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Abstract

This volume consists of a series of appendices whose contents could
not be included in the body of Volume I without breaking the continuity.
The appendices describe topics that were studied during the course of the
current contract but are only tangentially related to the theme of Volume I.

Several references were made in Volume I to appendices in this volume for
the details of specific methods.
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INTRODUCTION TO VOLUME IT

This volume consists of a series of appendices whose contents could
not be included in the body of the report without breaking the continuity.
The appendices describe topics that were studied during the course of the

current contract but are only tangentially related to the theme of Volume

I. Several references were made in Volume I to appendices in this volume

for the details of specific’ methods.

The notation introduced in each appendix applieé only

to that appendi§
unless otherwise noted.
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THE METHOD OF ITERATIVE GENERALIZED LEAST SQUARE

In Prony's method we have the difference equation

pZO GP Ip"‘K 0 ’ K = 0,1,-..,Y"’l : ‘ (Acl)
Y a-’M—-N

This is usually solved as an inhomogeneous equation.‘

N-1
z aP IP+K = -IN+K s K=0,1,...,y=-1 » . (A.2)
p=0

where @yg Was set to one.

However we do not know the IK's exactly. The measurements of the IK's are Y
as o ‘ l '

Y= Igte ‘ o , (A.3)
where ez 1s the error in the Kth sample.

Hence,

pao pso

Rewriting the above givés

N
@ Y =Y.+ 3 o e
. A.
p=0 P PHK MK S0 P oK (A.5)
Letting W, }_‘ ap R _ (A.6)

p=0

N
zaPYpﬂ(’zaPerﬁK . (A.A)‘




then '

N-1 : i
pgo ay Yp-PK - -YN+K + We o (A7) ’

The WK are the residuals but from (A.6) the fesiduals are correlated and a

least squares solution to (A.6) will give biased estimates.
When we use least squares to minimize the residuals by
y-1 '
= S wl.,

dJa K

’ m.o,l,oio,N-l : (Aca)
m  K=0

‘'we obtain the final expression

N-1 y-1 -1 _ , o
20 %p =0 Yotk Toug = - K§0 Toek ToR , meo,...N-1 . (A.9)
We will get biased estimates for the ay- ‘ (::)é

One way to correct this is to use a method known as

iterative
- generalized least squares. Rewrite (A.7) as .

N
> O Yorg "W » K=0,1,...,y-1

; (A.8)
p - i .

Now define new notation for ‘the sake of convenience.
operator q defined so that

First introduce the shife

Ee = frnr

2 . ' (A.9) |
Vi = fraz - | |

The polynomial operator A(q) is defined as

N m
AQ) = 3> aq

(A.lO)
m=0




Now (A.8) can be written as

A(q) YK = WK sy let a = a

(A.11)
In matrix form (A.8) is
RRIERA g [
1 Y ! - M
T Y3 %, %l L)
L Y% Y] | ] L
and (A.1l) is
o - - - .
0, 1 ; ' ‘
TG T Y, 6 % Yoy
0 1 2 ‘ ,
Y 9 g%y, ay A
o, 1 -
T, 47, o, % ¥y
0, .1
Y, 9Ty q?1"3 W |
d wndd e - e -
Now let us operate on Wk with the polynomial filtér
B(q) Wk = ng o | o (A.12)

to give ﬁK which is an uncorrelated noise sequence (random variables) so that
B(q) A(q) T = g
Let A commute with B so that

A(2) B(q) Y = n - . | (.13)




SN

and define

-~

YK = B(q) YK (A.14)
so that
A(q) YK N - (A.15)

Now equation (A.15) has uncorrelated residuals and hence the solution should
converge to unbiased estimates.

The iterative procedure is therefore as follows:

1. Solve equation (A.1ll) using the normal least squares procedure.
This gives an estimate of A(q) which can be thought of as the
a's of (A.8). Call that estimate A(q).

2. Substitute A(q) into (A. 11) to produce an estimate of the

residuals W . o

K’
3. Use WK in (A.12) to make a least squares estimate of B(q).

4. Calculate % in (A.14).

5. Use the YK to make a new least squares estimate AK(q)

6. Continue this procedure until

z WKZ no longer decreases with the next iteration.v

The question now is:

How does one obtain B(q) of step 3 above?

Assume we have used the least squares process once to find the coefficients ap.

10




Next calculate the vy residuals_wK as

N

#ZS ap‘Yp+K = Wk ., K=0,1,...,y=-1 .

The results of steps. 1 and ‘2 above gives a vy dimensional vector of the re-

siduals WK

~Calculate the autovariance function of the W, by

K
r(u) 'J('-z- y u-o 1,00-,‘{'_1
where
Y-u ’ - .-
c(u) -— PRCAER) Wiwy =W, u=0,1,...,y-1
=] .
and

- 1 g: -
W= - .
Yoot
Hence the autocovariance function r(u) is defined

- W)
r(u) = y y=0,1,...,vy-1 .

We now have a vector R, v long.

We want to test this R vector for whiteness of the residuals WK
The standard deviation of a single autocovariance function estimate is

1

VYo

11

I N )



The 95% confidence limits for a single autocovariance sample are

r(u) + 22— 196

Y

Now supposedly 1f 95% of :he‘sambles r(u) are less thdn;i%?ﬁ then

we have 957 cbnfidence that the noise is white.

'If the r(u) flunks the whiteness test which will happen the first few times
we iterate we must then g0 back and whiten the residuals Wk.

From Equation (A.12) we want

B(Q) W =n .

K
L m
Remembering that B(q) = > b q ,
n=0 *
af, = fK‘*L |

and the n, are white random deviates.
Thus we have a matrix equation of the form Wb = n.

As an example, assume L = 2 and K = 3. Then we get

r- 0 - - - = -
1 W, qlwo qzwo R )
qgﬁl 4QIW1 QZWI blv‘ by

0 -
q W2 qlwz qZWZ bz nz
0
193 vy qzw-’u L Rl

12




or

B Wo W, W) ’bo" i 2]
RO 5 o
ywz Wy oW, by T n,

| W3 W, W | ] | 73

~ Solving Wb_- n for the bn by using least squares gives

WTW'b = WTn

or
| .
b= W Wa

Therefore the new YK previoﬁsly defined as

~

Yo = B(a) ¥,

can be written as.

= +bY _ +
Yo boY bYl b

K 1K+ ZYK+2 T BLYK+L )

13




APPENDIX B
EFFECT OF INCREASING MODEL ORDER IN PRONY'S METHOD

A 'study of the effect of increasing model order in Prony's method
has been made and the results~a:e presented here along with some preliminary
conclusions. In past investigations of Prony's method it has been noted
that increasing the model order above the known order of the waveform
improves Prony's method's ability to estimate accﬁrately the true poles.
Although the accuracy of the pole estimates is improved, a side effect
of this procedure is the problem of distinguishing between true poles
and those poles that simply fit to the noise and have no relatlon to the
information that is to be extracted from the waveform.

