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Abstract

A statistical expression for the mean square erfor of a spectrum
extimation has been,defived in terms of the variances and éovariances of
the amplitude and phase errofs of a complex data sequence. No restrictions
need be imposed on the magnifude of these variances and covariances.
Numerical results have been systematically presénted in graphs, which:
illustrate the dependence of the spectrum error on the standard deviation
and correlation distance of the amplitude and phase errors. It is Shown
- that large phase error tends to dominate the spectrum error, and that large
correlation distaﬁces worsen the spectrum error and sharpen its dependency
on the frequency index. An expression to estimate the variance of frequency
error has also been derived- under tHe assumption of small phase errors.
Numerical results are given, which demonstrate the linear dependency of the
frequency error on the phase error and shows thét a large corre]ation
distance worsens the frequency error while a large number of samples

reduces it.




I. INTRODUCTION

With the advent of the fast Fourier Transform (FFT) algdrithm,
the discretg Fourier Transform (DFT) has been the most widely used
tool in time series analysis, filtering, oil exploration, earthquake
analysis, and many other areas. One of the important appiications
is the estimation of the spectrum in terms of given data. Owing to
various uncontrollable facfors there are errors in the collected
data. In order to determine the tolerances required of the measuring
instruments, it is necessary to determine the confidence !imits for
the estimators of the spectrum. This paper derives a statistical
expression for the expected pdwer spectrum of a complex data,sequence
when the amplitudes and phases of the sequence are subjeét to:réndcm
errors. Another related problem of determining the vafiance of the
frequency estimation is also studied. |

Various possible sources of errors in digital Aaté acquisitiontwill
first be discussed. Because of these sources of errors the probébflity
distribdtion of the amplitude and phase errors iskassumed to pe jointly
Gaussian. From this assumed probability distribution it is péssiblé
to derive confidence limits on estimates of the variances of the
’spectrum errors. Combuter programs are developed ﬁo calculéte and plot
the data to relate the tolerance of the spectrum to the errors of the
data sequence. |
It SOURCES OF ERROR

In this section a brief review of the various sources of error is
presented. o
(1) Quantization Errors.

In digital processing of sampled analog signals, the quantization




error is dependent on the number of digits in the digitizer word.
Welch [1] has shown that rounding after each two-pdint'transform in
evaluating a FFT leads to a relative rms output error € which is
bounded above by

e = (0.3)2M+3)/2,-8 (1)

for a transfofm of'ZM samples using B-bit arithmetic.
(2) Aperture error in the sampling device.

The aperture error is caused by the fact that the sampling of the
continuous function is not done with a delta function, but rather with

finite-width functions. This results in attenuation of the high-

frequency information.
(3) Jitter in the sampling device.

Jitter is the process whereby sampling does not take”place at the
precise instant it should. In general, it can be shown that the error
is larger at higher frequencies and that there is a flat, white noise
component added in the process [2]. |
(k) Other sources of error.

a) Noise, nonlinearities and dropout in the &igitizer.

b) Noise added by amplifiers and extraneous electrical noise
picked up from the environment. |

c) Distortion caused by signal levels being too high or’excessive
noise level owing to the signal being too low.

d) Folded high-freauency information owing to the antialiasing filters.

111 TOLERANCE OF POWER SPECTRUM [3]

If {xn}, n=0,1,...,N-1, is a sequence of complex numbers, where




the real parts of {xn} represent the in-phase time samples and the
imaginary parts of {xn} represents the quadrature time samples, then
~the spectrum of the signal x(t) is given by

N =jwnT |

X(jw) = ] x e (2)

n=0
where T is the sampling interval, The DFT can be efficiently evaluated
by using a FFT algorithm pfo?ided N is a highly composite number. In
practice, the sequence {xn} is often patched with L-N zeros to make L

a highly composite number and also to suppress the picket-fence effect.

Thus let
n ,{. Xn fOl' _<_ f_ N-1 (3)
Xn 0 <n<ltL
then
Ll o jamknsL
X, = X(jwk) = 7 R e k=0,1,2,...,L-1. (4)
n=0

where wk=2ﬁk/LT. If L=2M the spectrum {xk} can be calculated by using

a radix-2 FFT. Substituting (3) into (4) yields

N-1 nk : ‘
Xe= LxW" k=0,1,2,...,L-1 (5)
n=0
where W = e-JZ“/L.

