technical reports is given in

Volume III of [1].




‘ 2., PREPROCESSING WITH THE TAIL SUM OPERATOR

S*ppose that we are given a transient sequence

¥y = (¥ys¥1s¥5s+..) having components (3) with 815 eesl
being nonzero and with zi,...,zn being distinct points
thhin the unit circle, and that we wish to determine the
z$’s numerically., Although it is possible to process tne
y"s'directly as described in the previous section, it is
often advantageous to use the yk's to generate an auxiliary
séquence u = (uo,ul,uz...) from which we subsequently

e%tract the z,'s . This procedure is known as preprocessing.

B?fore giving a more precise definition, we shall consider

a‘specific example.

‘ We define the tail sum operator S to be the sequence;

t?—sequence mapping for which

| o
(%l) Syk = Zyk_{_z s k=0,1,2,,.. ,
¢=0

ije., to generate the elements of v = Sy we compute

(32) U =Yt Yy t Vg2 Toeee k=0,1,2,...

directly from the elements of y. Using (21) we see that

o
sz¥ = Z K+ zk/(l—z)
£=0

so that

‘ 10



i.e.,, the powér sequence (1,2,22,...) 1s an.eigenvector of
S corresponding to the eigenvalue (1—z)_1 for every choice
of |z| < 1, ;Thisvbeing,the,case, if y has the ¥epresentation_
(3) (so that‘y'is a linear combination of n such power
sequences), then u=Sy has the components

n * k
(23) up = 3 a, z, 5 k=0,1,2,...
v=1

where
*
(24) aV :aV/(l—ZV)’ V=1,--.; n,

We thereby see that the séquence u=Sy has exactly the same
poles 2y5...,2 8S ¥, SO it is possible to extract these
poles from wu as described in the previous section. Using
(24) we see that the ratio a:/av is large when z  is near 1,
and thus the pole 2z, is more strongly represented in u than
in y when this is the case. Moreover, we might expect the
summation (22) to suppress som-: of the effects of any noise
which may have contaminated the yk's. This being the case,
we might reasonably hope to extract slightly more accurate
poles from w than we could obtain directly from y.

Of course, if a single application of S tends to
suppress the noise and enhance thevpoles which lie near z=1,
the repeated application of this operator might very well be
expected to do an even better job. .The application of S to

the sequence Sy gives the sequence.82y3 etc., with each of

11



t?e sequences y, Sy, Szy,... having exactly the same poles
z{,...,zn. This suggests three different schemes for
cgmputing these poles. First of all, we might select some

fﬂxed p=0,1,2,... and, following our earlier approach,

aﬂtempt to find a null vector e¢ for the data matrix

PSpyo Spy1 oo Spy ]

n
P P P
S ¥ 5%, ... 8 Yo+l
(25) p P P
S yp S Y3 - S Yn+2

(Which reduces to (11) wuen we take p=0 and sO- I.) Upon
eﬂfecting the corresponding factorization (6) we obtain the
zJ's . The second approach is suggested by the observation
thﬁt in the absence of noise the exact null vector ¢ is | |
orhhogonal to the first row of the matrix (25) for each
pzb,l,Z;... . We might therefore seek a null vector ¢ for

thr matrix

ané again obtain the z_,'s from the resulting factorization

\Y)

(6). PFinally, by repeatedly applying S to (3) we see that

n N _
(2%) Spyk = E a\)zx\){ [(1—2\)) l]P’ p=0,1,2,..., k_—-o,l.’zloo.
‘ v=1

| 12



and thereby observe that for each fixed k=0,1,2,... the
sequence y, ,Syk, Szyk,... has the associated poles

v, = (1-z,)7!, v=1,...,n (vwhich lie in the half plane

Re w > 1/2 when Izvl < 1 for each v.) This being the case,

if we find a null vector d = (do,d ..,dn)T for the matrix

1°

(28) |y, Sy, ... STy,

and effect the corresponding factorization

n

= dn(w—wl) o v(W-Vn)

do + dlw + ee. + dny

ve will have v = ('1--z\J)_1 or equivalently z,, = (wv-l)/wv ,
v=1l,...,n (after a suitable permutation of the indices.)
This third approach is equfvalent to the pencil-of-functions
hethod of Jain and his coworkers. [5,6].

'If y has the exact representation (3) and all compu-
tations are performed without error, these three approaches
all yield the same z,'s., In practice, however, the system
order may be infinite (with n of the poles being dominant
and the influence of the others being small but nonzero),
the sampled yk's may be contaminated with noise, and finite

precision arithmetic is used to carry out the computations,

The accuracy of the computed z,,'s thus depends on which of

13

i R




- I ‘ . - H -
|

the three matrices (25), (26), (28) we use and on which

Tethod we use to determine the approximate null vector.

‘ 14



‘ ' 3. PREPROCESSING OPERATORS

‘ Ve shall now generaliie~the results of the previous-
&ection soas to include preprocessing schemes other than

hose based on the tail sum operator S. Let
{29) ‘u=Ty

%e a linear sequence-to-sequence transformation. We may
ﬁhink of uw,y as being (column) vectors with I‘=[Yk8]'being
4 matrix so that

(30) e =Ty = Yo¥o * YY)y * Yio¥2 t o--- .

#e-would like to impose restrictions on the Yk

ﬂnsure that T is defined on the whole set of rapidly decaying

's which will

qransient sequences

q3l) J = {(yo.yl,yz,... )T : lim sup |yk|1/k <. 1 } .

(Vhen y, hes the form (3) with a,# 0 and |z, < 1 for each
\L:l,...,n we flnd |

|
‘ lim sup ka

sk that J includes all of the transient sequences which

11/% _ pax {]zllf...,lznl} <1

might arise from any stable finite order system we might
ish to study.) Moreover, to be useful as a preprocessing
skheme we must insist that I' be pole preserving in the‘sénse

tkat z,, is a system pole associated with w =Ty if and only

‘ 15




if 2z, is also a system pole associated with y, and this
Sfrves to further restrict the Ykz's‘ The resulting

s%quence—to—sequence mappings are characterized by the

lelowing

| THEOREM 1: A necessary and sufficient condition for T

tL be a linear pole preserving sequence-to-sequence mapping

of J intoY is that T have the form

. 2
(%2) r = Y(E) = Yol* YiE + Y,E” + ...

ite.,

|

(PB) PYi = Yo¥ie + Y1Vl + YoVia2 * oo+ 9 k=0,1,2,.5. |

wi\ere

2
(?4) v(z) = YotYi2z + Ypzo 4+ ...

i% a zero free analytic function on the unit disc lz] <1 .

" Before proving this result, we point out that (32)-(33)
iTply that I has the banded upper triangular matrix

r?presentation

y 7YO Yy Yy Yg o.en
| Yo Yy Yo -
(?5) r = Yo Yy +--

| L R

a?d since the radius of convergence, R, of (34) is given by
‘ 16



'the Cauchy-Hadamard formula

|
(36) R 1= lim sup IYk|1/k

‘the analyticity of Y(z) on |z| < 1 is equivalent to the

‘requirement

’

‘(37) lim sup lYk|1/k

‘The hypotheéis that v(z) be zero free is not easily trans-

<1 .

lated into a simple condition on the Yk's .

‘ To illustrate the theorem, we first note that the

‘tail sum operator S of (22) has the representation

|
(38) S=vy(E) =1 +E +E+ ...

Lhere

f39) Y(z) = l+z+z%+ ... = 1/(1-2)

Es clearly analytic and zero free on |z| < 1. Likewise,

&he local smoothing scheme

k40) U = Yt Ve e

Lhich results from the'operator

2 N-1
k41) Sy :_YN(E) =1I+E+E+ ... +E

#ith

(42) vy(2) =142+ 224 .+ 2 (1) (1)

-t Yraxa

‘ 17




|
| ;

‘meets the hypotheses of the theorem. On the other hand, the
‘ .

|
|
|

Forresponds to the operator

M43) F=vY(E) =1 + 2E + 3E

yhich maps J into J , but since

‘ v(z) =1 + 2z + 3z
|

has the roots (-1 + =2 )/3 which lie in the unit disc, this

weighted smoothing scheme

U = Yt 241 T Va0
2

2

%ap is not always pole—preserving.

