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Abstract

M4thematical formulation and analysis of numerical methods
for calqulating the natural frequencies (resonances) are given,
Stability of these methods towards round-off errors and small
perturbitions of the obstacles is establishéd. Some'formulés for

the varijations of the natural frequencies due to small perturba-

‘tions of] the surface of the obstacle are given. A simple new

method flor extraction of resonances from transient fields is

given,
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I. INTRODUCTION

Let D be a finite obstacle with a smooth surface
the gxterior domain. The obstacle (scatterer) is three
dimegsional. The smoothness of ' 'is of the type that ensures
the §pplicability of Green's formnlasf Roughly speaking, the
cuspj—type singular points of the surface are not admissible, but
the gdges (as in a . cube) or conical points are admissible, The
scaiir wave scattering will be discussed for simplicity, but the
resu}ts and arguments are valid for electromagnetic wave

scatyering. The Green’s function for a reflecting obstacle

satigfies the equations

(—VZ‘-sz)G(x.y.k) =8(x -~ y) in 8, kX > 0, x = (xl.xz,xs) (1)
G =¢ if x g T - (2)
r(—; - ikG) - 0 as r = Ix| » o (3)
Here| y is the position vector of the source, V2 is the

Laplﬁcian. The function G is uniquely determined by Equations 1

throggh 3 and can be continued analytically on the whole complex

planp of k as eameromorphic function of k, Its poles lie in
the Balf-plane Imk < 0 and are called resonances, natural
freqxencies or complex poles. The meromorphic nature of G as a
funcgion of k and the (closely conmected with it) behavior of
solugions to the time-dependent wave equation as t > +%° wyas

studjed in the series of papers starting with Referemce 1. In

O
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Refereng

e 2 there is a bibliography of the subject. In Reference

3 onecﬂn find a collection ofpapersand an extensive

;bxblzogLaphy of the singularity and eigenmode expansion methods.

In Refetences 4 and 5 there are reviews of the subject for

enginee
the beh

the fou
1

u(g

then th¢

v(z

satisfid

s. The connection of the complex poles asymptotic with
vior of solutions to the time-dependent wave equation is

dation of the singularity expansion method (SEM). 1If

VZ* = U4y in @, t >0, u=0 on T

0) = 0, u,(x,00 = £(x) R )

functioh v defined as

-]

,k) = [ explikt)u(x,t)at , | (5)
| 0

s the equations

w3+ x?)y = -f, v=0 on T, r(%¥ - ikv) - 0, r 5> ®» (6)
v E [o6(x,y.,1)tay 165
0o
v £ (2m)71 I exp(-ikt)v(x,k)dk : (8)
- Q0
Assume Ehat f is a smooth function which vanishes outside of a
bounded |domain (compactly supported). In the engineering
literatyre (e.g., in Ref. 4) the complex variables s = —-ik is
often uIed. In the physical mathematxcal literature k is
usually

the compex variable. The half-plane 1Imk < 0 (used
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in this fkeport) corresponds to the half-plane Ros <0 on the
s—-plane. | If one knows that (Ref. 2):
v }is meromorphic (and analytic if Imk > 0) (9)
Ivljg cod(r + lxh™2, a %~, b = Imk, |Rek| + = (10)
llm*jl < 'Imkj+1| > ® as jo> o (11)

then one

canmove the contour of integration in Equation 8 in k-

plane doyn @nd obtain the SEM expansion (Ref. 2)

u(;xt

Here k.

= i Res

-k=kj

strip O

4) that

cj(x). I m; +1 is the multiplicity of the pole k,

ji!

‘the poles

N -ik, t - |Imk |t

£ = 1 ejztde I+ o ML s se . (12)
j=1

- .are the complex poles of vw(x,k), cj(x.t) =

{e—iktv(x.k)} and N is the nnhber of the poles in the

> Imk 2 Imky. Usually it is assumed by engiheers (Ref.
'kj are simple, in which case cj(x.t)‘=

j then

| .
cjlx,t) £ 0(t J), and ome can write Equation 12 as

u(x.t) =

NPy

)

J=1 m=0

-ik

. -]Imk
cjm(x)tme J

t
+ 0(e N"l':lI )

as t > +o  (13)

Equation)

expansio

7~

that U

12 and 13 were called in Reference 2 asymptotic SEM
L . Thesq expansions.are proved under the assumption
is strictiy‘convex. "The expansion