Due to various sources of errors, as discussed in section 1, the
complex sequence {xn} is subject to random variations. Let {An}and
{¢n} be the amplitudes and phases, respectively, of {xn} with mean
values An° and ¢n°, respectively. We write

= 0 +
An An (1 6n) } (6)»
and

Oy = 6%+ T @
where {Gn} and {;n} are random variables with zero mean values. In

view of (5) - (7), the expected value of the spectrum is




N- ¢ .
<X > = Z A 0% < (146 )eJC (8)
n=0

Similarly, the expected value of the power spectrum can be written as

N=-1 N-

<x |5 =7 X ALCA 0] (0,°-0.%) wk(m'") (9)
k n=0 m=0
where
Non = <(l+6m)(1+6n)ej(cm’cn)> (10)

It is convenient to express Mon in terms of the joint characteristic
function f(v], Voo v3, vh) of the four random variables Gm, Sn, z ,
and Cn' By definition,

j(v]6m+v26n+v3cm+v

f(vl,vz,v3,vh) = <e hCn)> (11)

From (11), we find that Non in (10) can be obtained as follows
af ;o 32f
1

év -a——-—av V]=V2=0 (12)
. 2 _
V3—], Vh

=-]

In general, a characteristic function is expressible in terms of the
correlation functlons of the random variables. If the prbbébility
dlstrlbutlon of the random variables is Gaussnan, we may write f in a
particularly simple form

F(v)2vpuvgovy) = expl- 130 [cIT) (13)

where v' = [v], Vao Vs vhl is a Ixh row matrfx and is the transpose of
the column matrix v, and [c] is a 4xh covariance matrix for the amplitude
and phase fluctuation of the time samples. To simplify the analysis we
make the following assumptions:

(1) {Gn,Cn} are jointly Gaussian.

(2) The errors in the time samples are stationary, that is, the

variances are independent of n:




2y . A2
<6n > = A | (14)
and
<Cn2>=== o? for all n ‘ (15)

(3) The covarlances depend only on |m=n|:

<88 > = A% - (m-n) 2/a?

(16)
Tt = g2 e-(m-n)Z/B (17)
<8 ¢ > = Ace (m=n)/y? (18)
<8 k> =y /o v {19)

In Eqs. (16)-(18), a, B, and Y are, respectively, the normalized
correlation distances of the amplitude and phase errors. The covariance

matrix [c] between the mt" and the nth 2lements is then

/ N
2 2
Az Azamn AOYo Acern ‘
[c] = A % A AgYmn AgYo (20)
Ach AOYmn o o an
AoY Ao OZB 2
| Yo Yo

L)
Substitutlon of (20) in (13) and the result, in turm, in (12) ylelds

L= (a2l +o<y—y)1e°“3’ (21)
Following a similar procedure, we have

it o _ =y = =
<(l+6n)e n> = [f- J ] v =Vy=vss 0, V=1

which reduces to

2
= (1+jy a0)e™® /2 (22)

Combining (5), (8), (9) and (22) we can write the mean square error as
2 2 2
<|ekl >=<lxk' > - ,<xk>l
N-1 N-1

' 2
=1 A0 (¢,°-¢ °)[nmn_(,+Y§Azcz)e-c K (m=n) (23)
m=0 n=0 "




Eq. (23) shows that the mean square error <|eklz> dependsvon the
data sequence, the variances and covariances of the data sequence errors,
and on the frequency index. In order to concentrate the investigation
on the effect of measurement errors, we assume that the data samples

are uniform, that is, ° J¢n =1 for all n. Then Eq. (23) is simplified

to |
N-1 N-1 2
2 22, - - |
<Je® = T T In - (wyiale?)e ko) (2w
m=0 n=0 :
Since wae-JZW/E Eq. (24) indicates that the maximum error occurs
at k=0,
N> L 2,22 -2 (25)
<le | = Z Z In,, - (+v2a%6%)e™ ]
o i
m=0 n=0