In this study we relate the inaccuracy or bias of the parameter
estimates to the amplitude of the residuals of the least-square Pron&
procedure. We assume that the inhomogenous solution (defined in Volume
I, Seétion 2) is used to find a parameter vector. The term "residuals"
is identical to "equation error". In this appendix, N is the number of
poles modeled and M is the number of samples. When the residuals are
zero the least-squares Prony's method either has reduced. to curve-fltting
Prony's method (M=2N) or is processing a noise-free waveform at the proper
model order. In this case, the pole estimates are quite accurate and are

free of bias. Conversely the bias in Prony's method is directly related
to the magnitude of the re51duals.

Tables B.l through B.9 display the effect of increasing model order
at three different noise levels. Oy is the standard deviation of the
noise. ER is the average standard deviation of the residuals over ten
Monte Carlo runs. Each table shows the true parameter values in the first
column, the'average parameter values over ten Mone Carlo runs, and the
variance of each parameter in the third columm. For all nine cases the

time window size is kept constant. Thus, M = 100 and AT = 0.13 seconds.

14
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The three pole pairs shown under the average column were obtained by
searching all N poles to find the pairs that were closest to the true
poles in value. 1In general, of the extra poles not reported here, N-6,

have residues two orders of magnitude below those of the true poles.

From the results of Tables B.1 through B.9, the following observations
can be made:

1. Prony's method seems to guarantee good results if g_ < g

R N*

2. op < Oy Seems to occur when 4N > M,
That good results begin at °r =ecN is not surprising. In this case one
would expect that the residuals are beginning to approximate the noise and
that the ' modeled" waveform approaches the uncorrupted waveform. But the
observation that GR = GN approximately when 4N = M has no obvious explan-
ation. This observation would obviously not hold true if we were to apply
Prony's method to a noise-free waveform. 1In this case, the residuals
would drop to zero as soon as the model order reached or exceeded the.order
of the waveform.. We might surmise then that this occurrance at 4N = M
is attributable to the nature of the uncorrelated noise.

There is no simple‘explanation‘for imprdved acéuracy‘at higher

orders. At least two factors seem to be involved:

1. - Increasing the length of the parameter vector (by increasing
" the order) is.an effective treatment for the dense sampling
.problem (which is described in Volume I, Section 3 of this
report. ) , ,
2. Making the data matrix more nearly sqnarewmust reduce the
magnitude of the residuals. Smaller residuals implies smaller

bias in the parameters.

15
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Table B.1. Model order study M=100, N=12, ¢ =.100,
= . N
GR-.1808.

TRUE AVERAGE g 2.

ra.ZUUUDGE-UZ”'-Es81290BEBDI“‘7?BR63Z§E‘U3'
“8.200000E-02 -6,812908E-91 7.546325E-03 REAL PARTS
~1.470000E=01 <6,642028E-01 5.821274E=03 OF POLES
-1.%70000E~01"-6;5&20285‘0("‘3782127¥E=UT
=1.880000E-01 -3,32921gE-01 2.371370€-03
=1.880000E~-014 =-3,3292168-01 2.371370€-03

T9.260000E=0Y 0. “Be

 =9.,260000E-01 g, 8 | IMAG. PARTS
2874000E408 2,341075E+00 34239736E-03 OF POLES
=z.szauuns+uo““=z;xuinrss?uﬁ"*%???@f??trﬁf
%e835000E+00 4, 84431 15+09 Be0L7U68E-04
~4+835000E400 ~4. 844311E+00 6o Q47U EBE=DY

e - — - — v ——

“1.000000€+00° 1,1 093355-*’00‘7773’0'91‘9’35“2’
1.008000E+00 1.109395E+00 © 7e505193E-02 MAGNITUDES
1.000000E+00 1.144378E+00 - 1, 351987E-02 OF RESIDUES
"1.000000E¥00—— 1.’17&53?'857'0'0'—_173’5'59’3'7570'2'
1.000000E+ 00 1,189903E+00 6e474729E-03
1.000000E¢+00 1, 189903E+00 Be 4747 29E-03

‘Ué“"“‘“‘“‘“‘"ﬁk;kI?IliE*tS“‘ﬂ?U??E?ZE=ZF

8. bo ®19111E-15 be 0776 92E~28 RADIAN PHASE
0. 1.507957E~-01 1, 508953E=-02 OF RESIDUES
0o TTTTTTTTTI4.S07987ES 0L 1J503953E=02"

0, =1.701536E-01 5¢4768387€-03

. 1. 701536E-01 5.476887E-03

16
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REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE
OF RESIDUES

Table B.2. Model order study M=100, N-ZO, oy .100,
c =.124.

TRUE AVERAGE <%
=8,200000E-02 -9,0695508-02 6,305491E=05
~8.200000E-02 =-9,063550E-02 6,305431E~05
=1.470000€-01 =-1,5717832-01 __1.0831556=0%
~Le470000E-01 =1,571783E~01  1.0831 55£=p¢
~1.880000E-01 <-1,951637E-01 1,2785732-04
~1.880000E-01 -1.951637E-01  1,278673E-04
T 9.,260000€<01  9,289997E-01 3.657123E-05
=3+250000E-01 <-9,289997E-01  3,557123E-05

2,87L000E+00 _ 2,883251E+00 1. 011044E-0%
=2.874L000E+00  =2,8832351E%00 1.011044E=-0%
Le835000E+00  4.340251E+00 1.17€039E-04
~4+835000E+00 -4,840251E+400 1,176039E-05
1.000000E+00 “1,027859€+00  2,0374436-03
1.000000E+00  1,027359€+00  2,037443E-03
~1.000000E¢00  1,035457E+00 0 2,199189E-03
1.000000E+00  1,036457E400  2,1991 836<03
1.000000E+00 1,018026E+00 1,059788E-03
. 1.,000000E+00 __;.oianzs£+uo 1.059788E-03
N =1,230493E-02 9.620293E-0%
0. 1.230493E-92 9,520293E-0%
O —.——.Z1:328778E-02 2,042011E-03
0. T 1.928778E-02 2,042011E-03
0. =£.325322E-03  2.024303E-03
0. _g,szssgzs-as 2,024303E-03

PR
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Table 3.30

c =,0678.

..14000000E+00

L1y

8. .
8
8.

| Y

9.59;01§§-q1

TRUE AVERAGE jﬁi
~8,200000E<02 -8.1691755-02 3.056657E=0%
=8,200000E-02 <8,169175E-02 3.056657E-03
=1.470000E-01  ~1,483538E-01 —1e172273E-04
“1.470000E-01 =-1,483533E<01 1.172273E-0%
~1.880000E-01 <~1,842530E-01 1.361397E-0%
:118§°00°€:21-M:AL§&?59OszA*,‘LLQQA§21§:Q§
T9¢260000E=01 9 266480E~-01  2,394936E-03
=9+260000E-01 =9,26648 0E-01 243949 36E-035

24874000E+00 2, 874835E+00 543018 €9€E-05
~2.874000E+00 2,874 835EF00 5.301869¢=05
4eB835000E+00 4,835128E+0g %4450035E-05
~4¢835000E+00 -4, 836128E¢00 u.asaasse-o:
1.000000E+00 9,931078E=01 - 14325078E-03
1.000000E+00 9,931078E-01" -14325073E-03
..1e000000E+00_ z.0137znz:gg___g;;;_g;gg:gs
1.000000E+00  1.013720E+00 %¢119833E-03
1.000000E+00 9.591063E-0¢ 5, 276759E-03

6.27675Q§-03

-3, 563147E=-03 34553559E<0%
30563147E-03  84553559E-04
. 1o 445358803  1.790225e-03
=1, 445353€-03 1.790225E-03
=1, 402673E-02 7,134540E-04
1,402673E-02 741345405-04

18

Model order study M=100, N=36, N .100,

REAL PARTS
OF POLES

~ IMAG. PARTS = "~ .
* OF POLES ~

MAGNITUDES

. OF RESIDUES.