‘ We shall now state and prove three lemmas which collec-
kively serve to establish the above theorem, The first
focuses on the‘bénded upper triangular stfucture (35) of T,

the second on the growth condition (37), and the third on

%he requirement that Y(z) be zero free in the unit disc.

‘ LEMMA 1. Let T be a linear operator which maps the
$pace of transients J into itself. The following are
%quivalentﬁ

‘ (i) c¢(E)ry = O whenever y € T and c(z) is a
polynomial such that c¢(E)y = 0, (i.e., if y,

‘ has the representation (3) for some choice of the

‘ a,'s and z,,'s, then up =I‘yk must have the repre-

O



*
sentation (23) for some choice of the a's
with the z,'s being the same, ),
(ii) I' has the representation of (32)-(35),

(iii) I' commutes with the shift operator E.
Proof. Assuming (i) we see that since

(E - 2I) (1,2,2%,... ) = (0,0,0,... )

Le must also have

(E-2I) I‘(l,z,zz,... ) (0,0,0,... )

for each choice of z with |z] <1 . Using the general

Tepresentation (30) for the linear operator I' we find

(E-2I) T (1,2,2°%,... )

== ¢ - . ¢
=(E-2I)( ZYogz , ZYMZ , Zngz sees )
£=0 £=0 £=0

g )
=(Y + A ¥ )
=1 ;
£=1
Lo that the power series
i
< ¢
Yo + 20 Meg™Yon, 1% 0 B=L2ee..
£=1

must vanish for every choice of z with lz] <1 . It follows

that

19




= O, k = 1,2,...

Yke = Yk-1,8-1 » Kol = L2y

i.e., that T' has the representation (35) or equivalently'

(32) so that (i) implies (ii).

When T = Y(E) has the representation of (32)-(33) we

cﬂearly have

o TEY = TV = Yo¥ka1* V1Vt YoVka3s, , SET o k=015

for each y € J so that (ii) implies (iii). Moreover, if
I' commutes with E, then T also commutes with the polynomial

c¢(E) in E so that
|

c(E) T y = Fre(E)y=TO0=0

whfnever c(E) y =0, i.e., (iii) implies (i ). |

| LEMMA 2, Let T be an operator having the répresentation
of (32) = (33). 1In order that I map J into J it is both
necessary and sufficient that (37) hold (or equivalently,
th%t (34) be analytic on the disc |z| < 1.)

| Proof. ‘Assume first that T maps J into J . The series
(33) which represents the first component of I‘(l,z,zz,... )
~must then converge whenever (l,z,zz,... ) €T, i.e.,
wh%never |z| < 1 . Thus (34) is analytic on the unit disc
so that the Cauchy-Hadamard formula (36) must produce a

ra%ius of convergence R > 1, and (37) holds.
|
|

20



(

(

~~

U

n

Conversely, assume that (37) holds and that y €J is

given so that

44) 1lim sup kall/k <1.
ince (44) holds, there exist constants A > 0, 0 < a < 1
uch that
. k :
45) |y, | <A o, x=0,1,2,... ,

nd since (37) also holds there exist ccenstants B > 0,

< B < a1 such that

46) v, | < B 8%, k=0,1,2,...

sing (45) - (46) and the fact that O < aB < 1 we see that

he series (33) which is used for the k-th component of

I'y is majorized by

Py =Ygyt Yayg o+ Ya¥ygat -0 |

< 850 AcK+Bp) + AcK*lips? - AcK*2,

ABdY / (1-23),

nd is thus convergent, k=0,1,2,... . Thus Ty is well

efined, and
1im sup| Py, |*/% < 1im sup|aBa®/(1-a8) |}/ *-a < 1

o that Ty € J. |

21




NOTE. A slight extension of the above argument shows

that the_operator of (32) - (33) will map

+ ) . . . ) T .
TR ={(yo,y1,y2f... )* ¢ 1lim suplyk|1/k

<R}'.
into itself prdvidedﬁthét

- lim sup IYkll/kkS 1/R,
i.e., provided v(z) is analytic on the disc |z| < R,»

0 <R <%, The case R=1 is covered by the lemma.

When y(z) is analytic on the unit disc and-|z|‘< 1 we
have

(B} (1,z,2%,... ) = v(z) (L,z,2%,... ) ,

and we thereby see that Y(E) will arnihilate the power
0 1if zy is a root of

v(z)., More generally, su,pose that y has the representation.

sequence associated with the pole z=z2

(47) Y = 2:. avzgl; k=0,1,2,...

" .where

(oo

(48) 5 ol <=

v=1 .

and where

(49) |z | < R <1 for cach v=1,2,... .

vl

We then find

22



Lim sup |y, [*/* <

40 that y € J . Moreover, when Y(z) is aralytic on the

4nit disc we have
| o

(o ] (0 o] )
YEy=>v, Y e e 3 v(z)a 2% %=0,1,2
‘ ‘ k 2 vy = v/8y2%y 1 E=Uslscr. e
. =0  v=1 v=1

Tnd we thereby conclude that each pole z,, associated with

ﬂ will also be a pole of uw = Y(E)y provided that yv(z) has
n

0o zeros in the unit disc.

The above arguments show that when Y(2z) is analytic
and zero free on the unit disc, then Y(E) is a pole pre-
%erving mapping of the set of sequences y of the form (47)-
(49) into itself. Although such transients are the ones
most likely to be met in practice, for the sake of com-

pleteness we shall extend the argument so as to include

c‘.

he somewhat larger class J°. In so doing, we shall find

it convenient to use ile notation

2 .
y(z) = Yo * Y2 + ¥zl o+ ...

for the generating function associated wiith a given sequence

23




yz (yo,y1!y2ioou' ),-‘\'ith

(Z-l) = Yo * ylz_1 +'y23_2‘+ f';
being the corresponding z - transform, Of course, when.y
has the representétion (47) - (49) we find

(o o} = fo o] cc

y(z7h)= Z 27K Z avzv}{'= z - Z a,/(z-z,)

, k=0 Sv=l v=1 _
so that 21,22}... Ere;the poles of.y(z;l). More gehérally,
ve shéll say that thelmap I' i's' pole preserving on J° |
providedlihat for every choice of y‘Evj;thé zvn trénsform
u(z'l)»of u =Ty has exactly the same poles as the z-transform

y(z-l) of y. The»relétionship between these poles is made

precise in the following

LEMMA 3. Let y, Y be Sequences with

- (50) 1im suplykl /k = R <1, lim sup|Yk|1/k

and let u=Y(E) y v= y(E)Y , i.e.,

W=Y oYt Y Ve Yo a0t e ».k=Q,1.»52:.- e

Vk=y0Yk+lek+l+y2Yk+2+. ie k:o’vl, 2;... R

Then the generating functions #(z), Y(z) are'analytic for
_1) '

|z| < 1, the z-transforms y(z_l),iu(z are analytic for

|z| > R, and the identity

w(z™Y) = v(2)-y(z71) - v(2) + v(0)

24



holds in the annulus R < |z| < 1 and thus in the common

(o]

omain of analyticity of these four functions. In parti-

cular, when Y is zero free in the unit disc, the poles of

(z-l) (which must lie in the disc [z| < R) must coincide

e

with the poles of y(z-l).

