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ABSTRACT

Pole-zero modeling of signals, such as an electromagnetic~
scatterer response, is considered in this paper. It is shown by use of
pencil-of-functions theorem that (a) the true parameters can be recovered
in the ideal case (where the signal is the impulse response of a rational
function H(z)), and (b) the parameters are optimal in the functional depen-
" dence sense when the observed data are corrupted by additive noise or by
systematic error. Although the computations are more involved than in all-
- pole modeling, they are considerably less than those required in iterative
schemes of pole-zero modeling. The advantages of the method are demon-
strated by a simulation example and through application to the electro-
magnetic response of a scatterer.

The paper also includes very recent and promising results on a new
approach to ncise correction. 1In contradistinction with spectral subtraction
techniques, where only amplitude information is emphasized (and phase is
ignored), we propose a method that (a) estimates the noise spectral density

for the data frame, and then (b) performs the subtraction of the noisg corre-

lation matrix from the Gram matrix, of the signal.

This work was supported bt the Office of Navel Research, contract number
NO0014-79-C0598.




I. TINTRODUCTION
Signal representation and approximation [1]-[4] is basic to (a) time-domain
extractioﬁ of singularities of a scatterer's field pattern [5),[6],{16] and to (b)
recursive digital-filter synthesis [7], [12]. It is also'useful in (c¢) bandwidth
compression of signals [2], and (d) time~domain measurément and testing of
networks/channels. In the past few years, the problem has been researched
extensively and a large body of literature has evolved. Notable success
has been achieved in all-pole modeling where both the least-squa:es and the
makimum-entropy formulations lead to the well known Yule-Walker normal
equations. Although these equations are widely used, it must be remarked
that in the presence of additive noise they are not entirely satisfactory
in that they can lead to unacceptable bias and variance iﬁ the pole estimates.
.Even less satisfactory appears to be th; situation for pole-zero‘modeling.
First, let us point out the motivation for pole-zero models. Their need
arises Because frequently the underlying phenomenon warrants the use of both
poles and zeros. This, for example, is the caée in modeling the transient
response of an electromagnetic scattefer, or the pulse response of an
electronic ngtwork or channel. Their use is also being increasing recognized
as a means for improvement in the quality of speech coders. On the other
hand, pole-zero models are sometimes preferred because of their intrimsic
efficiency, e.g., in the synthesis of digital filters with arbitrary frequency
characteristics. For more discussion the reader is referred to Steiglitz [17,
Cadzow [12], and Makhoul [1].
The classical approaches to pole-zero modeling are Pade' approximantg
[19], and the Prony method [18]. 1In their original forms both methods use a
number of equations equaling the number of unknowns, although the more recent
versionS‘use a larger number of equations. In either case, the solution is
noniterative, but, unfortunately, is sensitive to data noise. The true least-
squares formulation of the probleﬁ, on the other hand, results in nonlinear

equations which can only be solved by iterative methods, e.g., the Newton




method [ 1], or the prefiltering method [17]. These algorithmic methods

are not only plagued with convergence problems but yield a 'local' solution

rather than a 'global' one. Therefore, interest in alternative formulations

and solutions to the problem of pole-zero modeling continues ﬁo persist as
evidenced by recent papers by Cadzow [12), Beex [20], Kumaresan [2],

Henderson [22], Gueguen [23], and others. This paper discusses a unified
approach to representing or approximating a given empirical signal x(t) by

sum of exponentzals, i.e., for finding the right hand side of

n s;t
x(t) sy(t) = % di e “— Y(s) (1a)
i=1
n di
Y(s) = I . = (1b)
i=1 54
of, equivalently, the right hand side of the sampled version
a k
x(k) = y(k) = I R, (z,)" > Y(2) - (2a)
i=1
n R
Y(z) = 2 ——-—i~:i-
i=1 (Q-z.z V)
i
b +bzt4...4p 01
- (] 1 n-1
-1 -1
1+alz + ... +anz
B(z)
22 (2b)

The poles 8y (or zi in z-domain) hre either real, or they occur in complex
conjugate pairs.