~ik.,t

u = cj(x,t)e

3

He—18

(14)
1

O




which on

is not v{

for nonc?nvex obstacles. For example,

P can see in the literature, is not proved and probably

1id in general. Equation 13 is not valid, in general,

in Reference 6 it is

proved that if the obstacle comsists of two strictly convex

bodies tRan G(x,y,k)

?

line Imk

has countably many complex poles on the

= ¢cg- The se polés asymptotically are equidistant and

the distgnce between the poles depend on the distance between the

bodies afd the curvatures and principal directions of the

surfaces

closest #oints

min'sl -
s1ely
soel,
is not v
Eqﬁation

boundary

the geomqtrical optics approximation).

proved y
In ¢
obstacl e

mode, by

'y and T, of the bodies Dj and D, at the two

ay e Fl and a; € Tz- (That is lal - 82| =

'szl). This result shows that SEM Equation 13

b1id for two convex bodies. It suggests also that
13 is not valid for a single body with nonconvex
'which can hold a trapping mode (i.e. a standing wave in

This, however, is not

P t.

rinciple, one can tell the difference between convex

} and nonconvex obstacles, capaﬁle of holding a trapping
the behavior of complex poles kj for large j: for:

convex o?stacle# (Eq. 11) holds and lImkjl + +o, while in the

other ca

c°<0.
The

mention d

tabulate

-

e there exist infinitely many poles on a 1line Imkj =

significance of the complex poles is many fold.

Ve

nly two areas

important in applications, First, one can

the complex poles and use them for target
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et

identificaltion.

scatterers

this is noﬁ proved,

2, p. 585—?

Practically, it is expected that different

produce different sets of complex poles. Although
but there are some supporting arguments (Ref.

86). Secondly, the systems theory uses representa-—

tions of i*pulse responses as sums of exponentials. The problem

is to find

It is

these exponentials from transient fields.

a long—stinding‘open problem to prove that infinitely

many complﬁx not purely imaginary poles of G eiist for any

reflecting

obstacle. So far it was proved that infinitely many

purely ima%inary poles exist (this is a result from Ref. 7, a

simple pt(

of one can find in Ref. 2).

The objectives of this paper include:

(a)

ormul ation of the mathematical methods for numerical

calculatinh the complex poles.

(b)
(c¢)

resonances

knalysis of convergence and'stability of these methods.

Formuiation of a simple technique for extracting

(natural frequencies) from transient fields.

An exfensive bibliography on the third question can be found

in Refetenie
reviewed i}

Some other!

present a

8. The techniques used in the literature and
Reference 8, are based mostly on the Prony's method.

methods were also used (Refs. Heré we

8 and 9).

fery simple numerical technique which seems to be new

and does n?t require solving nonlinear or even linear equations.

The most d

noisy dataj}

discusses

jfficult part of ﬁhis problem is the question of the
This report is organized as follows: Section II

bhe first two‘objectives while Section III covers the

third obje*tiie.

—




? .
(:) poles upder perturbations of the surface of the scatterer.

Numeration of formulas is separate in each of the sections.
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1. BAS|I

From the Green’'s formula omne obtains

where NL
dependeni

brevity.!

fr g

If k; H
_...__L___g
obtain
Qh
|
i
ThereforL
19 has a
Let

then takL x> s gl to obtain

II.

METHODS

C EQUATIONS.

r
eik]x -y
T TS
26
oN
s

is the outer normal to r

e on k

Let x = s e I
hds’' = g
s a pole of G

. Multiply (4) by

IF g(s.shkj)wds' =

the complex poles are the points

nontrivial solution,

- m
(k kj)

0

in Equation 15,

then it is a pole of

G(x},y,k) = g(x,y,k) - f g(x,s")h(s’,y)ds’

at the point

Then

and let

k.

J

OF CALCULATING NATURAL FREQUENCIES

h, so that

kzkj

is supressed in some of the functions for

to

(15)

(16)

(17)

s, and the

(18)

(19)

at which Equation

us differentiate Equation 15 in the direction N

10

and
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[ + AGOTh = h o+ An = 2 2 (20)
: S

3
Ab = Jr 2 ﬁ_g; hds’ | (21)

This gjves the second way to characterize the complex poles: they

are the¢ points at which the equation
By = [I + A(x)ly = 0 T (22)
has a *ontrivial solution.