Proof. By using the Cauchy-Hadamard formula in

(o]

onjunction with (50) and the note following Lemma 2 we

-

nfer that y(z), u(z) are analytic for |z| < 1/R and that
Y(z), v(z) are analytic for |z| < 1. For z in the annulus

R < |z| < 1 we then have

(o o JNe o) oc
v(z)-y(z"1)+v(0)= )IEDD Ykzk'yzz—g’“ 2 WYk
k=0 £=0 k=0
k-2 v g~ (&-K)
=3 VY ,Z IIRANG
k>¢ Lok
cc foe) ' oo) cC -V
=2 ZY8+vys)z+ | ZkakW)z
v=0 ¢£=0 v=0 k=0
© X v
DAY

Taken together, these three lemmas give the previously
stated theorem which provides a simple characterization for
the pole preserving mappings we would like to use in a

preprocessing scheme. The discussion of section 2 can now
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be extended at once to the case where the tail sum operator

(38) is replaced by any operator T'= Y(E) for which v(z) is

Lnalytic and zero free on the unit disc.
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4., 'NOISE SUPPRESSION
et a £ 0 and z be given with |z] < 1, and let
51) w, = az¥ + €, k=0,1,2
k_ k' N/ ) f I

here eo,el;ez,... are independent random variables with

ommon mean
< ek > = O’ k=0,1’2’o-0

and common variance

< ei > = 02, k=0,1,2,... .

Let

2
r = v(E) = YO+YlE+Y2E + ...

be a preprocessing operator for which
¥

sy o2 2 . (.2
(52) Y7 = |y l® + Iy,

2
+ v, 17+ .
is finite, and let v =T'w so that
(53) v, = aY(z)zk + 6,5 k=0,1,2,...
wvhere

(54) 6, =Y(E)e, =Y e +Y €, 1 +Y,€ o +..., k=0,1,2,

is a random variable with mean
co

(55) <6> = < 3D ¥, 8, p> =
£=0 £

Y&‘<ek+£> - b ]{20,1,2,'..

o8
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and variance '
- 0 o _ O
(56) <|6k|‘ 2=< > YzYu€k+eek+u>'= > YeYu<el*:ﬂie‘k+u> .
3»L1=0. 8;“-_-0,

|2 02=Y202, k=0,1,2,~. ..

(e )
= ¥ ly,

¢=0
The processed hoise 60, 61, 62,... is correiated witﬁ

o

ktp = 2 YeVuk+s Ckipru
2yu=0

(57) <6,6

Y1 F Ype2Yote--)oT, kep=0,1,2,... .

=(¥ Y+,
=( poO 'p
Ve would. like to develop some quantitative measure of
‘the tendency of the preprocessing scheme to suppress the
noise., We shall us,e"|azk|2 as a measure of the signal (:)
i> = 02 being

a corresponding measure of the noise. Analogously,
k|2 ‘

present in the k-th component of w with <e¢
lay(z)z gives a measure of the signal in the k-th
component of v = 'w with <16k|2> = Y202‘being the
corresponding measure of the noise, The preprocessing
scheme T thus improves the k-th component signal-to-noise

ratio by the factor

k(2,22
exlele PHCE) v 1P/
az g

Since this ratio is independent of k, we sce that

28




(58) g(z) = I¥(2)12/¥% = lvgev zev,2®s ... |2

2
|

1242

2 2
vy 5+ v, 17+

lvg

provides us with a quantitative measure of the tendancy of

I to enhance the signal-to-noise ratio for a power
sequence based on the pole z . VWhen g(z) > 1, the noise

is suppressed, and we refer to the set
(59) ClY ={z€C: |z|] <1 and g(z) > 11}

as the region of pole amplification associated with
r = v(E).

Suppose now that

n
(60) w, = T a,zg+ e, k=0,1.2,...
v=1

where aV#O and IzV|-< 1 for v=1,..., n, vhere z b/

1’..-’ n

are distinct, and where €O’€1’€2"" are again independent

. . ) 2
random variables with zero mean and common variance O

If we compute

n
(61) v, = Y(E)w, = ¥ a,¥(z )z + 6., k=0,1,2,...
v=]1
(with 60,61,62,... again given by (54) ) we will expect to

enhance the pole z, relative to the noise provided that
z,, lies within the region of amplification (I, with the
degree of enhancement depending on the size of g(z,). In

practice, the poles z z are unknown, but we often

13..-,
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%ave some a priori knowledge of the portion of the unit
?isc in which they are most likely to be found. In such

situations we might reasonably select a preprocessing

scheme which is specifically designed for signals of the

Type we expect to process, i.e., we choose I = Y(E) so as

to make g(z) as large as possible in the region of the

|
unit circle where we expect to find Zyseees 2. An upper
|
bound on the possible size of g(z) is provided by
|

\
| THEOREM 2. Let the operator T = Y(E) satisfy (32) -

434), (37) with (52) being finite and let g(z) be the
|

corresponding signal-to-noise amplification factor (58).
.#hen
|

2
962) g(zg) < 1/(1-1241%), |zl <1
|
with equality holding if and only if
‘ .

| -

(63) v(z) = a/(1-z42), |z]| <1
|
N v
where a is a nonzero constant so that v(z) has a simple
|

pole at the point of inversion z = l/Zb’of z

Qhe unit circle and

| - -2
(64) ry, = a(yk+zo-yk+l+zo “Viepot e ) s k=0,1,2f... .
|

| Proof. Using Cauchy's inequality we find

0 relative to
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(65) Iy(z)l2 = | " zkl2
k=0
o] oo}
2
< Ty ? o3 IX)?
k=0 k=0
2 2
= v /(1-12]%)

with equality holding if and only if ¥ is a scalar multiple
of the power sequence (1,?,52,... ). In conjunction with

1(58) this gives (62) - (64). |

The bound (62) provides a natural limit to the signal-
to-noise amplification we can achieve tiirough the use of
a preprocessing scheme. When the sampling interval T 1is
lies déep within the unit
2 3

circle, 1i.e., z, % O, the successive powers zy a2, s

chosen so large that the pole z
decay so rapidly that substantial noise.suppression 1is

impossible and we find

glz) < 1/(1-]z,1%) = 1

On the other hand, i{ T is so small that 2z, lizs near the
rim of the unit circle, i.e., lzvl < 1 but lzv\ =~ 1, then

ithe maximum of

glz,) =1/(1-fz %) = 1/[2(1-]z, )]

will be large and a suiteble preprocessing scneme can

achieve a substantial suppression of the noise, cf, Fig.1.
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Suppose now that we have some a priori knowledge tinat
the poles Zyseeas 2 which we seek all lie in some subset
A of the unit disc, e.g., if the samplinginterval T is

small we expect to find Zyseens 2 in a tight cluster near

z=1 so we might take (. to be the lens shaped set
(66) A ={z € C: |z]| <1 and |z-1| < p]

obtained by intersecting the unit disc with the disc of
.radius p which is centered at z=1. Once CL is chosen, we
would like to determine a corresponding preprécessing
operator T = Y(E) which is optimal iﬁ the sense that thé

' ﬁinimpm.value taken by g(z) as z. ranges over Q_Ki.e., the
smallest signal—to—noise amplification at any pole location
ve might possibly encounter) is as large as possible,. 'When
a :izol, the optimal operator T is given by (63) - (64).
In more realistic situations such as (66), tnere is no
_known procedure for constructing an optimal T . Nevertheless,
we can develop good if not best preprocessors for certain
natural choices of avand we shall now proceed to show how

this is done.

Suppose first that (L is given by (66) with ¢ being small.

¥hen Y(z) is given by (39) the contour lines oflly(z)lz are
circles centered at z=1 with |Y(z)|2 > p‘2 when 0 < |z-1]< p.
We might thus expect the tail sum operator S = Y(E) of (38)

to be an ideal choice, Unfortunately, the corresponding
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‘ Y2 of (52) is not finite when v(z) is given by (39), so we
‘ are forced to consider.related approximations.