RADIAN PHASE

'OF RESIDUES
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Table B.4, Model order'study M=100, N=8

cR=.007098.

TRUE AVERAGE _9_2__
<8,2000002<02 =4e 74B023E-01 5. 871508653
-8,200000E=02 S40TLE025E-01  5.871508E-03
=1,470000E-01 =3.237075E-01 1.154333g-03
~1,470000z-01 =3.237073E~-01 1.154383E-03
=1.880000E-01 ~1,994993F~g1 2.614657E=03
=1,880000E-01 -1,994933E-01 2.614657E-03

9.260000E-01 8.350305E-01" 8.704512E-0%
=9¢2500005-01 <=8,950303E-01 84704512€-04%
2. 8740005400 2, 874333E+00 24601685E=-04
=2+874000E+ 00 =20874334E+00 2,501685c-0,
ke 335000E+00 4o 843241E400  3,869888E-03
T4e8335000E+00° -4, 843241E+00 __34869888E-03
‘I:ﬁﬁﬁﬁﬁﬁETﬁHffTIT737ii§E?FUm@ 9.114336E=03
1.000000E+08 17371358400 ' 3,114386E-03
1.0000002+00 1, 2238206400 - 1,481720E-03
~{,00 0000z +0 1, +04 e 81 -
1.000000E+00 9+ 028370E-01  4,550050E-04
1.000080Z+00 9202837 0E=01  4.550050E-g4
_0 [ s 2, 022813E= . m
0. =2, 022803E-01  7,235554E-03
0. 20298333E-01  3,769%24E=03
0. =2, 298335E-01 3¢763424E~03
0. 1.28083%€E~01  2,455785E-03
0. =1.28083%E-01  2,455785E-05
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REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE
OF RESIDUES




Table B.5. Model order study M=100, N=12, 0N=.00100,

Og=+00300.

TRUE AVERAGE o2

=8.2000006-02 -8, 3347308-02  3.8193385-05
~8.200000E-02 <-8,334730E-02  3.3198386~03

.:1mAZUQDUE:0L_;:1Lk82DQEE:DL___3L107S5SE:DE~

“1e470000E-01 =-1,4820%3E-01 3.,307553E-05
=1.8800005-01 <~1,879587E-04 1.855430E-07
=1,880000€=01 =1.879587E=01 1,835490€-07

9.250000E-01 9. 263227E-01 3.0S4208E-05
=9+260000E-01 =-9,263227E-01 3.054208E-05

20874000E¢ 00 2:87425.E+00 2:313338E-05
=248740005400 <=2,874254E£+00 20313333E=03

©¢835000E¢00  4,835043E+00 8,757051E-07
~%¢835000E+00 =4.8350%3E+00  8,757051E=07

1.000000E+00 .  1,00544LE+00  9.224106E-05
1.000000E¢00  1,00544LE+00 - *9,2241 06E=05

—1.000000F%00 _ 1,003853E400  4,7180S8E=05

1.000000E+00 1, 003853E+400  4.7180S8E-05
10000003400  9.994317E01  4.054030E~05

—3+0000005400 9,994 347E=-01 4, 064030E=05_
B =1.110413E-03 8,015323E-05
0. 10110613E=03 3,015323E=-05
0. 80 180271E=0% 4.066347E=05
0o - <=B4180270E-04 4,065317E-03
0. B 1,E59155E-03  9.113711E-05

0. —=1.559155E=03 9,143714F-06

20

REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE

OF RESIDUES




Table B.6.

op™ .001246.

TRUE AVERAGE
-8,200000E=02 ~8,199885E~-02
-8,200000E=02 =B8+199835E~-02 3
-1,4700002=-01 =~1,4%701353E=-01
“1.4700002-01 =1,470155E~01
-1,380000E-01 <~-1,880358E=01

~1,380000E-01 -1.88035§§-01 _1.121223E-038

2
g

6.959435€E~09
6¢955435E-03
1,034647E~-08
1.034647E=-08
1.121223E~-08

9, 260079E-01

9.260000E~-01 3¢504264E=03
=9.2600005-01 =9,260073E-02 3¢504264E=03
—208760005+ 874025C¢0] 236/ =
=2.874003€+00 =2.37%025E+400 9,535052E-03
4+335000E+00 be B34994E+00 . 1.,374833E-08
=4o8350002400 <~4,834934E+00 1.375833E-08
1.000000E+00 9.9995035*01 2.1308858-0?
1.000000E+00 9.9995@95-01 © 241308 85E-07
_1.000000E+00 1, 000110E+00 - 2,091615E=07
1.000000E+00 1, 000110€+00 2:0916156E=-07
1.000000E+00 1. 000065E+00 9.094737E-08
1,000000E+00 1. 000063E+00  S,094737E-08

TS L EI T <0354 31E=03

0,

S. 4.“015025-05 9¢035431E=-08
Oe =6, 973250E=05  2,004572E=07
de 8¢ 973250E~05 T 2,004572E-07
0. -2.9039&35-05 20253596E-07
8. 24 303913E~-05 202535 96€E-07

21

Model order study M=100, N=20, N .001,
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OF POLES
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1 I\ e

ik

Table B.7. Model order study M=100, N=8, oy=-0100,

c =.0394.

TRUE AVERAGE o2

=-8,2000002-02 ~k.8159015-01 4e313874E-03
-8,200000E-02 - =beB16941E=01  44313374E-03
=1+570000E=01 =4,331013€-01 _1.533214E-03
=1.4700002~-01 -4s931013E-01 1.633214E=03
-1.830000~-01 °2.50350:E-01 4e518706E-05
~1.8800005=-0 §0354%5 b 706E=05

3.2600005-01 0. T P
=3.260000E~01 g, o ge |

2.8740005+00 5 .
=2,874000E400 =2, b4t 8756400 s.zszsooa-u.

4.835000E+00 4, 820957E+400 1.599293E-03
=428350005+00 -4, 8209576400, ' 1.§3925:

1.0000002+400 . 3,254603E-01 +930682E~-02
1.000000E2+00 8,254633E-17 . 20930682E=02
1.000000E+400.  1,156058E+00:" 3.5583075-03
1.000000=+00 1.154058E+00 3.568307E-03
1.000000z+00 1,112501E+00 ke 543365E-05
1,0000002+00 1.112501E+00°  %.543365E-03

. ‘“?TEE‘5??€=I§““3T?EB§EIETE?