2. P#OJECTION METHODS FOR CALCULATING THE POLES.

‘ First, consider Equation 22. Take a complete in LZ(I‘)‘== H
set of‘linearly independent functions [¢j}. The linear span of
fhe figst n functions is a linmear subspace Hn' Bn‘: Hn+1'
Since $he system wj} is complete in H one concludes that the
system|of subspaces H_  is limit dense in H, that is

dist(wlnn) >0 as n-> ® for any ¢ e H. This property is
crucial for the analysis below. Here dist is the distance

betwee$ the elements Y .and the subspaces H Let

n*.
Y, = i c(n)¢j. Consider the projection method for solving

=t '
Equatidgn 22:

1 n )
(Bup.0g) =0, 1 < m<m | (Bojdpdey =0, 1 mgn (23)
) J=

1

,AThe nedqessary and sufficient condition for Equation 23 to have a

nontriﬂiil solution is

11




det b, (k

=0, bn(k) [bjm(k)]j.m-l.‘..n' me = (B¢j'¢m) (24)

The parejtheses denote the innmer product in LZ(P). (a,v) =

IF uvds.

The elements bjm(k) are entire functions of k since

the oper#tor A in Equation 21 is an entire analytic operator

function}

(a)

of k. Therefore:

it is not obvious that Equation 24 has zeros (e.g..

exp(k) does not have zeros),

(b)
should p

that

lim

n-—>rw

where k
complex
later.

Con

if Equation 24 has zeros k;n),"j =1,2,... then one

fove convergence of this method, that is one should prove

k(_n) = k.

3 ] (25)

i\ are the complex poles of G and that all of the

poles can be obtained in this way. Thiswill be done

pider Equation 19. In the same way as in the previous

section pne can derive the equation

det Qn(k

This equ
same que

26. The

)=0’Q(k)

i

[Qjm(k)]j,m=1...n’ Qjm = (Qd)j'(bm) (26)

tion is of the same structure as Equation 24, and the
gtions (a) and (b) should be investigated for Equation

difference between operators Q and B is that Q is

compact while B is of Fredholm type, so that Equation 19 is of

the firs

} kind, while Equation 22 is of the second kind. The

12




elemdgnt Qjm is easier to compute than bjm'

3. 'VARIATIONAL METHODS FOR CALCULATING THE POLES.

Consider the problem:

1Qfl = min, If] =1 ' (27)
wherel Ifl is the L2(P) norm, If!p is the Sobolev space
W2:P4r) = BP norm, If1 = I£1,, IfI = f t1a]? +ipu1? 4

P r

leulz}ds. D denotes the first order derivative on I. For

P < & the space W2'P s defined as a dual to w2-lpl,

n

Take f, = Z c(n)¢j, substitute in Equation 13, and obtain

s 4 i=1
the piroblem

Too(n)  (n) (n) (n)
n n) _ n n) - R [

jzl Iy ©5 e B0, 1 Cm & om, 3 = (Q45,0Q0,) (28)

wheref A is an eigenvalue of the matix qg%). This matrix is an

entire function of k. Its minimal eigenvalue X&“)(k) is
minimpm of the functional 1Qf | under the constraint of Equation

27. he points kgn) which are zeros of x;n)(k):

(n)((n)y _ ‘
P73 =0 (29)

coan:ge to the complex poles of G(x,y,k) and all of the

complpx poles can be obtained as limits of k;n) as n + @

k. = lim k(0 | (30)
J N J :

13




A simil idea was used in Equation.25. Convergence of the

methods given in Sectionm II.2 and a study of their stability we

give in fthe next subsection.

ERGEN CE AND STABILITY OF THE METHODS FOR CALCULATING THE
S.

Thefbasic ideas and methods of the analysis and proofs are

taken frpm Reference 10 (Refs. 2, 11 and 12). The basic results

consistnrn a proof of convergence and stability of the methods
given inj Section II.2 towards the round-off errors and

perturbafkions of the data.

We |start with the method given im Section II.2. Let us

assume that there exist a countable discreet set P of points

kj at which Equation 22 has a nontrivial solution. In paragraph

I1.1 we gproved that any complex pole of G belongs to P. Let

us show fthat any point ko ¢ P is a complex pole of G. Let

be a nonfrivial solution to Equation 8. Define the simple layer

potentigl v = fP g¥ds'. From the known formula (Ref., 10, P.