‘ One very natural approximation is obtained by simply
.‘ trunéating the infinite series‘(39) so as to obtain

‘ (42) with N being a positive integer. The corresponding

‘ preprocessing scheme u = Y(E)y is then the local averaging
‘ procedure of (40), and the»sjgnal—to-noise enhancement

‘ factor is given by
(67) g(z) = [1ems . T i B P LAY F A S

‘ By using Cauchy's inequality we see that this operator is
‘ optimal in the sense that it maximizes

N-1,2
‘ g(1) = |Y0+y1z+ oo V2 [

2 2
- AT

2
+ e+l |

as Y(z) ranges over the set of all (nonzero) polynomials

‘ having degree less than N. If we let
‘ gk = exp(i . 2mk/N), k=1,2,..., N-1, (12: -1)

‘ denote the N-th roots of unity other than z=1, we may write

‘ (67) in the form

‘ g(Z) = |Z_gll2 IZ_C.N_llz/N

‘ and thereby conclude that the ccniour lines of g(z) coincide

‘ with the equipotentials of the two dimensional field wnich
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results when unit charges are placed ét z = gl,gz,.{., tno1

in the plane. This helps us visuvalize the region of

amplification when N ‘is small, cf, Fig. 2, For large N

. 'we neglect zN in (67) to see that the region of amplifi-

cation is essentially the lens shaped set (66) which results
when we take p = N—'l/2 and that g(z) increases from approx-

imately 1 to its maximum value N as the disﬁancé from z +to

1/2

1 decreases from N~ to 0. In this way we see that a

large signal-to-noise amplification is possible only when’
& is large in which case the corresponding regioﬁTdf pole
melification is smail. .Thus N should be chosen in
Lonjunctibn with.the sampling interval.T, i.e., when T is
gmall the 2z 's are tightly cluslered near 2=1 and a large
#alue of N is appropriate, cf. Fig. 1 and Fig. 3 .

‘ A second natural approximation io (39) is obtained by
Llightly'shifting the pole z=1 of y to the nearby point

k =R > 1 so as to make
2 ,.2 =1
f68) v(z) =1 + z/R + z°/R° + ... = (1-z/R)

In this case u = Y(E)y is given by

' ' . 2
f69) U = Vg T Y /R v/RT s

‘Lnd

(70) g(z) = (R2-1)/|z-R|? .

#he contour lines of g(z) are circles centered at 2=R

34




with g(z) = K oh‘the circle wnere
]z—Rl‘z [(Bz—i)/Kjl(Z .

In particular;'the‘maximum signai—to-noise enhancément 1s
g(1) = (R+1)/(R-1) = 2/(R-1)

and the region of amplification is that portion of the unit

disc |z| < 1 which lies within the circle

|2-R| = (r?-1)1/2

Again we observe a fundamental trade off between the size
of the region of amplification and the maximum possible g,

cf. Fig., 4,

(=]
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. CONSTRUCTING NOISE SUPPRESSING PREPROCESSING OPERATORS

+ .In many cases of practical importance we encounter a
ystem which exhibits various modes of oscillation with
requencies which are more or 1ess 1ntegra1 multiples of
ome fundamental frequency and with all of these modes
eing similarly damped (cf, Appendix 1), i.e., the sv s‘

(1) are more or 19551n1form1y spaced along some line

es = -0 in the left half plane and the corresponding z,,

= exp( aT) <'1 . To aid us in the numerical extraction
f the first few zv's we would like to use a preprocessing

scheme which is optimal on some corresponding sector
{z_rele : p<r<1l, -8 < 8 <06}

e

Lf (4) arée more or less uniformly spaced around the circle
of some annulus of the unit circle with the parameters

and ® (0 < p <1 vand 0<@<mn) bein'g determined by the
amping coefficient a, the fundamental frequency, the
~ampllng 1nterva1, and the numver of poles we are trylng

o find. Tne préprocessing schemes of»(40) and (69) (uhlch
re designed for fhelregion (66)') tend to enhance the
oeest modes but damp out any others. VWe must thus devise
preprocessingvscheme r = Y(E) for a region‘of the form(71).
‘e now describe one way in wgich this can bedene;

, We first observe.that the function
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2 2
(72)  y¥(z) = ——F 5 = - :
' z°-2Rz cos® +R (z-Re'°)(z-Re™?

-
)

is analytic inside the circle |z| = R on which its two
conjugate poles z = R exp(+ i8) are found. For |z| < R

and 0 < 6 < m we may write

i

1 10 9—19 i
v*(2) 16 ~ 316
2i sin® ([ 1-(z/R)e 1-(z/R)e

, . o . . o) )
{0 5 it Seimi,
21 sin® k=0 : k=0

and after a bit of simplification this yields the series

representation

o

<

sin 3¢

2z
sin® " R sin®

=Y |N4
N}

for (72).

To oﬁtain our desired preprocessing operator we shall
now select a number p such Rj’ Gj pairs with Rj > 1 and
.0 < Bj < 1, and then form the product of the corresponding

terms (72), i.e., we take
2

P Rj 2
(74) Y(Z) = /,T P * 5 = YOTY12+\)Z -
: z"-2R _.zcos& . +R." -
i=1 J 3]
From (73) —‘(74) we see that Y(z) has the alternative

representation
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p

R - sin20 . , sin36. z
(75)  v(z) = T‘Til + —d 2 1. — 4 ...} )
: S ¢ sin 8. R. sin 9. R.
=1 J J J J
so that if we define
. . 2
' sin26. z sin36 z
Y(l)(z) =1+ —2 — L. =+ ...
sin 91 R1 sin 61 R1

and successively compute

. Lo 2
sin28 z .sin36, z
Y(z)(z) = Y(g'l)(z)-{ 1+ -j———ﬁ -—-+7—j———£.—§ +...}.,
: . sin 68 Rg sin 68 R8
 for £=2,3,..., p the resulting Y(p)(z) will coincide with
(75) and thus (74). Ve may thus numerically obtain the

coefficients Y ,Y sYys... of (74) by using the recursion

scheme
(1) sin(k+1)8, 1 B
Y« T sin 8 R kK k=0,1,2,...
1
(76) .
k sin(j+1 1 : |
el s oyle-n), e  K=0.1.24. 00,
k k-] sin © R
3=0 2 & £=2,3,...,p
with

(77) Yk = Yl(&p)’ k=0;1’2,..-

Once Yo?Yy2Yps... are known, we use the corresponding

operator
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r=vy,+ vE+ WéEz + ...

- for our preprocessing scheme, i.e., we take
Up = Yo¥k * YiYke1 * YoVge2 *o--o

- PFrom (74) we see that v(z) will be analytic on the disc

|zl < R when
R:min 1R1,.-., Rpl >1.

By using the Cauchy-Hadamard formula (36) we then see that
there are constants C > 0, 0 < @ < 1 such that the
coefficients YorYysYoseon ~we. compute in (79)-(80) will

satisfy the bound

Iy | <c - d" x=0,1,2,... .

Ve thereby infer that the sum

[0 o) <o
Y v l? < ¥ led®® = c/(1-¢%)
k:O k:o

2
|

is finite so that the corresponding g(z) of (58) is well
defined. Our goal is to determine the pole location

parameters Rj,ej, j=l,..., p which result in a g(z) which

is uniformly large on all of ( in the sense that
min { g(z) : z € @ }

is as large as possible. Since g(z) is the modulus of an
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analytié function which is zero free on (L , this is
equivalent to maximizing the minimum value taken by g(z)
as z ranges over the boundary of Q

Using a digital computer in an interactive mode
(where it is‘fossible to perturb the pole location parameters
R.; €. and immediately see the effect on the contour lines
of g(z) we have been able to design good if not best
préprocessing operators T = Y(E) for the region (71), ¢f.
Fig. 5. More work is needed in order to systematize this

procedure, however,
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6. ALTERNATIVE METHODS FOR COMPUTING THE NULL VECTOR

At the heart of transient analysis lies the problem
of extracting a suitable null vector e = (cyscys...s c )
for the data matrix Y of (11)., As we have seen, ¢ can

be obtained alternatively as a null vector of certain

.related matrices such as (25), (26) or, more generally,
as a null vector of the corresponding matrices which result

when the tail sum operator S is replaced by some other

_ preprocessing operator I' chosen for its noise suppressing

properties. We shall now describe a general procedure of

this type in the hopes of obtaining a more robust scheme

for computing ¢ and thereby for computing Zyseees 2 . .