When equality holds in (2a), the sampled signal x(k) is said to be
rational of order n,‘and thus rationally representable. Additionally, if

Re 8; < 0 (or, ]zi|< 1) it is said to be stable-rational of order n.
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In the method described hefe, the given signal is processed in reverse-
time by é cascade of first order digital filters to yield a family of infor-
mation signalsf If the cascade consists of n filters, the resulting n + 1
information signals‘will be found to be linéarly dependent over the index set
I, -{0,1;..,~}, éhile any subset of these signals is linearly independent.
This, in fact, is the reason for employing reverse-time filtering, althougﬁ
it must be remarkéd that in practice one must employ a finite index set
1, = {0,1,..,K-1} for "xecording the signal x(k) as well as in the Qodeling
-computations. The Gram matrix F of these information signals is shown to'

contain the essential information on the denominator parameters of Y(z).

Specifically, it is shown that A(z) is determined as
n+l

A2)- (qg)'“ [Z /Di(qz-l)ml'i]/vfb

i=]1 1

where Di are the diagonal cofactors of the matrix F. The numerator para-

meters are then determined using a least-sduares fit, i.e., b = -P-l

L
where P and ¢ are defined in the paper.

The entire procedure is thus noﬁiterative and computationaliy éfficient.
Iterative methods, such as the modified Newton method 02}, require as many
as a hundred iterations, each 1nvoi§ing a matrix inversion.' Our computations
are roughly equivalent to‘two matrix inversions. It is an extension of
the method developed in [8] to reverse-time processing by first order filters.
This forﬁulation results in a lower order matrix (n+l dimensional) than did
the formulation in [ 8] (2n+l dimensional). Examples presented demonstrate (i)
noiseworthiness in the representation problem wﬂen data aré cbrrupted by
noise and (ii) the effectiveness of the method in the approximation problem.
Comparison of tﬁe methoa with the maximum entropy method (or all-pole linear

predictor) Anﬂ the Prony method [1], [4] is also included in the paper.
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An important feature of the Paper is a new approach to noise correction.
In contradistinction to spectral subtraction techniques, where only amplitude
information is emphasized (and phase is ignored), we present a procedure
that (a) estimates the hoise spectral density for the data frame, and then

(b) performs the subtraction of the noise correlation matrix from the Gram
matrix of the noisy signal,

II. FIRST-ORDER FILTER BASED INFORMATION SIGNALS
In this and the next section : we assume that K = . From a practical

standpoint it is only necessary that a finite K » be selectedhsuch that

x(k) = 0 for k > K (so that use of the upper limit = instead of K-1 on summations

may be permitted). We define the reverse-time first-order filtered signals as
(see Fig. 1)

xl(k) = x(k)
xz(k) = qxz(k+1) + xl(k) (3)
xN(k) = qu(k+l) + xn(k)

Y, (k)

— u ) ] y(2) |—= e 0 @ —a u(z) J——s

u(z) = 1701 - qz)

Fig. 1. Reverse-time processing by
first-order filters




where N = n+1, and xi(K) =0 fori=1, 2, ..., N. Further, 0 < q<1.
This family of signalsl, which we shall call information signals,

possesses the interesting property stated below.

Lemma 1
If x(k) = y(k) is stable-rational of order n with poles Zes then the

corresponding information signals are also stable rational of order n with

the poles zi:
n R
2 k
Vigqk) = T ——F— (2,) (4)
i+l 2=1 (1-q zz)i L

Proof: We prove this b& induction. For i=0 the statement is triviaily true
since (4) is identical to (2) for this case. Assuming it to'be true for i-1,
let us procéed to prove it is true for i. |

From (3)

Vi1 () = @y, (e#D) +y, (k).
which is readily shown to be equivalent to

o vk
Vi) = I q

vy, (V)
v=k 1
n R © .
- 3 ______3__I:I 22k T qv—k(zz)v k
=1 (1-q zz) v=k

(from induction hypothesis)
The resuit of equation (3) follows immediately by observing that the last

summation equals 1/(1-q zg).