240): aa = Ay ; L4 (in which 5%— denotes the limit value of
i i ‘

the normpl derivative on I from the interior and A is given

in Eq. 2)) and Equation 22 it follows that g%L = 0, Ve know

s i
that (yf + k2)v =0 in D. Since kg is a complex number and

the specfkrum of the interior Neumann Laplacian consists of
positive numbers only, we conclude that v=20 in D. Therefore
v=20 o ' If G does not have a pole at k = kg then the
problem| (y2 + kg)v =0 in Q, v=0 on T, v(x.ko) is the

limit v4lue of a function v(x,k) analyticin k in a

neighborhood of ks and belonging to L2(2) when Imk ) 0, has

14
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only tpe trivial solution. Thus, v=0 in 0 if kg

is not a

pole of G. Therefore Y = A

= v ’
it =N = 0, where N is the
i e e

limit yalue of the normal derivative on T from the exterior

domdin¢

ko is
L4

Equati(

This contradicts the assumption that v 5 0. Therefore

a pole of G.
t us prove now that for safficiently large =n: (1)

n 24 has solutions,(2) Equation 25 holds, (3) all the

complex poles can be obtained as limits (Eq. 25) and (4) complex

poles
the nof
Eq

0, or

where
the idd
Pn - I

one haj{

I’+ PnA

large

is inv

kj are stable towards small perturbations of the data

ion of the small perturbation will be specified.

wation 23 can be written as an operator equation PnBin =

(I + P LAY, = 0 | (31)

P, is the orthoprojection onto Hy, v, = PV e Hy, I s

ntity. Since A(k) is compact in H for anmy k and

as n > o, where the arrow denotes strong convergence,
B - PnBll > 0 as n~> o, Therefore, the opetator.

| = I + A(k) - POa(x) s invertible for sufficiently

n in a neighborhood of any point ky at which I + A(kg)

brtible. Here P(®) = 1 - p , p(8) 4 o 45 5o o  This

argumept shows that if ko is not a complex pole then there are

no roof

s k() of Equation 24 in a neighborhood of k. It
j ,

remaing to be proved that if kg is a pole_of G then for

suffic

which |

ently large =n there exists a root kﬂr) of Equnation 24

,ies in the circle C& : |k - kol £ 8, where 8 > 0 is

15




arbitra

24 small number. Suppose that for some & > 0 and all n

there age no roots
b

k(;) of Equation 24 in the circle Cs. Then
the_ppe‘gtor I + P A(k) 4is invertible in Cs» the operator (I
is anmalytic in k in Cs» and therefore I1(x +

+ PoA() L

PnA(k))'vll £ ¢ where ¢ is constant which does not depend on

n. On Jhe other hand, (I + A(k)™1 = (I + P_a(x) + P{®)a(x))-1 -

(1 + PN L+ P Ay 1+ p a1,

11p(n) (]
(I + A(kx

contradi

Since

The con
lgrge

Cg.

pll + 0 and |ll(x + PnA)_1||'$ ¢ one conclu&es that

)1 is a bounded operator in Cg. This is a

ption since k; is a pole of the operator (I + Ak,
adiction proves that for any & > 0 and sufficiently

there is a root k(;) of Equation 24 in the circi?

Thef above argument settles also the question about stability

of the pples towards small perturbations of the data and round-

off err
round-o

matrix

Let]

b. (k)

jm
+ A, Le

operator

matrix df the operator PnﬁPn.

both the}

Bd

O

s. Indeed, the small perturbations of the data and the

errors are equivalent to small perturbations of the
bjm(k).
us assume that a small perturbation of the matrix

s caused by a small perturbation of the operator B

I

n 47]
t as denote B = I + A =1+ A+ T

the perturbed

: o
2 In this formulation the perturbed matrix b?ﬁ is the

The perturbation T <can describe

perturbation of I and the round-off errors in

computi
domain

(I+Pn

operator

matrix b?ﬁ. Our aim is to prove that in any finife

V] .
the k-plane the poles kgn) of the perturbed operator

k)Pn)°1 differ from the poles ki;) of the unperturbed

<

-

» -1 ‘ g(n) _ {(n)
(1}+ P, B(x)P)) a little: lkjn kj“ I

16




e(n,llT

1), ¢ -0 if IITI] + 0 and n + =, Since we have

alreadyf established the convergence property (Eq. 25), it is

suffici

of thisjoperator in the circle CS' One has

(I + A(#))—I(I + T(I + A(x))~1)-1, Suppose ij

mul tipl

cC = ¢Oon

clitlls

unpertyrbed pole k., lies inside the circle

k.l ¢ 8}

J
the mul

const

Th
describd
give a
and the
A,

Le

pnt to prove that

N
|—kJ-|->0 if lltll+- o0, T=8B - B (32)