Indeed, suppose that we are given the transient
sequence Yy = (yo,yl,yz,... ) and the preprocessing

operators Pi = Yi(E), i=0,1,..., m. We shall numerically

generate the sequences Fiy) i=0,1,..., m and then

assemble the matrix
;
K

PoYo oYy ¢+ - - oYy
(78) bz r‘lyo Pp’; . e e T'l)’n
Pmyo Thyl . e . Pmyn

Using a singular value decomposition of 4 or an eigenvalue

decomposition of,&F/& as described in section .l we shall

compute a null vector e = (cO,cl,..., cn) for }4 and then
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take Zyreees 2, to be the roots which result from the
corresponding factorization (6). Of course, this scheme
will be successful only if the operators are chosen in
such a manner that }§ has the same null space as the data
matrix Y . This imposes certain constraints on the
operators PO’ Pl’ oo Pm wvhich we shall now explore in

some detail.

Let Yo(z)’ Yl(z)’o-ol Y'

m(z) be analytic on the unit

disc'lzl < 1 . Ve shall say that these functions satisfy

the Haar condition provided that no linear combination

(79)  Y4(2) = byv,(2) +‘b1Y1(z) + ...+ by (2)

of these functions has more than m zeros in !zl < 1 unless

bO’ bl’ ...,-bm all vanish, After illustrating this
concept with several examples we shall show that this is
exactly the property which is needed in order to insure
that Y and Y share the same null space.

Example 1, The functions

Yi(Z) =Zl, izo,l’--.g m

satisfy the Haar condition on the unit disc since (79)
reduces to the polynomial

m
Yu(z) = bO + blz + ... + Dbz

which has at most m zeros unless bO = b, = ... =b_ = 0,

In this case
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- gly -
M,y. =E Y5 = Yigj

so that Y is the matrix which results when all but the

first m+l rows of Y are deleted.

Example 2. When Y(z) is analytic and zero free on

the unit disc the fuﬁctions
(80) v,(z) =2 v(z) , i=0,1,..., m

satisfy the Haar condition there since (79) reduces to the

product
‘ | .
Yu(2z) = v(2) « [by + bz + ... + b 2z ]

which has at most m zeros unless bozblz ... = b = 0. In

this case

i
Fiyj = E Y(E)yj =.Y(E)yi+j

so that} is obtained by generalizing (25) to the case
where SP is replaced by Y(E).

Example 3., Again let v(z, be analytic on the unit
disc and assume that Y(z) is also one-to-one, i.e., that

Y(z) = v(z') only when z = z' . If
(81) v,(z) = ¥(z)* , i=0,1,..., m
then (79) reduces to the polynomial

. ' 2 ’ 0
Yy(2z) = bO +b1Y‘z) + b2Y(z) R me(L)
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of degree m in Y(z). Since v(z) is one-to-one, y,(z) will
have at most m zeros unless bO = b1 = ... = bm = 0, and

so the Haar condition is satisfied once again. In this case

» i
Piyj = Y(E) yJ

so that M is obtained by generalizing (26) to the case
where S is replaced by v(E).

Example 4. Let CO’ Cl,..., Qm’be distinct complex

numbers with Igil < 1 for each i, and let
(82) Yl(Z) = 1/(1_ Z z) ’ i:O,]_,,,,, m

¥We may express the corresponding expression (79) in the form

Yu(z) = by/(1-Cyz) + ... + b_/(1-C z)

m
= do + dlz + ... + dmZ
(l_goz)(l—glz)b o (l—gmz)
with dO, dl,..., dm depending linearly on bO’bl""’ bm.
Clearly v,(z) has at most m zeros vnless‘dozdlz oo =d =0

in which case b0=b1= e :bm:O also, so the Yi(z)'s satisfy
. the Haar condition on the unit disc. Using Theorem 2 we

see that the operator

Pi = Yi(E) =1+ giE + Ci ET + ...

provides the maximum possible improvement in the signal-
to-noise ratio for a pole at z:Qi, and thus such a pole will

be strongly represented in the i-th row of 4, i=0,1,..., m,
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Using this. Y to determine the null vector ¢ may be preferable

to using (25), (26), or the generaiization of Examples 2, 3

above when the sysfem poles are well seyarated‘and it is

difficult or impossible to find a single operator [" which

has a region of amplification containing all of these poles.
Example 5. Again let QO’ Ql,..., Qm be distinct

complex numbers with|gi| < 1 for each i and let

( z- C.
v,(2) = —1

iAo &6

’ i=0s1:..., m

be the Lagrange interpolating polynomials of degree m which

are based on the ﬁ+l points QO’ gl,...,gm so that

v.(C.) =_S1 if di=j = 0,1,..., m
0 if  i#j .

Since Yo(z), Yl(z), cees Ym(z) are linearly independent
polynomials-of degree m, the Haar condition 1is satisfied.
The application of the operator Pi,= Yi(E) to a given
sequence y = (yo,yl,..._) can be effected by successively
applying'the m operators E - gjl, JEi anq then
suitably scaling the resulting sequence.

We note that in the special case where y has the
répresentation (3), where m=n-1, and where we take
gozzl, lezz,..., Cm:zn, we fiﬂd that the elements of

Pl are given by
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n

_ J_ J
‘ﬁiyj = X oayY;lzy)zy” = 2i41 Zivl
V=]

Thus,ﬁ is a row scaled version of the Vandermonde matrix

based on Zyreeos 20
n

THEOREM 3. Let Pi‘= Yi(E) where Yi(z) is analytic for

(z)

|z] <1, i=0,1,..., m and assume that YO(z), Yl(z),...,Ym

satisfy the Haar condition on tne unit disc. Let

y = (yo,yl;yz.... ) be a transient sequence having the

irepresentation (3) with av#O and |z < 1 for each v=1,..., n,

|
v
'with Zyseees 2 being distinct, and with n < m}l. Then
c = (CO’cl"‘°’ cn)T is a null vector of the matrix .Y of
(78) if and only if ¢ is also a null vector of the data
matrix Y of (11).

Proof. Using (3) we see that for any choice of

Cns Cos...s C_ we have
0’ 1’ ’ n

. n
n k
(83) c02g0+crﬁi1+...+cﬁﬁin=(co+c1E+ ..+c_EV)Y. (E) Ta,z,
v=1] k=0

n
= a (c4c.z +...+c_z N)y.(z.)
ZVOl\)"' n-v i v’
V=1

Now if e is a null vector of Y , the factorization (6) must

hold so
colji0+cllji1+...+cn in = 9 1=0,1;..., m
and thus € is also a null vector of)ﬂ . :Conversely, if ¢
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is a null vector of Y the left side of (&3) vanishes for
each i=0,1,..., m and therefore

n
(84) z:av(co+clzv+...fcnzvn)[bOYO(zV)+b1Y1(zV)+...+mem(Zv)]=0
" v=l

for every choice of bO’ bl""’ b . Since YO(z),Yl(z),...,
Ym(z) satisfy the Haar condition, we can choose the b, 's
so as to make (79) interpolate any given m+l points, and

in particular (since m Z'n—l) we can choose these coefficients

so as to make

(85) bOYO(zv)+b1Yl(zV)+...+mem(zv)

= ‘+ r...TC 2
av(cO N +e 2,

Upon substituting (85) into (84) we-find

: Ly |2
CotCyZyt. . ¥ 2 Y€ =0

la, (cote, 2,

LMs

AY%

so that

CAV.4C.y. . +...+C V.
oYiT%1Yi+1 nY i+n

n
= z:av(co+°12v+“’+cnzv
v=1
i.e., ¢ is a null vector of ¥ . [
The ideas leading to the construction of (28) lead to

the somewhat more general result which contains Theorem 3

as a special case,
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A ol m e e o, iam o  ehe

THEOREM 4. Let ry= Yi(E) where Yi(z) is analytic for
|z| <1, i=0,1,..., m and assume that Yo(z), Yl(z), e
Yh(z) satisfy the Haar condition on the unit disc. Let
Aj = Gj(E) where Gj(z) is analytic:for |z] < 1, j=0,1,...n
énd assume that Go(z), §1(z), e bn(z) élso satisfy the
Haar condition on the unit disc. Let y be a transient
sequence having the representatibn'(B) with aV# 0 and

|zv| <1 for v=1,...,n , with 2z s zn‘being distinct,

1)‘...

and with n < m+l. Then d=(d,d , a )7 is a null

1,.--
vector of the (m+l) x (n+l) matrix

FotoYo Tol1¥o - - - Mou¥o |
Mi8g¥o M8yYg - - - T80

| Telo¥0 ThfiYo -+ - - FmAnyo_

(86) M =

if and only if the corresponding characteristic function

(87) a(z) = 4, 6;

+ dnén(z)

vanishes at z z, and is elsewhere nonzero for |zl < 1.