1 The nomenclature 'information signal' is not to be confused with traditional

information theoretic concepts. It is used here because these signals will
be shown to yield the denominator parameters of Y(z).
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An alternative proof of the lemma follows by observing that the
response of the anti-causal filter u(z) = 1/(1-qz) to the input zzk is
k
u(zl) z, .

Before leaving this section, we remark that the set Yys sees Yn is

linearly independent, while the set yl, cees yn, Yo+l is linearly dependent.

III. DETERMINATION OF PARAMETERS VIA PENCIL~OF-FUNCTIONS
THEOREM FOR RATIONALLY REPRESENTABLE SIGNALS

In this section we will determine the.signal parameters for the case

x(k) = y(k), i.e., where the signal is rationally representable. We will

call zy (see (2)) the poles of the impulse response, Rg the corresponding

residues, and ;2 = {(zl)k} the associated modes. Note that the poles occur

“in conjugate pairs whenever complex, as do the residues, since y is real.

The significance of Lemma 1 of the previous section arises from the
fact that each of the information signals contains the modes %, = {(zg)k},
L =1, +ssy Nn. Further, the pencil—of—signals2 Y Yi41 + Y4 also contains
all these modes unless Y equals one of the poles; in the latter case, i.e.,
when Y = z , Y y, . +y, does not contain the mode - {(zm)k}. This re-
sults in the following observaéion |
Lemma 2. The set ’ ‘

(az) = 1)y, +y;5 (@2, =1y + ¥y, oes (qz Dy +y " (5)
is linearly dependent form =1, 2, ..., n where z are the poles of the
right hand side of (2).

Definition. Define the N x N dimensional Gram matrix (recall; N = n+l)[11]

2 The terminology pencil-of-functions is derived from literature in physics

and mathematics; see, for example, Gantmacher [9] where A + AB is called

a pencil of matrices A and B parametrized by sealer A. See also Gueguen[10]

for recent usage. ;
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<
Yl’yl> oo <y19yN>

F = ,
—<yN’y1> oo <}'N9YN>_
k-1
Yy = Loy k), (k) O
k=0
or, equivalently
K-1 T
F = I f&f (k) €))
k=0

where

£00 = Iy y,00 ... y 0]

We can now apply the pencil-of-functions theorem of reference [8] to
obtain the central theoretical result of this section. A statement of

pencil-of-functions theorem is given in Appendix A.

Theorem 1. The poles of the impulse response y(k) must satisfy the equation

N .
L /M, (=¥ =0 - (8)
i=]1

where Di are signed square-roots of the diagonal cofactors of Gram matrix F.

The proof of the theorem follows immediately upon application of the
pencil-of-functions theorem to the set (5). The signs of the square-roots
are taken to be the signs of the cofactors of the first row of F (see also

Appendix A). Now, the denominator of the model is given by

N
2(qz)'-n I D (qz—l)N—i )
gu1 1

A(z) = Dl.l,

This follows from (8) by dividing through by 2" and by normalizing the

coefficients so that the leading coefficient becomes unity.
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The numerator parameters can be found by the method of least squares,
specifically by solving the linear equation
Pbh=¢c (10)
where b = [b_ b_ ... b ]T c = [cA c c ]T P = [p,,]; and
> o1 1! £ o 1" Sp1d 0 Pyy's
éij = <ui’ uj> (11a)
(:,1 = <gi, y> (11b)

Here uy denotes the impulse response of zfi/A(z). Note that “i(k) =

. u(k-1) where u(k) is the impulse response (i.e., inverse z-transform)

of 1/A(z). All inner products are summed from k = 0 to K-1.

Remarks. Before leaving this section we remark that the parameters

characterizing the signal, i.e., the coefficients of the polynomials
A(z) and B(z), are recovered exactly. It is assumed of course that the
signal is of the form (1) and that the true model order is known.