Ge 2+ 991933E-15 64596341E-28
0o 1,625093E=-81  2,729888E=03
8. -1,525033Z-01 _02.7295335-03
0. ~1.0751%3E~01 - 3,082337E-0%
0. 1, 07514%3£-01 9.082337§-0§

22

REAL PARTS
OF POLES -

'

 IMAG. PARTS - -
- OF POLES

MAGNITUDES .
'OF RESIDUES

RADIAN PHASE
OF RESIDUES




Table B,8.

c =,0295.

TRUE ‘mmMmE o
~84200000E-02 =2,353164E<07 2.355268E-03
=84200000E-02 =2.353151E-01 2.859268E-03
~1,470000E-01 <2,407453E~01  5.513517E-0s
“1s470000E-01 <=2,407465E~01  5.5185172=04
~1.880000E-01 =1,9345515-01  1,094043E-03
=1.880000E-01 =1,934551z=01

TImnE

1.094043E-05

8873E-01 0%

~9.2600008-01 =9.408873E-01  3,593158E-0%
20874000E+00  2,899635E+00 1.5379635-0,,

-z*§7lnuuz‘hu“‘2 s B99BISEFIT
%48350005+00 a.suzss:z+oo 1.1zzs1ae-ns

~6.8350005+30 =4, 842333E+00 141226 18E-05%
1.unnnouE+on;Q,1.uzsosne+n 2
1.0000002+090" ;1.uzsnsne+o 1.708038E~02
—1,000000E+00. -~ 1,211075E+00.:"2,967772E=03
T1,000000E+00  1,211075E+00 24367772E-03
1.000000E+400  9.755313E=01 4e150653E=04
1.000000£+00

_9¢755313E-01

%¢1505653E-0%

8.

0o =2,71284%3E=03

Be 7¢308033E=02
0. -7, 308033E~

8. 1.025530E-01

0. -1, 0255305'01

12843E-03

7.626122E<
7.626122E-03
3.756332E-03
=3
8.128753E-04
84128753E-04

23

Model order study M=100, N=12, N .0100,

REAL PARTS
OF POLES
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Table B.9, Model order study M=100

cR-.0124.

JIRUE AVERAGE o2

=8.2000002-02 -8,206914E-02 5, 9356258-07
~842000002-02 -8,20691%E-02  6,9356258-47 - REAL PARTS
21,4700002-01 -4,%723506-01  1,036738F-03 OF -POLES
“1.470000E-01 ¢ ~1,472350E-01  1,036735E-03
~1.880000E~01 =-1,883931F-01 1e133451E-06
:1&§§£§ﬂﬂ£:31._:lxlﬁlaiLE:ﬂi___ALLJJkELE:l;v

94260000E-01  9,260995E-01  3.514693E-07
©3.2600005-01 =-9,260933E-01 . 3.514693E~07 IMAG. PARTS .
—2.374000E+00 __ 2,874313E+0 ; 4 24F= OF POLES
=208740002400 -2,8743L3E400  9.613474E=07

®e8350002400 4, 834933E+00

103521 01E-05 "

» N=20, UN'.OIOO,

=4s833000E400 =4, 834993E+00  1,354101E-08

1,0000002400 9, 99847 {E~01 . 2.123205E-03
1,000000E+400.  9,998171E-01 . 2,123205-05 . MAGNITUDE.. ... -
1.000000E480 1,0013%4E+480 - 2,099578E-p3 OF RESIDUES =
1,9000305¢B0° 1, 001343E+00  2,0995 78605 :
1,3000005¢00  1,000757E+00 - 9,211955E-03
1,000000E+00 1, 000757E+00 . 9.211985F~03
o, =5, 161311E-06  9.070248E-53
0 S.161S11E-04  9,070248E-05  RADIAN PHASE
_a, _=8,186032€=0 A69E=05
2. 8, 18603204  2,000169E-05
0. -3.094731E-04  2,238498E-05
e 3, 0947 31E=04

_ 2,238498E5=05

24




- | _ O N . N S

APPENDIX C
THE ADAPTIVE METHOD FOR RESONANCE ESTIMATION

The adaptive method results from the generalized scheme of Volume I,
Section 2, under the following assumptions:

l. a =1land g = 0.
) )

2. F, = -2 s i=1,...0and F = 1.
1 Z-Zi [o]

3. The model input is a unit sample at k = Q (discrete impulse).

The unique feature of the method is that the filter poles, z;, may be:
adjusted to any value in the Z-plane. An adaptive technique for adjusting
the filters consists of first initializing the filters to arbitrary values
in the Z-plane and repeating the following steps:

1. Find an estimate of the process transfer function using
the current filters in the model.

2. Set each filter pole to one pole of the estimated
transfer function.

This procedure is repeated until ay approach zero. The poles of the
process can be estimated during the course of iteration by

A %y
z =

i 1+ ai

removing tﬁe need for finding the roots of a polynomial. The filter poles
are updated to éi on each iteration. When the ai approach zero the pole
updating ceases and the method converges. At each iteration, the ai are
found using any of the techniques for finding a parameter vector described
in Volume I, Section 2. Perhaps the simplest method is to choose the
parameter vector as the weakest eigenvector of Q*Q. At convergence the

S-plane poles, si can be obtained from the filter poles by

- in zi
T

81

and the Ai = Bi.
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The adaptive filtering method seems to be a very useful technique
because it uses what seems to be optimal filters,

band pass filters, for
estimating pole locations.

In addition it presents a measure of the error

- and iteratively adapts the filters until the error is at the level where
it is desired. . .. : -

As an example of the use of the adaptive filtering method consider

the data shown in Figure C.l. These date were numerically generated by

using the time domain computer code TWTD [C.1].
‘by TWID was a thin cylindrical scatterer,
with noise to give a 15 dB signal-

- The ‘structure modeled
The signal was contaminated

to—noise fatio. Figure C.2 shows the
resulting poles from five Monte Carlo trials.

The following statements can be made about the adaptive method after
studying it. ' )

The adaptiye method is a new method which, in many cases, ‘provides
excellent pole estimates under difficult conditions. ‘The method is

unique in that a solution to a polynomial is not required to find,escimates

of the process poles. the method, in effect,‘"swallows" the-polynomial

solver in its own iterative pole-searching scheme.

Attempts to analyze waveforms consisting of highly damped exponential
compqnents;,such as,phewt:ansient”responses of a sphere, have not been’
eueceesful; The adaptive method does not converge for waveforms which
dieplay double pole charaeteristics, that 1is, waveforms with components
6f‘the'form t exp(st). Slight modifications to the adaptive method might
allow:the\analysis.of suchgwaveforms.
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y (k)

-0.1 -

Figure C.1. Noise-contaminated offset-driven TWTD
waveform, SNR = 15 dB. The uncontam—
inated waveform is plotted under the
noisy waveform for comparison.
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True: - .220 + j 6.800

Average: -.122 + j 6.841

Radius: .184

True: -.188 + J 4.835

Average: -.124 + j 4.77
Radius: .164

L
R *

CTrue: -.082 + j .926

Average: -.087 + j .908_.