1’,""

Proof. Using the representation (3) we see that

(88) bMma= §§av[bovo(z53fblyl(zv)+...+bmvm(zv)]
v=1
[doéo(zv)+d161(zv)+...+dn6n(2v)]
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. T T
for every choice of b =(b0’b1""’ bm) and d :(do,d ,d ).

EERER ™
If d is chosén so that (87) has-zl,.;., z as roots, ihen
" the left side of (88) must vanish for every choice of b |
(and in particular for the choice b =mad), apd we conclude
that d is a null vector of]n

Conversely, suppose that d#£0 is a null vector of M
so that the right hand side of (88) vanishes for each
choice of b. Since'Yo(z), Yl(z),..., Ym(z)lsatisfy the
Haar condition and n < m+l it is possible to choose b so

3

that .

bOYO(§)+b1Y1(q)+...+mem(a)

=a,[dg0o(2)+d, 8, (2)+...+d, 6 (7)]

wﬁen v=l,..., n, It then follows that

n

, 2
Tlaylagsy(z,)+d, 6, (z)+. . +d 6 (2,)] |7 =
v=1 ’

and thus (87) must vanish at z z . Moreover, since

l,...’
50(2): 6(2),..., 6 (z) also satisfy the Haar condition, the

characteristic function (87) has no other zeros in the

unit disc. |

Example 6. Let

and let
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ﬁj(Z)'= v(z)J, j=0,1,..., n

where Y(z) is analytic and one-to-one for lz| <1 . As
noted in Examples 1,3 above the Yi(z)'s and bj(z)‘s satisfy

the Haar condition on the unit disc. If we set M= Y(E)

we may write

M = Yi(E) = E', i=0,1,..., m
By = 6,(E) =MJ, j=0,1,..., n
so that
- ‘ n
yO Pyo . . . r“ yow
: n
Y1 'Yy, .. N
(g9) M=
| Ym TV ™|
We then conclude that d = (do, dl""’ dﬁ) is .a null vector

of M if and only if Y(zl),..., Y(zn) are the roots of the
polynomial do + dlw +,;.+ dnwn, and since Y is one-to-one

the z's are uniquely determined from d. Ve observe that

(28) is the specializatvion of (89) to the case where
" v(z) = 1/(1-2) as used in Jain's analysis.

Example 7. Let
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~and let bo(z),‘bl(z),..;, Gn(z) be the Chebyshev polynomials

vhich may be defined and computed by means of the three

term recursion

6,(2z) =1
(90)  6,(2) =z
GJ(Z) =' 2?5j_1(z) - 6j_2(z), j=2,3,v..., n ..

Since bj(z) is a polynomial of exact degree j, the Haar
condition is clearly satisfied. By using (90) we see that

it is possible to numerically genefate the sequences

AJy = 6J(E)y’ j=0,’1,..., n

when y is given by successively computing

yi, i=0,1,2’..-0

Alyi = yi+l’ i=0, 1,-2, -;- . . '
Ain = 2Aj—'lyl+l - Aj—Zyi’ i=0',1,2,..., ,j=2,3,..." n_-

When y has the representation (3) and m > n-1, Zysee.sZ )
will be the roots of the characteristic polynomial (87)
(which is now parametrized using the Chebyshev polynomials)

if and only if d = (4

O’dl""’ dh’)T is a null vector of the
matrix
boYo B1Yg - B.Y0 |
0 = oYy B3 - By
LAOym Alym Anymj

51



7. THE PROBLEM OF EXTRANEOUS ROOTS

If in the process of numericall& analyzing a given <:)
transient y = (yo,yl,yz... )}of the form (3) we overestimate
the system order n, i.e., we carry out the calculations with
n replaced by some larger integer m=n+r, we obtain a

- characteristic polynomial

(91) d(Z) =d 1

L m
ot d z;+ ceo +. 4z, dm¢Q
of degree m > n, The;following theorem provides several

~equivalent characterizations of d(z) and shows that

Zyseees zn are to be found among its m roots.

THEOREM 5. Let y = (yo,yl,yz... ) have the repre- =
sentation (3) with 2y5..., a_ being nonzero and with 21;...,
z  being distinct. Let cgy, ¢;,..., c be the coefficients = (:)
of the characteristic polynomial c(z) of (6) naving
Zys...s 2, 8s its roots. Let d = (do,dl,..

m=n+r and T > 0, and let d(z) be the corresponding

s dm)T with

polynomial ( 91). Then the following are equivalent:

(i) 4 is a (right) null vector for the data matrix

Yo Vi - Ve ]

(02) Y =[¥1 Y2 ¢ Yma

.

(ii) 4(E) y = O,
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(iii) d(zv) = 0 for each v=1,..., n,

(iv) d(z) has the factorization

a(z) = (by + byz+ ... + brzr) - ¢c(z)

for some choice of the coefficients bO’ 1700 br ,
(v) dT lies in the row space of the (r+l1) x (m+l) matrix

(93)C= . . 3

b

(94) af = bl . C

T

for some choice of b = (bo, bys...s b ).

r
Proof. From the identity

m
d(E)y = d0y+ dlEy+ . dey:Um d

we see that (i) and (ii) are equivalent. Next, since the
power sequences (l,zv,zvz,... ), v=1,..., n are linearly
’independent, and since
n
a(B)y, = a(E) Ja,z)* =

v=1 Vv

[avd(z\))]z\)k, k:O,lgz,.'o

L0

we see that (ii) holds if and only if a,d(z,)= O for each
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V =1,..., n vhich is equivalent to (iii) and thus to (iv)
since the a,,'s are nonzero. Finally, by equating the : (:)

coefficients of like powers of z in the identity

m
d0+dlz+...+dmz

: . Ty, n
(b0+b1z+...+brz )(cofclz+..,+§nz )

boc(z) . blzc(;)+ el + brzrc(z)
we see that (iv) is equivalent to (v). [

NOTE. Since the ﬁ;nditions (iii), (iv), and (v) above
do not depend upon any barticular‘choice of y, these
equivalent conditions ihply that (i) and (ii) must both
hold for évery possible nondegenerate choice of y having
the form (3) with the séme z,'s.

There are several ways which can be used to numerically

generate a family of vectors , . <:)

(95) le = (dlo, dil’---! dlm), i=o’1’~-', r

of the form characterized in Theorem 5. We have already
observed that if y is a nondegenerate trdnsient sequénée
of the form (3) and we.perform a singular value decom-
position of the data mqtrix.ﬂm with m = n+r, then r+l

of the singular values will be zero and ﬁhe corresponding
right singﬁlar vectors will be null vectors of &jm and
thus.serve as the di'si. _Ih some cases,.it is convenient

to observe a number of transient sequences yu,¥,s.--s Y. .
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which result from different initial excitations of the same
underlying physical system, We can then numerically
generate a null vector d, for the data matrix tjm of (92)

S P

constructed using the i-th transient sequence y;»
i=0,1,..., r. The same procedure can be used to generate
the di's when only one nondegenerate transient y is known
provided that we first generate suitable auxiliary
sequences y. = Piy) i=0,1,..., r from y by applying
preprocessing operators PO’ Pl""’ Fr‘ Indeed, in
principle, we can map any given nondegenerate transient.
y having component (3) into an arbitrary transient wu

having components

(for the same underlying system) by using any preprocessing
operator "= Y(E) constructed from a function Y (z) which

is analytic on Izl < 1 and whi~h interpolates the points
v(z,,) = a*¥/a, , V=1,..., n