The idea of reverse-time integration was proposed by Carr in (13 and
Jain in [14. Here, we have generalized the concept’of reverse-time pro-
cessing to the case of first—o;der filter processing. Note that the first

order filter 1/(1-qz), used above, encompasses integration; just let q = 1.

IV. EFFECT OF MiSSING TAIL

In Sections II and III it was assumed that K was large enousgh such that
x(k) = 0 for k>k. We now consider thé’effect of choice of K which does not
meet this requirement, i.e., the effect of a missing tail. Unfottunately;
this does not lend itself to a tractable analytical study for the general
nth order, or even a general second order case. Therefore, we will present
analytical results for a first order signal, and some experimental results
for a second order signal. As may be expected, the estimated poles'may
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not coincide with the poles of the signal on [0, ®). Thus even for the

rational signals the estimated poles will not coincide with the true poles.

First Order Signal -

Consider the signal x(k) = ak for k = 0,1,..,K-1 where 0 < a < 1. Then

K-k
- 1-(aq) -k
xz(k) 1- ag a

and the diagonal cofactors of the Gram matrix F are

" 2K K
1 { 1-a -2 (aq) —a2K + (aq)ZK- aZK

D, = }
b rag)?  1-22 1-alq 1-q72
c 1 )
Goay? | 182 -afq * 72,
1
2 T 7

The approximation for D, holds if qK<<l. The second and third terms

1
on the right-hand side of Dl are produced by the missing tail of the signal.
Table 1 summarizes the results on a specific case, namely for a = 0.9; the
value of q was 0.6.
Table 1
Effect of Record Length K

First order Signal: True Pole = 0.9

K \ 100 50 20
Estimated
~ Q.90000 0.89999 0.89622
Pole a
10




Second Order Signal -

Consider the signal x(k) = 0.9k S8in(0.2k). Note that the true poles

0.88206+40,17880. Results obtained for various record lengths are given

in Table 2; the value of q was taken to be 0.6.

Table 2

Effect of Record Length K
Second Order Signal

K ‘ 100 50 20
Estimated 0.88206+ 0.88204% 0.86862:
40.17598

pole pair 30.17880 j0.17879

V. MODELING IN THE PRESENCE OF NOISE

In Section III we modeled a noisefree s&ignal from its samples. The

effect of additive noise is now considered. The samples available are

x(k) = y(k) + 0 w(k)

(12)

where w(k) is a zero mean white noise process and ¢ is an unknown positive con -~

stant. As in Section II, the information signals are again generated by

précessing x(k) = xl(k) by the filter cascade of Fig. 1. (see Fig. 2).

ow(k).

Y X, ,
w(z) Pl u(z) —eo o0 ¢ ¢ —m

xz(k) Xn(k)

xN(k)

u(z)

Fig. 2. Noisy signal through first-order filters
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Note, because of the linearity of the filters, th;t
x, (k) =y, (1) + 0w, (k) (13)
Then it can be seen that the expected value of the Gram matrix G of the
vector signal x(k) = [xl(k) xz(k) ces xN(k)]T is3
K-1 T 2
Ee=E £ x(k) x(k) =F+0°W (14)
k=0
where W is the covariance matrix of the unit noise vector sequence w(k) =

[wl(k) vz(k) cee VN(k)]T and is known before hand (see Appendix B). To

- estimate 02 and F we use the following criterion.

Jain's Identification Criterion [15])

Consistent with the noise and bias models the estimated Gram matrix
should aéhieve a minimum possible determinant.

Using the above criterion and equation (ib), the following estimaﬁion
procedure has been developed.

- Step 1. Estimate 02 as

3? = % (15)
A v G Ow ,
where@ denotes matrix inner product (i.e., Z@W = IT z:lj wij)'
Step 2. F=G-0°w (16)

Step 3. Use F in estimating A(z) and B(2) via (9) and (10).
The justification for formulas (15) and (16) is given in Appendix B,

Remark - The minimization of the determinant of estimated F results in
optimal functional dependence between the information'signals. This
determinant is a measure of the dependence of the set [Q }; a zero value,

of course, implies perfect linear dependence of the set.