Radius: .016

True: - .147ﬂ+mj 2.874
T, Average: -85+ 2.
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N

Y
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4—7+ﬂb Crw

o

e,

17
hoane

Figure C.2. Pole estimates obtained
with the adaptive method.
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APPENDIX D

THE PENCIL-OF-FUNCTIONS METHOD

The pencil-of-functions method results from the generalized model

described in Volume I, Section 2 with the following assumptions:

1. ao = 1 and 80 = 0,

2. Fi - Fi(s) = (l/s)i (cascaded continuous integrators).

This method is not very easy to implement on a digital computer since the
continuous-time integrators cannot be implemented exactly by any algorithm.
When approximate integrators are cascaded, as they are in the pencil-of-

functions method, large errors can be quickly accomulated and the intended

result after a number of integrations destroyed.

This difficulty can be resolved by cascading discrete integrators to
obtain filters with'pulse transfer functions given by:

@)

which can be implemented on a digital computer with no error by using
difference equations. The variable Z is defined as

4.1
Z 1l- Z
and z is the z-transform variable.

When discrete integrators are used the discrete pencil-of-functions

method results. The poles of the pulse transfer function of the process
or waveform may be estimated as
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where Zi is ﬁhe ith zero of

n n-1 , '
z + al A + ...+ @ =Q ‘ (D.1)

In the original pencil—of—functions method the a, were found by using

Jain s method for constructing the parame:er vector which is described in
Volume I, Section 2. With Jain's method

«, = 841 ,1=0,1, ..., n;

A
0o
. th .th
where Aij’ in this case, is the element at the i~ row and j column of
[}

adj Q*Q. Other methods can be used to estimate the parameter vector.

The S-plane estimates of the poles, 8, are related to the zeros of
(D.1) by

- Zn(l-zi) .
T

One difficulty with the pencil-of-functions method is related to
the attenuation of the higher frequency modes of the process output by
the repeated integrations applied to the output waveform. It can be
verified that an integrator is simply a first order filter whose Laplace
transfer function has a pole at the origin in the S-plane. Such a filter
tends to suppress the higher frequencies present at its input. The
higher frequency suppression phenomenon is illustrated in Figure D.1.
Normally, when an exponential function is integrated repeatedly,
components of power of time exist in the higher integrals as well as the
original exponential function components. In Figure D.4 the components of
powers of time have been subtracted from the integrated waveforms in
order to make the attenuation of the higher modes more evident. The
first waveform is a hypothetical waveform provided for analysis. The
waveforms that follow are the integrals of increasing order of the first
waveform and display the increasing dominance of the fundamental mode or
mode of lowest frequency. Further integrations yield nearly identical

waveforms. The integrated waveforms tend to become linearly dependent
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waveforms. The integrated waveforms tend to become linearly dependent at
higher model orders. The matrix Q*Q then tends to singularity and the
method becomes unstable. The suppression phenomenon occurs in both the
discrete and continuous methods. In fact, even for very modest model
orders, the method can become numerically ill-condltioned to a degree that
special care must be taken to assure accurate inversion of Q*Q.
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Figure D.4 Example of higher frequency suppression phenomenon seen
in the pencil-of-functions method.
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APPENDIX E

METHOD OF REDUNDANT AVERAGING

The redundant averaging scheme i§:a'§repr6¢éésiﬁ

‘ g'échéme that attempts
to combine redundant data (that is,

more data than are necessary to determine
the parameters) in a way that avoids the bias introduced by usin

g a least-
Squares scheme to combine redundant data.

The method attempts to transform
a raw waveform of more than 2N samples where N is the Eddel order into a
pPreprocessed waveform of exactly 2N sambles by averaging within the waveform.
The averaging can be done sqgghat tﬁé‘éxpectatidné of the poles of the pre-
processed waveform are edui%alent to the expectations of the poles of the
raw waveform provided the additive noise on the raw waveform is zero mean

and uncorrelated between sucessive samples. The preprocessed waveform may

then be Processed with curve-fitting Prony's method to avoid the bias of the
least-squares procedure.

) The most general description of the redundant averaging scheme can
be stated simply as
NAz.l
- y H] k-O,l,...,ZN"l
" 2o Tiva

where N is the model ordgr,mxk denotes the,kth saﬁple of the preprocessed

waveform,  and ykndenotesnthe kth:sample‘of the raw waveform. 1In order to
limit this description to the essential features of the redundant averaging
Scheme, NA, the number of averages, and NS, the decimation epoch, are not
explicitly defined here. These parameters are choosen as desired but usually
in a way that would produce a desirable preprocessing mode in some sense.

For instance, the value for the decimationtépoch might be chosen on the

basis of the maximum frequency, w s Present in" the raw waveform (if this
information is available) and the‘nﬁmber“of”évefﬁgeé»mighg:bé'chosenkSO

that every sample‘in the raﬁ‘wavefqrm is used once the value of the

decimation epoch is set. Hence the sampling interval, At, for the

preprocessed waveform could be obtained as
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At = N At
s  raw
v
where Ns Integer Part E:—-KE-——].
m  raw

The number of averages, NA’ can be computed by

N, = M- N (28-1)

where M is. the number of samples 1n the raw waveform and N is the order
desired. It should be noted that the above method for determining N and
N is not the only possible technique.

The redundant-averaging procedure is effectively two operations:

1. Apply a»law-pass~moving-average filter, A(z), to the raw waveform,
2. Decimate the filtered waveform with decimation epoch Ns'

The transfer function of the moving-average filter is:

] N
N -1 N, =2 A
Az) =z % 48, cee + ztl = EZ:I£°

The numerator of A(z) can be factored into

Na
o (z-z ).
i=1"

The zeros, 2y of the numerator of A(z) have unit magnitudes and arguments,

arg zi - 2"2:—12’
A

fori=1, ..., NA. It is clear that the first factor cancels with the
denominator giving R
Na

A(z) = I (z-zi).
i=2
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‘Figﬁre E-1. Z-piane plot of zeros of ;. |
preprocessing filter for NA =16
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x NOISE FREE

(X ll’““l”xlknxj

- Figure E-2

a) Noise free test signal from 6 poles

6.0»

: = RECONSTRUCTED
X  NOISE CONTAMINATED

Figure E-2

b) Noise contaminated signal and recomstructed signal using
the method of redundant averaging with parameters M=400,
Ns=16, NA= 160.
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Table E.1 True poles and results of five Monte Carlo runs for the

redundant averaging. example shown in’Figure E.1.

REAL PARTS OF POLES

TRuE MONTE CARLO RUNS wEr. | o 2 DEV.
1 2 3 4 5
=082 | -.097 | -.127 | -.122 | -.137 | -.050 | -.107 | .033 30
=147 | -.198 | -.157 | -.239 | -.162 | -.177 | . -.187 | .o8e 27
-1.88 | -.129 | -.103 | -.227 | -.562 | -.332 | -.271 | .185 “
IMAGINARY PARTS OF POLES
TRUE MONTE CARLO RUNS
—y ; AVER. | o % DEV.
1 2 | 3 | 4 E
-926 °;,;957'* ~~.§q45 884 | .942 936 7| .925 | .030 -.1
2.874 | 2.950 | 2.913 | 2.874 | 2.889 | 2.882 2.902 | .03 1
4.835 | 4.721 | 4.899 |5.006 | 5.065 .| 4.803 | 4.899 | .161 | 1.3
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A(z) then has NA zeros which are evenly spaced around the unit circle but
the zero at z=1 is canceled. Since there is never a zero at z=1, the
moving-average filter can be viewed as a type of low-pass filter. A

z-plane plot of the zeros is shown in Figure E.1.