We would like to have some numerical procedure for
obtaining the system poles Zyseens z from such a collection

of vectors ( 95). 1In principle, we could simply faqtor

each of the polynomials
%

o ;
(96) a,(2z) = d, g +d;q2 + ... + 4,2 , i=0,1,..., T
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and choose as Zyseees 2o the roots which are common to all

of them (assuming that the d,'s have been suitably
restricted so as to rule out the possibility of an extraneous
zero held in common by each of the polynomials (9 6)’.) In
practice, however, the roots are subject to slight pertur-
bations due to noise, computer roundoff, etc., and instead

of finding n roots which are held in common by the poly-
nomials ( 96), we obtain n clusters of roots (near Zyseses

zn) which.-must be suitably averaged. For this reason, we

would like to have some way to process the vectors

do, dl’ e dr so as to obtain directly a good estimate
of the coefficients ¢ = (cO, Cyserrs cn) of the character-
istic polynomial (6) having Zys...s 2z as roots. One very

nice scheme for doing this has been published recentiyfby

Henderson [4], and we shall now expand upon his work.
Suppose then that we have been given a collection

( 95) with Zyseees 2 being common roots of each of the

corresponding polynomials ( 96). By using Theorem 5-v on

a row-by-row basis we see that the matrix

- I
do0 901 -+ Yom,
dio 41y - 4y
(97) D = ‘
,drO drl e drm

(having doT, le,...,ydi as rows) can be factored in tne form
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(98) D=BC

where B is an (r+1)x (r+1)square matrix

b b A

00 01 Or
b10 'bll . . b1r

(99) B =
{brO brl vt 'brrJ

(having rows which correspond to the pblynomial factors
of Theorem 5-iv) and where C is the (r+l1) x (m+l) matrix

(93). Our goal is to extract the parameters €Cp?Cy7er+2 Cp

of C directly from the matrix D,

Hendersoh's scheme for finding the»ci's begins with
the use of Gaussian elimination with partial pivoting to
systematically zero out the elements of the matrix D having
indices i, j with i > j, i.e;, those'elements whieh lie
below the principle or left diagonal drawn through dOO’

dll’ ... o+ This process replaces D by the matrix LPD where

P is obtained by suitably permuting tne rows of tne

(r+i) x (r+1) identity matrix and where L is an (r+l1) x

(r+1) lower triangular matrix having l‘s along its diagonal,
cf. [8, Chapter 1]. The application of P serves to permute
the rows of D and the subsequent application of L thén‘serves
to carry out the elementary row operations which introduce

the desired zero structure. Henderson's scheme then
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continues by using additional row operations to zero out
those elements of LPD having indices i, j with j > i+m-r,
i.e., those elements which lie above the right diagonal

drawn up through drm’ d e+ .+ In this way the

r-1,m-1’
matrix LPD is replaced by the matrix ULPD where U is an
(r+1) x (r+l) upper triangular matrix having 1's along its

diagonal., The remaining matrix is then a row scaled

version of C, i,e.,
- (100) ULPD = SC

where

" [ 0
(101) S = 1

The i-th row of ULPD thus contains $;C€0r S5Cyr---s S;C
in columns j= i, i+1,.;., i+n, respectively, so after a
suitable normalizétion (or averaging process cf. [4,I

p. 986]) Cqo cl,...,.cn are obtained. Henderson has shgwn
that this procedure will always wérk when D has full rank.

A slightly more general (necessary and sufficient) condition

for the success of this scheme is given in

THEOREM 6, Let the matrix D of ( 97) have rank
r+l-p where 0 < p < r , and assume that.D has the factori-
zation ( 93) with B as in ( 99) and with C as in ( 93) with

cn#O . Then there exist (r+1) x (r+l) matrices P,L,U,S with
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- P being a permutation matrix, with L being a lower trian-
gular matrix with unit diagonal, with U being an ﬁpper
triangular matrix with unit diagonal,vgnd with S being a
‘diagonal matrix such that (100) holds if and only if

exactly p columns of B vanish identically.

Proof: Suppose first that D, C, P, L, U, S are

related as in (100). By using ( 98) in (100) we see that

(ULPB - S) C = 0

and since the last r+l1 columns of C are linearly independent

this implies that
(102) ULPB = S

By hypothesis, the matrices U, L, P are nonsingular so'by>
using ( 98) and (102) we see that D, B and S must have
exactly the same rénk r+l1-p and that B,S'have the same
null ‘space. In particular,‘exéctly p of the diagonal
elements s of S vanish, the corresponding p columns of
B must vanish, and (since the rahk of B is r+1-p) no other
columns of B can vanish,

Conversely, assume that exéctly p columns of B vanish
(with r+l1-p being fhé rank of.both D and B ). By using
elementary row operationé we can reduce B to an upper

triangular matrix héving exactly p zeros along the principle

diagonal, i.e., we can find P,L such that LPB is an upper
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triangular matrix with exactly p zero elements along the
diagonél. Since each zero column of B i$ also a zero

column of (LP) . B, the p columns of LPB which contain the

p zero pivots must vanish. This being the case, elementary
row operations can be used to reduce LPB to a diagonal
matrii, i.e., we can find U,S such that (102) holds. Upon :
| multiplying (102) on the right by C and using ( 98) we

then obtain (100), | | |

NOTE: When D satisfies the conditions of the theorem
the matrices LPD and ULPD = SC will be obtained haturally
during the two stage elimination process; Indeed, suppose
that D'cgn be factored in the form ( 98) and that co# 0.
(If cy = 0 we see from (103) and ( 98) that the first |
columns of C and D both vanish and that we could replace
~ our problem by'one corresponding to a smaller value of f.)
Since D has rank r+1—p‘; when wé use elementary row
operations to reduce D to upper -echelon form we will end
up with exactly p zero rows. From ( 98) we see that each
row of D is some linear combination of the rows af C, and
since 06#0 we see that each of the r+l1-p nonzero rows of
our- upper echelon matrix must have at 1east one.nonzero
element among its first r+1 components. This being the
case we>can rearrange fhe p zero rows so as to obtain the
matrix LPD which has zérés,below the principle diagonal and

exactly p zeros (which lie in the p zero rows) along the
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principle diagonal. Thus we see that the first stage of the

elimination process can be carried out on any matrix D
having the factorization ( 98).

It is the second stage of the elimination process that
is dependent upon the auxiliary hypothesis that B hés exactiy
p zero columns. Indeed, if the (lower right) r,m - element
of LPD is nonzero, then by épbtracting suitable multipleé
of this row from the previous ones we can zero out the
upper most r elements of the last column. If this r,m -
element is zero, however, we can proceed if and only if the.

whole last column of LPD is already filled with zeros, Since

LPD = (LPB) - C

‘we see that the last coluﬁn of LPD will vanish if and only
if the last column of C is in the null space of LPB and
thus in the null space of B, i.e., if and only if +the lasf
éolumn of B vanishes. Analogous considerations a?ply at
subsequent stages of the back elimination process.

NOTE. If the matrix D has full rank (as is often the
case in practice) then the square matrix B from ( 98) must
also have full rank r+l so that p=0 and none of the columns
of B vanish, Theorem 6 then guarantees that D has the
factorization (100). Moreover, in this case S also has

full rank so that U,L,S are uniquely determined by D and

the pivoting strategy P.
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The following example has been constructed to show
that there are cases where the two stage elimination process
of Theorem 6 fails even when the roots zl,.1;, z_are

n
uniquely determined by 4., dl""’ d_ . Indeed, let

dy(z) = 1+2242%422> = 2(2- 1/2)(2-1) (2+i)
a,(z) = 224 2% = (2-0)(2-0) (2-1) (2+1)
d,(2) = 1422422°%422%42% = (2-1)(2-1)(2-1) (2+1)

so that do(z), dl(z), d,(z) have only the roots z = + i in

common. In this case

120 , 10100
B= 001 C= (01010
121, 00101
and
12120
D = BC = 00101
21

122

The matrices B,D both have rank 2 so that p =1, but no v
column of B vanishes. Upon carrying out the forward
elimination process on D we find

12120 12120
00101 = |001001
12221 00101

12120
00000
00101

The back elimination fails, however, at the point where
we try to annihilate the 2 in the second-to-last column

of the fi:st row,
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‘8. CONCLUSIONS

Our approach to the‘problem of transient analysis,

i.e., the problem of extracting the system poles zl.;.,'zn
from a sequence of samples y = (Ygr ¥p» ¥osee+) involves a
three stage process. We first assemble a data matrix by
applying certain sequénce—to—sequence‘mappings-to y

within the conceptual framework of Theorem 3bor Theorem 4.
Ve thenvcompute:a nUll’vector for this data matrix by using
an eigenvalue analysis or a‘singular value decomposition

(with the former being less costly of éomputer storage and

the latter being somewhat better conditioned.) This null

vector then yields'a characteristic function héving Zysenos
2 asvrodts. Our scheme is & conceptually simple one which
admits significant‘new genefalizations (such as those bf
Examples 4 and 7 in Section 6),‘andiit places the existing
algorithms within a common hathematica1 framework.