3 The expected value operator is denoted as [ .
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1.40 1.60

1.20

True impulse response

1 -1.927" 1+ 272
1 - 2.682° 1+ 2.4762"%+0.7822"3

1.00

y(k) =

Y
0.80

0.60

RESPONSE

0.40

0.20

y(k)

0.00

-0.20

-0.40

¢ 20 40 - 60. 80 100 120

— K —

Fig. 3(2) True impulse response of a third order transfer function
13




X

SIGNAL UNDER TEST

~0.40

0.20 0.40 0.60 0.80 1.00

0.00

-0.20

SIGNAL UNDER TEST

= true signal + noise

= y(k)+ g w(k)
SNR = 12 dB

20 40 60 80 100

—_—k —

Fig.B(b) A simulated nofsy signal under test
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VI. A COMPUTER SIMULATION EXAMPLE

Let

1 2

1 -1.92z " + 2
(k) = 01 =) =3
1- 2.682 " + 2.4762"% - 0.782z

a-efha - I8

T A omszha - redha - 2 3% an
(B = 0.28379; r -.0.96187, 6 = 0.30528).
be truncated at k = 99. The signal to be tested is formed as
x(k) = y(k) + o w(k) (18)

where w(k) is a zero mean, uncorrelated noise sequence. The positive scalar
0 is chosen to be 0.0425 so that the signal-to-noise ratio is 12 dB. The true
signal y(k) and the noisy signal x(k) are shown in Fig. 3.
 The signal under test was modeled by

1. Pencil of functions method (without applying noise correctioh);
reverse-time processing pole q was taken as 0.8.

2. ‘Penqil-of—functibns method with estimation of 02 and F; the value
of q was ‘again taken to be 0.8.

3. All-pole covariancea technique. Minimum error criterion, rather than
equal energy criterion was used to establish the gain parameter.

4. Pole-zero model using Prony method. Note that the denominator éara-

- meters (and, of course, the poles) are the same as that for the all-pole

covariance method [4]. The numerator parameters are then determined by leadst-
squares fit.
Fifty simulation runs, each with a different sample of noise, were per-

formed. The 'mean' and 'standard deviation (S.D.)' of the various quantities

aThe all-pole autocorrelation method yields very similar results in the present
case; hence, the autocorrelation method is not included.
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of interest are shown in Table 3, Of course, the model order was taken to

be 3 and the number of signal samples used were 100.

A graphical portrayal of the z-domain poles for 10 runs is given in Figures

4 to 6. The location of the true poles is at the centers of the circles

shown in these figﬁres. Judging from the normalized mean square errors in
Table 3, as well as from the scattergrams .of the poles, it appears that theA
pencil-of-functions method can‘perfofm reliable modeling of a rational signal
‘even when.it is masked by noise. As is widely known, the Prony method (and of
course the LPC covaraince method) perform quite poorly in the presence of noise.

It is sometimes claimed that the Prony method (or the all-pole-covariance

method) performs well with short data-frame. We give the poles of ten runs
with the first 10 data points of the noisy signal used in the above experiments.
These poles are given in Fig. 7. Again a wide and unreliaﬁle scatter of the

poles is produced.

VII, APPLICATION TO AN ELECTROMAGNETIC PULSE (EMP)

As a real world appiicétion we consider the use of pencil-of-functions
method to the transient response of a conducting pipe tested at the ATHAMAS-I
EMP simulator. The conducting pipe is 10m long and 1lm in diameter. Hence.
the true resonance of the pipe is expected to be in the neighborhood of 14MHz.
Also; the ;ipe has been excitéd in such a way that it is reasonable to expect
only odd harmonics at the scattered fields. The data measured are the integrai
of the E-field: i.é., the ﬁeasured variable is # voltage. The transient
response used for analysis is shown in Fig. 8 by the solid line. The results
of dnalysis by the pencil-of-functions method are given in Table 4 for an 8th

order model; the model response, with an error of 0.0125, is shown in Fig. 8
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Table 3