As an example of the application of this method consider the noise-
free waveform shown in Figure E.2a. This waveform consists of 400 data
points representing a sixth order exponential function generated with the
poles listed in Table E.l1. This data was then corrupted by adding white
noise with a standard deviation, o, of 0.5. Figure E.2b shows the noise
contaminated signal. This signal has a signal to noise ratio of 15.6 dB
where the signal to noise ratio is defined as

R
S/N = 20 log —E;Q—ali

where Rpeak is the peak amplitude of the transient signal. Five Monte
Carlo trials were run on this data using the redundant averaging method.
The model order was selected to be 8 (two more than the known order) and
Ns and NA were chosen to be 16 and 160 respectively. Figure 3.2b shows

the reconstructed waveform obtained from one of the Monte Carlo trials.
Note how good the fit is considering the signal to noise ratio was 15.6 dB.
Table E.l1 lists the results of the five trials and shows the pole averages,
standard deviations and per cent deviations. It should also be noted that
the signal to noise ratio compared to each pole residue is only 6 dB.

Hence from poles with a 6 dB information content we were able to recover
them very accurately.

The redundant averaging scheme has two difficulties or limitations

that can cause the method to be less effective:

1. 1If the sampling rate in the preprocessed waveform is
sufficiently low, the higher frequency poles can be
folded, perhaps several times, about the Nyquist

frequency.
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2. The method can null modes in the preprocessed waveform

that exists in the raw waveform.

The frequency folding phenomenon introduces an ambiguity in that it
is not known how many times a particular pole has been folded about the
Nyquist frequency. Hence, Ns possible poles are introduced for each

extracted pole by the redundant averaging scheme where

N = {AT) preprocessed
s  (AT) raw

0f course, if the highest frequency mode of the waveform is known to be
‘lower in frequency than the preprocessed waveform's Nyquist frequency, the
ambiguity is resolved but, in general, this will not be the case.

The mode nulling can occur if the averaging parameters are such that
the zeros of the resulting low pass filter cancel poles of the signal
itself. That is, if we define the preprocessed waveform P(2z) as

Ngzz
P(z) = A(z) D(2)

N(z)
resulting from the averaging process A(z) operating on the signal D(z),
then if A(z) and D(z) each have terms in common they can tend to cancel

each other.
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APPENDIX F

COLUMN PRONY'S METHOD

In this method the i-plane estimates of the poles

are the roots 6f
the polynomial

2 N
@y + al(zN) + az(zN) + ...+ aN(zN) = Q

The @, are determined from the system,

Yo ¥y ... YN2.y a, FYNZ

b4 - Y ‘+ s Y 2 .

.1 .N 1 ‘N s B YN241
¥N-1 Yon-1 +-- Yy2o; J ®n-1 RATTIRY

‘where @y is assumed to be one and {yo, Y10 cevr Yn2enoy
sequence for the waveform containing NZ4+N samples.
noted that the polynomial has N2

} denotes the
It should also be

roots only N of which are related to
estimates of the true constituent poles of the waveform.

Column Prony's method offers a means of combining N2+N data points
compared to the 2N data points of the standard Prony's method. The

column Prony's method can either be used in the least-squares version or

the curve-fitting version. If the curve-fitting version of column Prony's

method is used, the resulting parameter estimates are unbiased.

Unfortunately the method yields N2 poie estimates only N of which are the

true poles. It appears then that column Prony's method leads to the same

problem that increasing the model order led to in the standard Prony's
method: an ambiguity in the identity of the true poles.
method has an additional problem:

Moreover, this
the matrix can become nearly singular
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even if the model order is lower than or equal to true order. This
phenomenon is similar to the singulérity of the standard Prony's method
when the model order equals the waveform order and the highest frequency
is equal or nearly equal to the Nyquist frequency.
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APPENDIX G

EVAN'S AND FISCHL'S METHOD

In Evan's and Fischl's method [G.l] they define a "true error"

sequence {ek, k=0, ..., M=1} as the error between the given waveform and

the "fitted" waveform. They then proceed to define the "equation error’
sequence {dk, k=0, ..., M-1}. They further proceed to define a relation
between the equation error and the true error:

e - W

where

-1
and W = A[ATA] :

where
—ao 0 ] ? ﬂ
a a cee .
.l .0 . 0
: . ao
A=] Oy “N-1 ... .
0 oy .
. . Aol
. 0 0 ces Oy =

M is the number of samples, N is the number of poles, “N’l’ and the ;s

are the coefficients of Prony's difference equation defined in Section 2,
Volume I.
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By using this relation between the two errors they describe two iterative
procedures aimed at minimizing the "true" error criterion:

The first procedure uses

at = (ve1l v g

where

T '
vt Wt waEll
T
1.1 4 1
‘ E = [GN_l QN.Z s ao.] »

T
E [-y -y LY -y ]
g N W1 M-1

yN.l LN ) yo

G' YN e }.71

YM-Z oo e -YM.N-l

h ‘ .
1 is the iteration number, ana Yy denotes the it sample of the response

The second procedure uses:
at = et v g

where T T

U= @™+ 6T el ) waEtl

b

L(a) = [2,(a) 2,(a) = £¥<§)] E

and

s o
L (@) = [a"u-k w@] d .

44




It can be shown that

3
w(a) =
ok
Aa) 3 @]
a - W(a) A(a A(
l aaN_ - a eaN—k =l §)

+ A(;a.)T 3; A(a) )1 A(.'a.)‘T A(a)
N~k = s - )

and [(B/GaN_k) A(a)] is simply the matrix A(a) with ones replacing the Ay
with all other elements zero.

The following observations can be made about the method:

1. It produces optimal pole estimates in the sense that it
minimizes '"true error". This means that the mean-square error between the
given waveform and the fitted waveform is minimized. These optimal pole

estimates are obtained only in the second iteration phase.

2. "The matrix ATA must be inverted on each iteration of both the
first and second procedures. When the waveform has over 100 samples, ATA

becomes very large, and hence, expensive to invert. Consequently, the

method is prohibitively expensive when the waveform has over 100 samples.

This method has yet to be evaluated by tests on noisy data. Nothing is

presently known about its convergence characteristics of its tolerance of
noise.

The following example illustrates the optimal estimates.
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Initial parameters:
therefore the method should converg

l

T

N=1,M=3

Y = [21 2)(waveform to be approximated )

G = [i] &= '[:;]

=1, B '2 .