The sequence-to-sequence mappings which lie at the
heart of our analysis can be effected quite simply on a
digital computer. Wé have énalyzed the noise suppressing
properties of such mappings and identified a fundaméntal‘
trade off between the size and shape of the region of
‘émplificatioh and the signal-to-noise ratio improveﬁent
which can be aéhieved, The analysis clegrly shows why Jain's
method is successful in filtering noise from the low order

pbles when’high samﬁling rates are used (i.e., when the first
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few z,'s are close to 1) and points the way to other pre-
processing schemes which will facilitate the computation

of the bigher order poles. Further noise reduction could

be achieved by using an adaptive scheme which first estimates

the system poles and then carefully computes them using
.preprocessing operators which are optimal with respect to
the expected pole pattern.

Finally, the problem of estimating;the system order n
and assessing the accuracy of the computed poles Zyseees 2.
can also be solved by using pole'preserving mappings. In |
the absence of noise the given sequence y and the auxiliary
sequences y, =,YO(E)y, ¥, = Yl(E)y,...; y. = Yr(E)y will all
have exactly the same poles Zl""’ z with n unknown. Ve

can perform separate computations of n and the z_'s using

v
each of the yk's, or we can compute approximate null .
vectors.do, dl,..., 4, for data matrices constructed using
Yo Yyr-++s ¥, and then extract n and the z's from the
dk's by using Henderson's method.

’>Many of these concepts have.been tésted by performing.
the related computations on simple examples, and the results
have been most encoufaging; A good deal more work will be

required, however, in order to perfect these ideas and to

incorporate them into efficient production codes.
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9. APPENDIX - THE DAMPED VIBRATING STRING

Problems in transient analysis arise when a physical
system reverberates in fesponée to some initial excitation.
In principle, such a phenomenon can uSuallylbe modeled by
solving‘a certain boundary value problem (which characterizes
the system) subject to initial conditiohs‘whichkdepend upon
the form of the initial stimulUs; In practice, such~models
can be analyzed in detail ohly in extremely simple situations
where there is unusual symmetry or low dimensionality. The
~damped vibfating string provides us with a simple pnysical
phenomenon which nicely sefves to illustrate the way a
problem in transient analysis arises and the.inherent
difficulties associated with its solution.

Let u(k,t) give the (one dimensional) displacement
from thé equilibrium position of the string at coordinate
x, 0 < x <L, at time t > 0. The motion of the string is
governed by the partial differential equation |

(103) T'uxx(x,t) —pu

tt(x’t).+,n u

((x5t), 0 < x <L, t>0

where T is the tension of the string, p is the linear mass
density, and # is the damping coefficient. We shall assume
the endpoints of the string are fixed by the boundary

conditions

(104) wu(0,t) = u(L,t) =0, t >0,
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and that some external stimulus has subjected the string to

the initial displacement and velocity

(105) u(x,0) = uy(x), 0<x<L

ut(x,O) = vo(x), 0 <x«< L

at time t=0. Upon separating variables we find that any

" solution of (103) - (104) has the form

o X .
u(x,t)= Y {Ame(_a+lwm)t+zme(_u°1wm)t}sin(mnx/L)
m=1

(106)

where i2= -1 and where

a =n/2p

m2n2? x2 1/2
w = { -

]

m sz 4p2

are given in terms of the fhysical parameters 7, p, %, L
which characterize the system, When (106) is $ubjected.to
the initial conditions (105) we find that the complex
coefficiénts Al, A2, ... are given by the iniegrals

L

Am=(me)_lJ/.{wmuO(X)—i[auO(x)+vo(x)]}sin(mﬂx/L)dx,m=1,2,..
x=0 '

and thus depend on the choice of uo(x), vo(x).

Suppose now that

Y(t) = ulxgst) 5, 20
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1s lhe resultling displacenent of t1he siring &t some fixed
poiunt X0 0 <'x0 < L. Using (106) we see that ihe transient
Y(t) can be written in the form

Y(t)= 2:§[Amsin(mnxo/L)]e(_u+lwm)t+[1msin(mﬂxO/L)]e(-a—lwm)tg,
m=1 o

or equivalently in the form

@ .
I(t) = 2: a, eSvt
v=1

wvhere
a,, = Amsin(mnxo/L) and s = ~O+iw if v=2m-1, m=1.2,...
a_ = Imsin(mvxo/L) and s = -a-iwm if v=2m, m=1.2,.

The poles s, are more or less regularly spaced along the

~vertical line Rez = -¢ in the left half plane, cf. Fig.l, and

tney depend only on the physical parameters 7.p.%,L of
the system. On the other hand, the coefficients a,, dependf

on the point of observation x. and the initial excitation

‘ 0]
(i.e., uO(X) and vo(x) .) The problem of transient analysis

is then to recover the sv‘s from certain samples
yk' = Y(kT)! k=0,1,2,...

of the signal Y(t).

The intrinsic difficulty of ihe problem is now apparent.

At best wé‘cén_hope to find the first few of the infinitely
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many system poles, s, . Moreover, if thevinitial stimulation
of the string fails to excite a given mode, if the point. of
observation X happens to lie at a node of that mode, or

if we unwittingly choose too small a sampling'rate, then

the mdde will be weakly represented (if at all) in the
éequence of sampies y = (yo,,yl, Yoree. ) and we will fail

to find the corresponding s,, . Nevertheless, in practice
we find that if we use a reasonable sampling rate then it
is possible to extracf at least the first few s,'s for
"almost" all choices of X uo(x), and vo(x) . Analogous
considerationsvapply when we use transient anaJySis to

study more complex physical systems which cannot be

subjected to such a detailed analysis.
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(a)Small T (b) Intermediate T | (c) Large T
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N

Figure 1. The trahsformation.iiexp(sT) of (4) maps tae s

's
v
from the left half s-plane onto the z

V's within the unit

circle of the z-plane, with T > O being the sampling interval.

(a) When T is too small, the z
near z=1. -

y s are tightly clustered

(b) When T is correctly chosen, the first few z_'s are

v
nicely separated.
(c) When T is too large, the z,'s are burried deep within
the unit‘circie.
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Figure 2, Contour plots of the SNR amplification factor
glz) = | 1+2+2° |2/3 for the case where Y(z) = l+z+2°

Tne region of amplification (] is the set of points z
within the unit circle for waich g(z) > 1.
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DOOO)

Emax=2 Bmax™> Crax=4  Brax=10
Figure 3. The region of amplification (L for the case where
)
Y(z)=1+z+ ... +zh 1 and N=2,3,4,10. As N increases, the
-maximum SNR amplification g(1)=N also increases but L

shrinks in size.

3OO

R=1.01

g :201

gmax=3 gmax=6 gmax:21 max

Figure 4. The region of amplificatiocn for the case where
v(z) = 1+z/R + 22/R2 4 ... and R=2, 1.4, 1.1, 1.01. As
R ¢ 1, the maximum SNR amplification g(l):(R+l)/(Rf1)

increases but & snrinks in size.
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Figure 5. The region
v(z) is given by (74)
(Ri, iei), i=1,2 as
approximate form (71)
scheme is well suited
in Fig. 1 (b).

anY
-

of amplification for the case where

with p=2 and with the four poles
shown. 1In this case (_ has the
and the corresponding preprocessing

for pole patterns of the form shown
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