For small errors, Eq. (25) reduces to
2 <! \ | |
<le |™> = Z Z (a2 o +o B DA (26)

m=0 n=0
which shows that the mean square error of the spectrum is proportional
to the sum of the covariances of the amplitude and bhase errors in
the time samples.
IV TOLERANCE OF FREQUENCY ESTIMATION [4]

In estimating the frequency of a single tone signal (e.g. estimation
of a carrier frequency), the error in the estimation is strongly
dependent on the phase errors in the time samples. Hence, to simplify
the analysis we shall assume that the amplitude errors are negligible
and the phase errors are small. Thus let xn=Anej€n = An(l+jcn). Then
the spectrum is given by

N-1

X(F) = T A (1+Jc )ei2mfnT (27)
n=0




Since we are concerned only wifh the deviation of the frequenéy,
we shall assume that the signal frequency has been translated down
so that the estimated frequency, fmax’ for which Ix(f)[ is a maximum,
is small. Thus we can write

-JZﬂfnT 2

= ]-j2nfnT- ZH n T , (28)
Substituting (28) into (27) yields
N-1
X(F) = [ A_(1+2nfTng -2w2f2T2n2)+J Z Ag(g -anfnT-2n2e 21202 ) (29)
n=0 " n=0 "

The power spectrum is then given by

Ix(F) |2 = ¢ z A ) ZlfT( z A z ng A )im?e2r2( z )2
n=0 " n=0 " : n=0

N 2 A ( z n’A )+( z A g ) 2ot 2r2 Z nA )2

n=0 n=0 " n=0
4T ( Z nA_) ( Z AZ) (30)
n=0 n=0 " ’
To find’fmax we let Elléfll_ = 0 which yields
(ZA)(ZOnCA
n=0 n=
fmax = (31)
2nT[( Z A ( Z n’A A Z nA_) 2]
n=0 " n=0 n=0

~ Since the mean value of the random phase errors g > = 0, Eq. (31) shows
that the mean value of the frequency deviation <fmax> is zero. Thus

the standard deviation of the frequency error can be written as

of = <fmax2> (32)

To simplify the analysis we let A= for all n. Then Eq. (31) can be




simplified as
N-1
6 ) ng

n=1

fmax = wNT{N-lSlN-Zf (33)

Substitution of (33) into (32) then yields

N-1 N-1

60
O¢ = TNT(N-1) (N=2) I ] om

n=1 m=1

)2/82 (34)

e—(m~n

If we normalice the frequency deviation with respect to the resolution

bandwidth F=1/NT, we can write the normalized frequency error as

o N-1 N-1 2,2
60 ) nme-(m~n) /B

n=1 m=1

(35)

Eq. (35) shows that the frequency error is dfrectly proportional to
the phase error. It also indicates that as the correlation distance
B increases the frequency error increases also.
V. NUMERICAL RESULTS AND DISCUSSION

(A) Errors of Spectral Estimation

From Eq. (8) it is seen that the noise-free signal level at

frequency index k=0 is N; thus we can write the normalized root-
mean-square error of the spectrum as

ALY (36)
and for the maximum error, which occurs at the frequency index k=0, as

Kle |2 (37)
Based on Eqs. (24), (25), (36) and (37), a large amount of numerical

data have been obtained, which can be used to estimate the confidence

digital data acquisition.
The spectrum error is a function of the amplitude error A, the phase

|
limits of the spectrum estimation in terms of the tolerances of the ‘ '
|
|
error 0, the correlation distances a, B, and Y, the number of time
|
|




samples N, the cross-correlation factor Yo’ as well as the frequency
index k. We choose N=64 and let yo=l in all cases. We first computed
the maximum spectrum errors [Egs. (25) and (37)] as functions of
amplitude error A. The results are presented systematically in Figures
1(a) through 1(e) and Figures 2(a) through 2(e). Next, we computed the
spectrum errors [Eqs. (24) and (36)] as a function of the frequency
index k by keeping the correlation distances constant (a=f=y=1, 3 and 5,
respectively, for Figures 3, 4 and 5). In each graph the phase error

O is kept constant and the amplitude error is increased from 0% to 25%.
Examination of Figure 1(a) shows that the spectrum error is linearly
proportional to the amplitude error for the case of zero phase error.