03
e immediately.

a0=l, al

-1 0
A =17
01
.. -1 o]}t
-1 Y1 1 ¢
A] - 1-1 =
0-1 1
0 1

o

[2/3 1/3
1/3 2/3

2 1 -
d=Ga-g = -1 + -
, 1 2
-1 0 -2/3 -1
2/3 1/3
W=g 1 -1 = 1/3 =1
1/3 2/3]
0 11 1/3 2
1 0
3
3‘;; A=10 1
0 0
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These are the optimal parameters,




10 -2/3 -1/3 -1 0
5" . ~ 100 ‘
Jo- W eql0 1| - | 1/3 -1/3 1-1
0 , 010 ,
00 L3 23] 01
| [1 0
-1 10 2/3 1/3
+ 0 1 ,
0-1 1 1/3 2/3
00
0 o

3
rog W= 12/3 1/3

1/3 2/3

V= [5/3 5/3]

-1

o ‘ | 2 [—1}
a. = ) [5/3 5/3] [5/3 5/3]
® [1]} -2

1 - -
= (g) (—5). 1

Therefore the uﬁdated value of 2, is equivalent to its old value, hence the

method has converged at the optimal parameters for the second iteration

phase.
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APPENDIX H
CONSTRAINED PRONY's METHOD

H.1 Uses of a Constrained Prony Method

Many times, in the application of the Prony algorithm some of the
poles are known a priori. It would be very useful if the Prony algorithm
could be constrained in such a manner that the knowledge of the known
poles is used in extracting the unknown poles. The known poles could be
poles of the driving function which are known from knowledge of the Laplace
transform of the driving function, system poles which are known from previous

Prony analysis or other techniques, or poles introduced to model the noise.

_ It is well known that for certain data sets Prony's algorithm has
some difficulty in extracting the true poles that are contained in the
data. This problem is generally related to the noise in the data but will
not be discussed here. Any method by which the accuracy of the true poles
can be increased will be very useful.

Logic would tell ome that making use of known information should
increase the accuracy of a calculation. Hence, if use is made of known
poles in the data it would seem reasonable to assﬁme that some of the
instability in Prony's method would be alleviated. The proof of the
validity of this statement rests on the actual implementationlof the
constrained Pron} algorithm and the results compared for the same data
analyzed by the unconstfained method.

In addition to aiding in increasing the accuracy of the true poles
it might be possible to introduce random poles which will model the noise.
In that manner, the poles that are known a priori are not the poles which
we seek. The difficulty with this, if it should work, is that we need to
know the rank of the system so that we can introduce the proper number of

noise poles.
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Another asset of having a contrained Prony's method is that it can be

used to aid in deconvolution. The following discussion follows directly
from work performed in Reference [4.2],

Assume that a system is excited by a driving function which can be
represented in the form

M s.t
G(t) = Y e J

P g u(t).  (H.1)

It is presumed here that the driving function poles sj and the associated
residues g, are known. These can be determined analytically if the ana-
- lytical form of the driver is known or can be determined from a Prony's

method fit to measurement data of the driving function.

Now assume that the response of the system to the driving function
G(t) is '

M+N sit ;
R(t) = Z r, e u(t) : - (R.2)
i
i=]1
and that the impulse response of the system is
H(t) = . e - . _ (H.3)
k=1 hk ‘

Hence, there are N system poles and residues and M poles in the driving
function. Of course, the response function R(t) can be written as the con-

volution of the driving function G(t) with the impulse response H(t). That
is,

R(t) = H(t)*G(t) , (Ra4)

where * denotes convolution.
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What is usually desired is to obtain the N System poles and residues
of (H.3). This must be done by deconvolution of the driving function
(K1) from (H.2). 1If :he r, and s, are known, the M+N values of s, contain
the M values sj. The 8j and the s, are known,

then the N values of hk and
sk can be determined analytically.

It can be shown that the response function can be written in terms of
the driving function and the impulse response as

M N s, t N g s, t
h];)ej-z(h —ly ek

M
€4 - - . (.5
j=1 1 kgl 8578 k=1 K jgl 8578

R(t) =

Hence, the response function residues can be defined as

, N h
r. =g k y fori=1,6,M , (H.6a)
i 3 8,~s
k=1 %3 "k
rymoh Y o=, for 4=l , M . (H.6b)
i i=1 sj--sk ,

T, k=1, N
h = ., . (H’7)
kX 1 = Mk |

3=1 %37%

Thus the residues or amplitudes of the impulse response can be obtained from
the known values ri, gj, sj’ Sk' Of course, since the M values of s. are
known and the M4N values of si are presumed to contain the M values of s ,
then the N values of s, can be determined by inspection.
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Prony's method, however, will not necessarily give the true values

of the driving function poles in the extracted poles of the response
function.

cal deconvolution of (H. 7) can be obtained,

Work performed so far implements Method 1 which is described below.
It was found that this method works perfectly as long as no noise is
present in the signal. As soon as noise is introduced in the signal and
a least-squares method is used the matrix (H.l7a) is corrupted with noise
which through the least-squares process also corrupts the constrained
parameter. Experiments have confirmed this observation. This suggests
that the constraining Method 1 may work well in noisy data if the curve-

fitting Prony's method is used. This has not been tested as yet.

Method 2, forcing the polynomial root solver to find certain roots,
has also not been tested. This is because if the coefficients are all
corrupted by noise through the least-squares procedure then subtracting

any given poles out of the polynomial will force the remaining poles to
carry the burden ef all the noise.

H.2 Method 1

In the implementation of Prony's method, an Nth order polynomial is
solved for its roots. The order of the polynomial, N, is the number of
poles being sought in the transient data. If the coefficients of the

polynomial are denoted as o then the polynomial can be expressed as per
Reference H.l as

ool 2 N
oy * o.IZ + aZZ + vee + aNZ 0 ‘ (H.8)
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where %y 1s usually set equal to unity. The N roots, Zi’ are defined as

(H.9)

with s being the poles sought, and At being the time stepysize used in the
analysis. ' e '

If the value of one or more of the ﬁoles is known - that is, we know
some of the Zi = then the Zi can be substituted into (H.B). For example,
if s, or Zi is known, then (H.B) c¢an be written as
+ o

2 N
-lzi+o'ZZi + ... +a Z = ( . (H10)

%0 N

*The N+l polynomial coefficients a are solved for in Prony s method by
solution of the difference equation o

N-1
pES'aP I~ -IN+K, k=0,1,...,y=1 , ysM-N . (1)

The Ip+K and IN+K are the samples of the transient signal being analyzed and
M is the total number of samples being used. The value of M must be at least

equal to 2N to give N sets of equations in the N unknowns ap. However, 1if

the value of a pole is known, then one of the N equations can be equation

H.10 and N-1 equations of the form of H.ll can be written.

If L poles are known a priori, the L equations of the form of (H.10)
can be written as ’

N-1 . :
@ 2=z 2=1,2, ..., L

'R 2 . (H.12)
P=O . :
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and y=aM-N-L equations can be written in the form of (H.11)
N-1
pZO % IP+K = Lew k-o,l,..,,y-l s Y=M=N-L (H.13)

Hence there are still y=M~N total equations to solve for the N values of o
however the system is constrained by the knowledge of the location of L poles.
As is usually done in Prony's method, if M=2N then the set of equations is

inverted and solved. If M>2N then a pseudo-inverse procedure is used.

