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ABSTRACT: Resolution of two sinusoidal signals of frequencies f. and

1
f requires a time record of length at least l/lf -£ l Resolution

of two decaying exponentials of complex frequencies sl-c +jw and

s,= 2+jw s with 02>01, by correlation coefficient is dependent only on

the ratios o /01, and (wl-wz)/c1 for a time record of length greater
than 2/]01|. This is also the condition for near-orthogonalization

of a set of complex exponentials,with small error.
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1. Introduction

With the advent of the Singularity Expansion Method (SEM) there
has been a great interest on the 1dentificati;n of a linear time-
invariant system by a sum of complex exponentials. In this paper the
suitability of the exponential functions for modelling a finite time
domain impulse response is examined. More spécifically, we address
the question of how long a data set does one need so that the record
length behaves as if it were infinite. In other words, what is the
minimum length of record required to resolve the various components of
decaying exponentials. The answer to this question may yield data for
a meaningful analysis.

If two signals ¢(t) and ¥(t) are to be distinguishable the waveforms
must have the property of being as different from its shifted self as
pdssible. In mathematical tgfms, the mean squared departure of ¥(t)

from ¢(t+1)
o oo 2 .
[1¥ ()= (t+1) | “de ; ' (1)
oo . .
must be as large as possible over the range of T. By expanding the

above integral and noting the independence of the squared terms of T,

we see that minimization of (1) implies

IW(£)¢*(:+T)d: . (2)

-00

‘shall be as small as possible. Here * denotes complex conjugate.

The above integral in (2) is defined as the correlation betwéen
the two functions ¥(t) and ¢(t). We now introduce a normalized version
of (2) which we define as the correlation coefficient p(t) between the

two signals ¢(t) and ¥(t). The correlation coefficient P.(T) 1is defined as




[¥(6)o" (c+r)de

~-00

Pe(T) = — = . (3)
¥ (ack® { foce)o" (e)act®

So for perfect correlation, i.e. when the waveforms ¥(t) and $(t)
are identical then pw(r)=1. Under this circumstance it is impossible
to resolve ¥Y(t) from ¢(t). However, when P,(1)=0, we have perfect
resolvability, i.e. the two signals W(t)_and ¢(t) are as different as
possible.

Observe that thé limits in the integrals of (3) are from - to
+w. In general when we are performing an experiment it is not possible
to have infinitely long data records. If we have finite length data

records then the correlation coefficient is defined as

T+H
J¥(e)e (e+1)dt ,
T
Pa™ =~z T8 : (&)

{ f‘il(t:)\i’*(t)ds:}11 {f o(0)" (t)de}?
T T

It is clear that because of finite record lengths,

10;3(1)| > e (D ]. (5)
In this paper we investigate the value of A for which
oA (O] = Jo (0] . (6)
This value of A will then dictaté the length of record necessary to reduce
the correlation coefficient between the functions ¥(t) and ¢(t) and

thereby increase the chances of resolvability.

2. Correlation Considerations Involving Complex Exponentials

In generai, identification of the complex exponential components
of a signal involves solution of a set of simultaneous equations (e.g.

Prony's method). As the correlation between the components is increased,

‘the equations become more ill-conditioned. Consequently, the correlation




coefficient betweeﬁ the two complex exponentials is a measure of the
difficulty by which the two components may be resolved. By way of
illustration, two signals with unit correlation result in a singular
set of equations whereas two signals with zero correlation yield an
uncoupled set.

Consider two simple complex exponéntials given by

{e°1%}; 1=1, 2, 0<t<w (N
where si=di+jwi, with °i<0 and j= v-1. The correlation coefficient
between exp [slt] and exp [szt] over the time interval [T, T + A]
is defined as

T+A s.t éz*t

f e 1 e dt
pA(T) = T (8)
A s t sl*t T+A st s *t

{felel at®({[ele? a}"
T

Performing the integration and rearranging terms, we get

,/4"'"""0102. (973w T, 3 (W~ )T, {e [(o,+0,)+ (wl'wz)]A_l}

pA(T) = 9

bi+02+j(wl-wz)]ﬂdél-ezolA)(l-eZGZA)