As expected, the spectrum error approaches zero as both the amplitude
and phase errors approach zero. The effect of correlation distances

is clearly seen in Figures 1(a) through 1(e), namely as cofrelation
distances increase the spectrum error increases in direct proportion.
Figures 2(a) through 2(e) clearly indicate the dominant effect of the
phase error as relative to the amplitude error. This implies that as the
phase error gets iarger the amplitude error has less influence on the
spectrum error. Figures 3-5 illustrate the frequency dependency of the
spectrum error. In all cases the maximum error occurs at frequency
index k=0, and the spectrum error tapers off as k increases. The frequency
dependency of the spectrum error increases with the increase of the
amplitude and phase error. The frequency dependency becomes éven more

pronounced as the correlation distance increases.

10




(B) Errors of Frequency Estimation

The dependepcy of the frequency error on the phase error o and the
correlation distance B is clearly seen from Eq. (35) and is notéd in
Section V. Again we choose N=64 and plot the normal i zed frequenéy error
as a function of the phase error o for different values of the corfelation
distance.

It is'seen that the frequency error is linearly proport?onal to
the phase error. It should be noted here that this linearidependency
is the result of assuming a small phase error in‘the derivation. To
show the effect of the correlation distance we plot in Figure 7 the’
frequency error versus the correlation distance 8 for different values
of phase errors. It is seen that the spectrum error increases as B
increases and the effect becomes more pronounced as the phase error
increases.

Finally, Figure 8 demonstrates the dependency of the normalized
frequency error upon the number of time samples N. It should be noted
that thé frequency error is normalized with respect to the resolution
bandwidth F = 1/NT, which is inversely proportional to N. Examination
of Figure 8 indicates that as N increases the frequency error decreases
rapidly for small N but it tapers off for large N.

Vi CONCLUSIONS

This paper derives a statistical expression for the mean-square

error of a spectrum estimator in terms of the amplitude and phase error

of a complex time sequence and their correlation distances. No

restrictions need be imposed on the magnitude of these errors. Numerical

results have been systematically presented in graphs. Examination of

these graphs indicates that, for zero phase error, the spectrum error is

11



linearly proportional to the amplitude error, while for a large phase

error the amplitude error has a diminishing influence. They also show

that a large correlation distance tends to worsen the spectrum error

and sharpen the dependency of the spectrum error on the frequency index.

We also derived an expression to estimate the variance of frequency
estimation under the assumption of small phase errors. The results
demonstrate the linear dependency of the frequency error on the phase

error. They also show that a large correlation distance worsens the

frequency error while a large number of samples tends to reduce the

frequency error.

12
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Captions

I.

RMS Spectrum Errors J<[€olz> /& as a function of amplitude

error A for different values of correlation distances
a, B, and y. (N=b4, y=1)
a Phase error 0=0° °
(b) Phase error 0=5°
(c) Phase error o=10°
(d) Phase error o=15°
(e) Phase error 0=20°

RMS Spectrum Errors J<I€°|2> /& as a function of amplitude

error A for different values of phase error o. (N=64, y.=1)
(a) Correlation distances a=Rf=y=| °
(b) Correlation distances a=B=y=3

(c) Correlation distances a=R=y=5

(d) Correlation distances a=B=y=7

(e) Correlation distances a=R=y=9

RMS spectrum errors \/<[€k]2> /g as a function of the frequency

index k for different values of amplitude error A. (a=B=y=1)
(a) Phase error o=0°

(b) Phase error o=5°

(c) Phase error o=10°

RMS spectrum errors /<[ek|2> /ﬁ as a function of the frequency

index k for different values of amplitude error A. (a=R=y=3)
(a) Phase error o=0°

(b) Phase error o=5°

(c) Phase error o= 10°

RMS spectrum errors J<|eklz> /ﬁ as a function of the frequency

index k for different values of-amplitude error A. (a=Bp=y=5)
(a) Phase error 0=0°

(b) Phase error o=5°

(c) Phase error o=10°

Normalized frequency error Uf/F as a function of the phase

error o, (N=64), for B=1,3,5,7,9.

Normalized frequency error Of/F as a function of the correlation
distance B, (N=64), for 0=5°,10°,15%,20°.

Normalized frequency error OF/F as a function of number of time

samples N for a fixed phase error 0=5° but for different values
of correlation distances 8=1,3,5,7,9.
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