Comparison of Pencil-of-Functions Method With

All-pole covariance and Prony Methods
(Results of fifty noisy runs: SNR=12 dB)

METHOD
Mean + S.D. POF POF with All-pole Prony
. noise covariance '
of correction
a, -2.5974 i_0.0216 -2.6753 :_0.0185 -0.5200 :'0.0747
a, 2.3438 :_0.0388 2.4698 + 0.0331 -0.2334 +0.1123
a3 -0.7288 :_0.0187 -0.7803 :_0.0160 0.0161 + 0.0710

Error (NMSE)  0.0314 + 0.0035 0.0055 + 0.0052 0.1726 + 0.0164  0.1499+0.0098

Note: From (17) the true parameters are a = -2.68, a, = -2.476 and a3

The denominator parameters for the all-pole-covariance method are the
same as those of the Prony method

- -0.782
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- z-plane poles of i
model Y(z) |
&
1 |
Z i
1 Circles: |
- centre: true pole |
radius: 0.05 \
{
‘L |

Fig.4.. Poles obtained in ten (10) simulation runs by
pencil-of-functions method.
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z-plane poles of
model Y(z)

(&s}
1o
=
17 Circles
_ centre: true pole
radius: 0,05

_®~

=3

Fig.5. Poles obtained in ten (10) simulation runs by
pencil-of-functions method with noise estimation.
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F1g.6. Poles obtained fn ten (10) simulation runs by

Prony method.
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z-plane poles of
model Y(z)

Circles
center: true nole

radius: 0.05 \\\

Fig. 7. Poles obtained in ten (10) simulation runs by
Prony method with short frame (K=10).
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by the dotted line. The sampling interval is A - 0.97656 ns and the number
of samples analyzed is K = 245. Note that noise estimation and correction,

as described in Section V, has been used in the analysis.a

Table 4
Poles of a Scatterer Response Estimated by

Pencil-of-Functions Method (q=0.8)

fundamental © =5.72 4§ 68.63 Mrad/s (10.96 MHz)
3rd harmonic -30.65 +j 212.60'Mrad/s (33.83 MHz)
curve-fit pair -1.95 +j 8,72 Mrad/s ( 1.42  MHz)
curve-fit pair -20.17 +j 95,58 Mrad/s (15.55 "MHz)

VIIT RECURSIVE DIGITAL FILTER SYNTHESIS fXAMPLE
As a final example we consider the use of pencil-of-functions technique
to digital filter synthesis. Suppose the desired impulse response is [12]
| hd(k) = 0.25, k=0
$in(0.25k)/k, 1 < k <K = 256
It repfesents the causal part of the inverse DFT of a low~pass filter with
cutoff at 0.25 Hz. The application of the pencil-of-functions technique,

with q = 0.4, yields the following filter

0.25-0.38841z" 140. 293462~ 2-0. 057832 >=0. 420252~

1 -2.46160z % 3

4
4

. H(z) - -2 — -
: +2.78530z “~1.52226z “+0.348852

with a normalized mean-square error 0.00473. Note that the minimum value

of NMSE, as obtained in [12] by iterative methods? is 0.00346.

éThe computer output listings are given in Appendix D.

SSeventy iterations were needed to achieve the minimum value.
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CONDUCTING PIPE TEST
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=-==  Model impulse response
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Fig. 8. Comparison of measured data (of the response of

of a conducting pipe) and model impulse response
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IX. CONCLUSIONS

Pole-zero modeling of signals has been considered in this paper. It
was shown that for rational signals the true parameters can be recovered
* from the Gram matrix of the information signals. The latter were formed
by reverse-time processing of the given sign§1 by a é;scade of first 6rdeti
digital filters. Further, ﬁe have formulated a new approach to noise esti;
mation.and correction by minimizing the determinant of the estimated Gram .
matrix. The examples éemonstrate the practicality of the appfoach, not
‘only because the computations aretuhiterative,but also because the poles
of the signal are estimated quite accurately. It is felt that the method
can be used in a broad range of applicationé, for example, finding the
singularities of a scatter response, modeling of speech and in spectrum
analysis.