In general the correlation coefficient is a complex quantity. - The
initial time instant T simply adds a constant to the phase. Since we
are primarily interested in the magnitude there is no loss in generality
by assuming T=0. Also the correlation coefficient varies as exp{[szwz]T}
with T, which does not enter into our discussions. Hence we define a

new coefficient plZ(A) as
PA(T) = oy, (8)exp] [cz-jwzlr_} _ (10)

We want to study ‘the properties of plZ(A) as the exponential function

in (10) does not provide any additional insight.
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Of particular interest is the sinusoidal case for which Oi=0 for

i=1,2. In this case

P,

=0 - (11)
1,270

The phase and the magnitude of the correlation coefficient is plotted
in figure 1 for w, 2 w, . Observe that the correlation coefficient

is zero for

(w,~w, )4  2m(f,-£f.)A :
1242—— = ; 2 - nT; n=1,2,... 12

Hence, for an observation interval of length A, the two components

are uncorrelated for

fl-f2=-% s n=1,2,... . (13)

With n = 1, we obtain the conventional condition for resolution of two
frequency components which is given by

fl-fz--% . (14)

for other values of fl-fz, the magnitude of the correlation coefficient

is bounded by

loy, ()] < 1 (15)
12 0'1,0'2 0 m v

This bound is plotted in Fig. 1. When w1=w2,»the correlation coefficient

is unity. This is to be expected since the two components are then

identical.

The situation is more complicated when 0, < 0; i=1,2. This is

i
evident by consideration of the spectra involved. For the infinite

interval, Gi=0 yields a line spectrum whereas ¢,<0 results in a

i
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continuous spectrum. Define

g oW, =W ) )
1 1

where, . for convenience, it is assumed 02 5.01~§_0. Substitution of

(16) into (8), with T=0,'thg correlation coefficient is expressed as

Jia e(l+0)Yej3Y -1

p,,(4) = - (17)
12 . 1+o4iB
(1-2Yy (1-2%)
We define
loy, ] = [p (=) ] W(a,B8,7) (18)

where plz(w) is the correlation coefficient due to the infinite
observation interval and is defined as

4a

[Py, (=)] =
12 (190 2162

(19)

The second factor in (18) can then be interpreted as a "windowing"

-factor due to finite observation interval. The window factor is defined'as

,ILZe(l+a)YcOSSY+e2(1+a)Y (20)
‘\Il_(e2y+eZaY)+e2(l+a)Y |

For a fixed value of B, the maximum value of lplz(w)l occurs for

%-Jﬂ?' ' (21)

The peak value of lplz(w)‘ is then given by

W(Q,B,Y) =

l°12(”)| (22)

It is interesting to note that (17) is unchanged by interchanging the
subscripts 1 and 2 in the definitions of (10). For this reason, it
is necessary to consider only values of @ greatér than or equal to
unity. The value of o = 1 is, therefore, of special interest because
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it serves as the "origin" in our plots. Interestingly enough, for
both large and small values of |B8|, the peak value in (22) is

approximately related to the value of the correlation coefficient for

o =1, Specifically,

- 4

oy, @] . = [— (23)

12 o=1 4+62
for [B] >> 1,
) ] 2 =~ 00 2

On the other hand, for [B8] << 1,

loy ) ey =1 = lpu(m)Im,(_,‘M | (25)
Also, for @ >> 1 and a >> [8], observe from (19) that

2
loy =] = 2 (26)

Hence, for a fixed value of ISI, the correlation coefficient épproaches
zero in the limit as « agproaches infinity,

Equation (19) is now investigated as a function of B, TFor a fixed
- value of o, the maximum value of |p12(w)| occurs for

B, = 0- - Cen
It is interesting to note that the correlation coefficient peaks when
ml-wz but dogs not necessarily peak when 01=62 (i.e., a=1). For

BM-O, the peak value of the correlation coefficient is

2va
[0}, (=) IB=BM=0 e (28)
For o >> 1, the peak be;omes .
2
lp (uo)l - N ——
12 B'BM 0 Ja | (29)
Asymptotically, for 8] >> a, (19) reduces to
2/3 -




Therefore, for a fiked value of a, the correlation coefficient approaches
zero in the limit as IBI approaches infinity. By comparison of (26)
with (30), it is seen that the correlation coefficient asymptotically
approaches zero at a faster rate with respect to |B| as opposed to a.