be a pole of (I + A(kx))~1

and there are no other poles
(I + A(x) + T)"1 =

is a pole of

icity v. Then [I(I + A(xD7LI] ¢ S , k e C,
k - k
PN

pt. Thus  |IT(I + AGHD™LI] ¢ cliTI K - K 17™ 1f

'™ ¢ 1 then the perturbed pole fj, corresponding to the

N

where m is

CS' that is
| = ocllT]|1/m
o(liTl1/m

J

v
b In other words lkj - kj

tiplicity of the pole kj and means £

JiTiii/m,

p smallness of the perturbation of the surface is
*d in terms of the smallness of the norm |ITIl. One can
ffelationship between the equation of the perturbed surface

norm of‘ T. This is cumbersome and is done in Appgndix’

t us study the method based on Equation 26. The results

will be| the same: (1) Equation 26 has roots (®) gor

suffici
poles ¢
perturd

compl ex|

ntly large =n,(2) Equation 25 holds,(3) all the complex
hn be obtained as limits (Eq. 11), and (4) small

ptions of the data lead to small perturbations of the

17

poles uniformly on any bounded dqmain on the complex k-plane.




Analykis of Equations 19 and 26 is more complicated than

that of Eqpations 22 and 24 because Equation 19 is an equation of

the first

factorizat

Q(k)

Here Qof

=08 an

ind. The basic tool in our analysis is the

fon formula
F Qp(I + V), @y = @(0), v = e"1ca(x) - qp (33)

fds' . . i
E I E;Tgwr-grr is a self-adjoint positive definite

operator ir H = LZ(F). This operator is an isomorphism between

HP  (see [

Hl. while the operator V is compact in any space

p] and [10] for details). Therefore, the bilinear form

(Qou.v) dqfines'an inner product equivalent to the inner product

(u,v)_q/9
((1 + V)e,
fully appll
(1)
(2)

¥ is compact in

B-1/2,

in The matrix Q

jm = QoI+ V)gs,6,) =
P¢m)-1/2' Our previous arguments in paragraph 4 are
:iqable to this matrix because:

H"l(z and depends analytically oa Kk,

bf a system {¢j} is‘complete in B0 then it is

Compactnes
statement

H® if p

where |-l

complete in HP for any p < 0.
of V was already mentioned. To explain the second

e ssume that fp e B?, p ¢ 0. It is well known that HPC

> g, H? is dense in HY (that is for any ¢ > 0 and
any f & qn there exists an f_ e HP such that |fe - flq < e,
;i q 1 i
q is the norm in HY), and Iflp < Iflq if p < q.

Let f & H#. p <0, and e > 0 is fixed. Find f_¢ B .such

that l£ -

B to figd b, = ¥ c;(e)¢; such that |b

f <

oo

elp . Use completeness of the system {¢j} in
‘ n(e)

£lo < £. Then

€ € 2

i=1

18




£, - by < e, if

Nm

be - n I <lf - £ 1 +1¢g. - 1 |

€ ip g'D 4 BP‘<-

p < 0. Therefore the system {¢j} is complete in ,H-1/2 and
the matrfix Qjm is a matrix of the operator I + V(k) in g-1/2
where V(k) s compact in g1/2 and analytic in k. The rest

of the afguments is the same as in subsection II.4 and the

conclusipns are formulated in the beginning of this section,

In this paragraph the vaeriational method given in Section

II.3_is jtudied. If kg?)(kgn)) =0 then Equation 28
coriespo’ds to the ﬁrojéction method for the equation Q*Qf = 0,
The fact‘rization in ﬁaragraph II.4 is sufficient for the
arﬁumenf ~of paragraph 4.3 to hold for the operator Q*Q (the
reasbn ijs that Q*Q = (I + V*)Qg(l + V) = Qg(l + V) where V,
is compag¢t). Here we used self-adjointness of Qq. Compactness
of V1 ollows from simple properties of pseudodifferential
operatory: ord @y = -1, ord V= -3 V; = a2vead + v+ a2vealy,
ord V; (lord V < 0. Here ordQ is the order of
pseudodifferential operator Q. Properties of pseﬁdodifferential
operatory ome can find, e.g., in Referemce 13. Thus, one

conclude$ that the results (Eqs. 15 through 18) in Section II.4

hold for|the variational method described in paragraph 3.