Using the matrix notation of Reference H.l, if M=2N and L poles are known,
then we solve the equation

AB = C

(H.14)
where A is a Square matrix defined as
2 N-1 |
l v Zl zl .‘.O Zl
' 2 N1
”
l 52, 22 s Zz
1 Z, zf AN-1 |
A = . | - L | (@158
Io Il Iz se e IN"l
Il IZ IS LN ] IN
etk Iyen Iyopeg e IoNeL-2
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I

O

and B and C are vectors defined as

(H.15b)

- eee

(H.15b)

ff M>2N and L poles are known, then the solution takes on a pseudo-inverse
or least-squares form as

T

T

ATAB = A'C

Where AT is the transpose of the matrix A and A is now a rectangular matrix

of the form

1

IM-N-I-L

LyeN-L

NNHN
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N-1
Zz

N-1
2L

IN-1

N

M=-L=-2

ZNol

(H.16)

(H.17a)




—_— f_ < =
Q i
0 -1
N
.
1 2
B o= | q (H.17b) . (H.17c)
. - | N
. C ZL
| -1 | e
I
M-1-L
e )

Consider the simple example of a two polé system

s. t s .t
£(t) = 2e L + 3¢ 2

vhere s, = 0 and 8, = -4. Assume that 8, 1s known, thus giving zZ, =
Also, let f{t) be Sampled“at At = 0,2 Seéonds, giving a data set as

t : f(e)

0 Iy =

0.2 I, = 3.3480
0.4 I, = 2.6057
0.6 I, = 2.2722
0.8 I, = 2.1223

Using the constrained Prony's method in the square system form of Equation
(H.14) and (H.15) yields
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1 1 %, 1
Io Il @y T IZ
or
1 1 %q 1
5 3.3480 @ o 2.6057

The solution of this set of equations gives @, = 1.4493 and % = 0.4493 so
that the polynomial can be written as

22 = 1.4493 Z + 0.4493 =

The roots of this polynomial are Zl = 1.0 and Z2 = 0.4493, giving poles of

Sl = 0.0 and 92 = 4.0003. The error in 32 is due to truncation error. Note

that the constrained pole was returned exactly.

H.3 Method 2

Another approach which can be used to constrain Prony's method to use
information about known poles is the modification of the polynomial root
finding rbutine MULLER. Once the unconstrained Prony's method calculates
the coefficients of the polynomiai (H.8) and if some of the roots of the
polynomial are known a priori, then the locations of those roots can be
passed to MULLER and it will not have to search for those roots. Since the
root finding routine is very time consuming, the knowledge of the location

of any of the roots will presumably save computation time.

A possible flaw with this approach is that MULLER is forced to pre-
sume roots of the polynomial when those exact roots may not be contained in
the polynomial. That is, if the polynomial has not been constrained to

contain the known roots, as per Section H.2, then the known roots will
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not necessarily be contained in it. Forcing an unconstrained polynomial

to have certain roots could grossly perturb the location of the other roots
being sought.

H.4 Method 3

The obvious solution to the flaw presented in Section H.3 is to use
both the methods of H.2 and H.3 simultaneously. That is, the polynomial
is constrained to contain the known poles as outlined in Section H.2. Then
the polynomial root finding routine MULLER can be modified to extract the

known roots from the polynomial before it begins its search for the unknown
roots.

It is felt that this approach will give the best accuracy and will

speed up the calculations since the order of the polynomial is effectiveiy
reduced.
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APPENDIX I

REVERSING THE WAVEFORM IN TIME TO ELIMINATE
EXTRANEOUS RESONANCES

Reversing the ﬁavéformrin time depends on the statistical properties
of the noise which do not change when the waveform is reversed. The poles
that result from the noise, therefore, are not ‘altered by reversal in time

- while the true poles are negated or flipped through the origin.

If the noise level is high the noise poles only approximately remain
the same under time reversal and the true poles only approximately reflect
through the origin. If time reversal is attempted for curve-fitting Prony's
method it is found that all poles flip precisely. Therefore, this method
is not effective for curve-fitting Prony's method.

(Curve-fitting Prony's method uses the solution to the inhomogeneous system
ai;q, in the notation of Volume I, where'6 is a square matrix.)
O
The waveform of Figure I.l was used in a numerical example of the time=-
reversal method. Least-squares Prony's method was applied to the waveform.
Estimates at the S-Plane poles were found using the inhomogeneous solution
which is defined in Volume I, Section 2 as

% = [l

The waveform consists of 100 samples and was corrupted with uncorrelated,
Gaussian-distributed noise with a standard deviation of 0.1. Figure I.2
displays the poles obtained from the forward and reversed waveforms. The
dimensions of the (NXn)-dimensional matrix'a in this example are M=76
and n=24. The estimates of the true poles are quite accurate. Figure I.3
displays the poles obtained for the same waveform but different matrix
dimensions. The matrix dimensions are M=60 and n=40. In this case, the
extraneous poles do not all remain in the left-half plane which is

attributed to using an overly square matrix.
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If the matrix is too "thin", of M/n >>1, the estimates of the true
poles become inaccurate. If the matrix is too "fat", or M/n = 1, the

extraneous poles do not all remain in the left-half plane. The matrix

shape where M/n = 3 appears to be the best shape for good estimates and

keeping the extraneous poles in the left-half plane,
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Waveform used in the numerical example.

Figure I-1.
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O

Therefore, it appears that if we choose M/n = 3, then time
reversal can be used to distinguish between the true poles and the

extraneous poles in relatively high noise levels.

The above two examples show that there is a trend for the
noise poles in the least-squares Prony's method to_occupy a higher
frequency portion of the S-plane and to be highly damped. 'This trend‘
was studied by letting the least—-squares Prony's methbd operate on.a
waveform consisting of ‘only Gaussian-distributed uncorrelated noise -
no signal. The poles resulting from this example are highly damped and

evenly distributed in the z-plane approximately around a circle within
the unit circle.

This behavior can be explained by the fact that the polynomial
coefficients, except aN which is set to one, all tend to zero for the
least-squares method operating on uncorrelated noise. The polynomial
then tends toward zN = ¢ where € tends to zero. The roots of this
polynomial, zss have magnitudes

l2,| = |e|M/N

and arguments

arg ¢ + 2w(i-1)
N

arg z, =
for i =1, ..., N.

It then follows that the poles should be highly damped, since
lzil + 0 if |e| + 0, and that the poles are evenly distributed about the
z-plane. However, for curve-fitting Prony's method the @ i=0, .y
N-1 do not tend to zero and indeed this phenomenon is not observed in

tests using curve-fitting Prony's method on all noise.
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This behaviecr of the noise poles in least-squares Prony seems to

remain approximately the same even if the waveform is not entirely noise.

The trend that is seen is that the noise poles occupy the higher frequencies,

are highly damped and evenly distributed between the higher frequencies;
while<the true poles are approximately at their uncorrupted locations

and occupy the lower frgquencies. That is, it appears as though the noise
poles are "crowded" away from the lower frequencies or, perhaps more

accurately, the lower frequency noise poles become lower frequency signal
poles when the waveform is no longer entirely noise.
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