A plot of Iplz(w)l versus |B|, with a as a parameter is shown in
Fig. 2. Recall that the larger is the correlation between signal ”
components, the more ill-conditioned afe the equations which arise in
the identification problem. Figure 2 points out that the problem of
resolution is eased under situations of both large a's and large B's.
Recognizing that a is constrained to be gréater than unity, small o
implies 0,20, Then a large value of |B| is desirable so that the
difference in W, and w, will aid in discriminating between the two
components. Oﬁ the other hand, if lS| is small, a large value of o is
desirable. It is interesting to note that, for large o, the correlation
coefficient is relatively insensitive to |B| (e.g., see curve with
o = 100). Thishis reasonable since a large value of o implies that one
co@gonent decays mucﬂ ﬁore rapidly than the other. Hence, the correlatiqn
coefficient is more influenced by the relative decays as opposed to the
relative oscillations. In the identification problem o and B are
specified and £he.observation intervél is finite. Since an infinite
observation interval was assumed in obtaining the curves in Fig. 2, they
serve as a lower bound on the correlation coefficient for the finite
interval.

A second way of viewing lplz(M)l is presented in Fig. 3 where the
magnitude is plotted as a function of o with lel as a parameter. The

conclusions arrived at from the previous figure are still valid.
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ﬁowever, Fig. 3 clearly shows that large values for both « and |Bl
are preferable. Also, note the sequence of peaks at values of aM
predicted by (21). For large values of |[B], aM=[8}. The maximum
value of this correlation coefficient then arises when Iozl = Iml-wzl
where it is assumed }ozl > IGII.

S5till another way of presenting the results is to construct equal

correlation magnitude contours as a function of o and |B]. Solution

of (19) for [B| results in

[r—

lg] = Jza (—2 = -1) = (1), | (31)

o]

The contour plot is shown in Fig. &4 where the parameter is ]plz(w){.
This plot enables the user to determine the various combinations of «
and |B| which result in a given value of the correlation coefficient.
The plot also.allows one fo determine the sensitivity of the signal

parameters to small changes in the correlation coefficients. For example,

assume cl=3 and |B|=4. For ]plz(w)[=0.4, the allowable value of

is approximately 23, as read from Fig. 4. The corresponding value
of 02 is <69. When Iplz(W)]=0.5, the allowable values for o are 1.3
and 13. This yields values for 02 of 3.9 and -39, respectively. 1In
this case, the value of 02 is seen to be highly sensitive to changes
in the correlation coefficient.

Our discussion thus far has dealt with the infinite interval. We
now consiéer the effect of a finite observation. The windowing effect
is accounted for in (18) b} the second factor which is W(a,BR,Y), and
can be shown to approach unity for all possible choices of o and B, as
lyl -+ ©, QObviously, the effect of windowing is negligible when

W(x,B,Y)=1. Since @ > 1 and Y<0, W(a,B,Y) is bounded by
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2y
\ ’1—e2Y <W(a,8,Y)< l*e?_Y (32)

l-e™.
Observe that the bounds are independent of o and B.‘ The inequality in
(32) can be used to obtain an estimate for the minimum length of the
observation interval in order that the correlation between the two
components be approximately the same as for the infinite interval.:

(In general, windowing tends to increase the correlation). From (32)

the following table is obtained.

Table 1. Lower and Upper Bounds on W(x,B8,Y).

2y 1+e2Y

Y . l-e 3

1-e“Y
-1 , .930 ' 1.313
-2 .991 1.037
-3 .999 1.005

It isvconcluded frqm Table 1 ﬁhat the record length can be assumed
to be infinité, as far as W(a,B,Y) is concerned, provided vy < -2, |
In oﬁher words, when the length of the observation interval is such
that |

-2
A 2.01 where Gi

<01<0; i=2,3,..., (33)
then Iplz(A)[ = lplz(w)l. Since a finite interval tends to increase
the correlation coefficient (see Figs. 5, 6), it is desirable that the
inequality in (33) be satisfied.