Extensioﬁ of the techniq;e to mbdeling of multichannel signals with
common modes (or singularities) is possible. This work is underway. A
second area of extension pertains to the case where the filters u(z) are

chosen to be high-pass. This might be useful when the signal contains an '

undersirable low frequency drift component.
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APPENDIX A

PENCIL OF FUNCTIONS

A useful mathematical entity arises by combining two given functions

. defined on a common interval together with a scalar parameter

£(t,y) = yg(t) + h(t). (A

We call f a pencil of functions g(t) and h(t) parametrized by Y. To avoid
obviou§ triviality, g(t) is not permitted to be a scalar multiple of h(t).

Our work réquires consideration of sets of pencils

Yg, (t) + h,(t), Yg,(t) + h,(t), cees¥g (£) + b (£) T (AY)
wherein thevfunctions* gl(t),...,gn(t) and hl(t),...,hn(t) span separately
a common ﬁ—dimensional subspace Ln in the function space. For a fixed set
éf values of parameters y, the pencils obviously reduce to a set of functions,
aﬂd the ﬁarticulat values chosen determine properties such as the linear
dependence or independence of the set. The main result concerning thé

linear dependence of pencil sets is derived in [8] and can be stated as

.follows.

Theorem: Given that the pencil set (2) is linearly dependent, the
parameters Y must satisfy the polynomial equation

' n-1
YVGlg s8yse 08 ] £ Y IVGlgy 4uenihy eeeoty ]

1 1 1

4 eee + YIVGIh, ,...38, se.esh ] .
T (A3)
+ /G[hl,hz,...,hn] =0

in every sum term here, the i1's and k's form a complete complementary set

" of indices over the integers 1,2,...,n; furthermore, the notation

G[fl,...,fn] stands for the determinant of the n-dimensional Gram matrix [11]

*All functions are defined on a common interval [a,b], with thé usual inner
product denoted as b
<f,g> = £(t)g*(t)de.
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of the functions fl""’fn’ i.e.,

GLE seeesf ] = detlgy, = <£,£5], 1,k =1,...,n. (A4

Lastly, we remark that the sign of each sum term is to be determined as
indicated in [8].
The above discussion is equally valid for discrete-time signals.
To this end the functions £(t), gi(t) and hi(t) must be replaced by the
sequences f(k), g i(k) and hi(k)’ and of cout;e the inner product must be
?edefiﬁed as
K-1

. Y
<f,g> = I £(k)g*(k) CA.5)
k=0 :

APPEHDIX B
NOISE ESTIMATION AND CORRECTION

We observed in Section V that
) .

Ee=F+0y (B1)
where G is the Gram matrix of the noisy information signals xl....xn+1. A
Clearly, a good estimator of F is |

F = c-0y | | | (32)

Unfortunately, this estimatdr is not useable because 02 is unknown. We
must estimate it using a property of the true information signals stat;d
in Section ?II: The true information signals Yyseee Y4y 2T linearly
dependent and their Gram matrix is singular. Thus we require

|F| = |6 - o’ W| =0 (B3)
“Assuming that 32 is small, and retaining only the first two terms of the
Taylor series, we have

lol - 8 z|(e.w,| = o (84)
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where the notation (G,W)i stands for the matrix obtained by replacing
the ith column of G by the ith column of W.

A little manipulation of (B4) now readily yields relation (16) of

* Section V.

Precomputation of W:

| Recall that W is the éovariance matrix of the vector sequence w(k) =
[wl(k) wz(k) cee n+l§k)]T. By Wiener's theorem this matrix is exactly
equal to the Gram matrix of the vector impulse response, r(k) of the filter
‘cascade of Fig. 1. That is,

K-1 T
W= I r(k)rk) (B5)

' k=0 :
where rl(k) = §(k), and r1+1(k) - Z"l(u(z))i, i=l,...,n. Obviously, this
matrix is dependent only on the values of q, the cascade filter-pole, and

the record length K. It can be computed before estimating 62 and §.
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