The behavior of Iplz(A)[ as a function of |y| is illustrated in
Figures 5 and 6. 1In Figure 5, a is constrained to be unity as the

parameter |B| is varied from 1 to 100. Note that the curves have

settled down to their asymptotic behavior for |Yl >2. 1t is interesting

14
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to compare the damped case (i.e., ol# 0) to the sinusoidal case

(i.e., o, = 0). For o,= -1, lg] = lwl—mzl. The dashed line in Fig. 5
corresponds to the sinusoidal case where le-wzl = 10. This serves

as a reference for the damped case where |8] = 10 and g, = -1. In
Figure 6, |B| is constrained to equal the value 3 as the parameter &

is varied from 1 to 100. Again asymptotic values have been reached

for |Y| > 2. The dashed curve in Fig. 6 represents the sinusoidal case
with lml-wzl = 3. Since |B| = 3, each curve in the figure may be
compared with the sinusoidal case provided O1 is assumed equal to -1.
for o > 1, it is interesting to note that there exist values of |y]|
where the correlation coefficient is smaller than that of the sinusoidal
case. The only exception is for a = 1. Notice that the largest asymptote

occurs for o =-Jl+62 =q,10, as predicted by (21).

3. Orthogonality Property of Complex Exponentials

In general, two complex exponentials as given by (1) are not
orthogonal over any interval within [0,9). 1In this section, we would like
to investigate under what conditions two complex exponentials (which
are orthogonal in the infinite interval) remain almost orthogonal in
the finite time interval.

The Gram Schmidt orthogonalization procedure can generally be used

to orthoganalize a set of functions. However, a simpler procedure for

exponential functions was developed by Kautz (1] and applied in [2-3].

The orthonormalization is carried out over the semi~-infinite interval
and is based upon the Parseval relation for an inner product between two

time functions. Specifically, the Parseval relation is

d
[ £g* dt = [ F(s) G*(-s) —-——Zfrj (34)
-0 c
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It follows that the orthogonality in the time domain is equivalent to
orthogonality in the frequency domain. If f and g are sums of complex
éxponentials, they will be orthogonal provided F(s)e G*(—s) is a rational
func;ion which is analytic (i.e. has mno poles)‘either in the left half

or in the right half of the s-plane. Consider the set of exponentials
sit
{e *}, 1=1,2,...,0,...,m ¢ >0, g, <0 (35)

and construct an orthonormal set where the nth orthonormal basis

function is given by

*

-ch n-1 s+si
== (36)

n i=] i

Eq. (36) can be interpreted in terms of passing the nth exponential time
function through an all-pass filter structured from the previous n-1
exponents. The all-pass filter interpretation points out that it is the
phase which is responsible for orthogonality.

Thus far, orthogonaiity has been considered over a semi-infinite
interval. Provided a finite interval is suitably long, orthogonality
can still be approximated by this procedure.’ From (36), note that

s,t

-1 ' 9 i '
\Yn(t) =L {‘Yn(s)} = iilAie ‘ (37

where Lu1 is the inverse Laplace transform.

In the time domain orthonormality requires

o * 13 2=q
éwz(:)wq(c) dt =9 o, 24q (38)
Substitution of (37) into (38) yields
© * 9 x ® *
[¥, ()Y (£) de = ] % A felsgtsty,
0 1 i=1 k=1 0
'3 A A 1; f=q
= z - 1 k* = 0: Q%q (39)
i=1 k=1 si+sk .
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For a finite interval of length A, consider

*

[y ¥ (@ a= ] [ ans & — -l (40)
0 d i=1 k=1 * s, +s
ik
Clearly, (40) reduces to (39) provided
*
(si+sk)A
e << 1 (41)

Assume loll < Iczl for 1 = 2,3,...,n. Then (41) can be replaced by the

familiar inequality

* - 20,4
e(si+:=sk)A <e 1 e-ZY

<< 1 (42)

Provided the interval length is chosen such that (42) is satisfied, the
orthonormal basis generated by (36) is very close to being orthonormal
over the finite interval. Interestingly enough, Y| < 2, which was the
"condition for Iplz(A)[ = Iplz(@)[, also satisfies the érthogonality
vcondition of (42). Thus »

byl > 2 A (43)
is the condition to be satisfied if a finite interval is to be considered
as though it were an infinite interval.

4. Conclusion

When lY|,Z 2 or the record length is greater than =2 (where Ol is the
1
real part of the most slowly decaying exponential) then the finite
record length may be considered as though it were infinite and, in

addition, a set of nearly orthogonal basis can be generated over the

finite interval.
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