19




IIIi

EXTRACTING NATURAL FREQUENCIES FROM TRANSIENT FIELDS

1. PRELIMINARIES

Copsider the problem

uefb =9%u, £ >0, x e B, w=o0

onf T, u(x,0) =0, uw,(x,0) = f(x), - (34)
where = R3\Q is a bounded connected ddmain with a smooth
strictly convex boundary, f ¢ Cz. In Reference 2 the basic
resu1t4 on the asymptotic behavior of u as t- +w are

1 ,

describ}d. In particular, the following asymptotic SEM
(singul4rity expansion method) formula holds:

where ¢

m -
N 3 =ik, t -|Imk |t
) °(an) t"e 3 4+ 0(e N1 ), t 5 4o (35)
j=1 m=0

(x) = - '
im do not’depend on t, kj aj 1bj, bj > 0, are

complex|poles of the resolvent kernel G of the Dirichlet

Laplaci*n in Q:

(v3

Izl

apd mj
'Imkjl
natural

that can

- © gas j +r =,

+ kz)G(x,y,k) = ~8(x - y) in Q, 6 =0  on r,

(5%%r - ikG) - 0 as |x| + =,

+ 1 is the multiplicity of the pole kj, Imkj <0,

The poles k are called resonances or

i
frequencies. The signal (Eq. 35)'is the transient field

be observed experimentally. The knowledge of the

20




resomnan

|
[

importah

scatter

and thi
Th

impul se

followsk

the num
the sub}

" Bruns,

researclers).

and 14,

k.

j may serve for target identification:

the

rs of various shapes produce various sets of resonances,

is one of the reasons to be interested in resonances,
other reason is that in systems theory one often models

responses as a sum of the type given in Equation 35. The

t problem of system identification can be formuluted as

from ‘the observat1on of the transzent field (Eq. 2) find

ers kj and m;. There is an extensive ljiterature on

ect. Many researchers contributed to the field (Prony,

ale, Lagrange, K;hnen and quite a few modern

A large bibliography can be found in References 8

Only the case m. 0

i (simple poles) was treated inm the

literatgre.

Thq purpose of this sectionm is: (1) to give a simple
numericgl procedure for computing the numbers m; and kj,
1 <3 g‘N for any fixed N from the exact transient data, (2) to
discuss|{this problem for the noisy data, and (3) to briefly review
the clagsical methods (Prony, Brunms, Lagrange, Dale).
2. A SIIMPLE METHOD FOR EXTRACTING RESONANCES FROM THE TRANSIENT
FIHLD
Asqume first that the scatterer is a strictly convex
reflecting body so that Equation 35 holds. By u(n) 1let us
denote fhe sequence u(x,nh), where h > 0 is a fixed number,
It folldws from Equation 35 that
w(n) = of A L T 0(2)) as -+ e (36)
21




From Eq*ation 36 one obtains

T L T 0(2) as 2+ (37)
Thus,

byl= % ta Tt v o, a5 s e | (38

b1i+ iag = % £n 37&;2217 + 0(%). as n > " (39)
Suppose [that ‘kj, m; and ¢im 1 {(m( m;, 1 {j <N, are
compufe%. Let uy denote the sum in Equation, u - Ny = wpne

Then, ag above,

bNy1

b4

If al

m1‘=

Similarl

jH

as

(n) v

! YN 1

1 = -1:1. Ln WN(H—T_]j + O(H) as n -+ o« (40)
’ 1 vy () 1

1 * iaN'l'l =z Ln VJ.I:]-Z?I—:'—-]—.-S + O(H) as n > o (41)

and by are found then my can be found by the formula:

ia.nh+b_ nh

1 1
Ln{u(n)e } 1 - .
o n + O(E—n—) as n - (42)
Yy,
ia, . h
tnlv (n)e1a3+lnh+bj+ln }
- ] . 0(—ti_
1 Ln n * ,(Znn)
n > o, j = 1,2,... ‘ (43)
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If a3, by and my are found then

ia.nh+b
='u(n)e 1 1 1
c]nl , . o + O(EF)' as n -~ @ ‘(43a)

(nh)

nh

In the |literature (Refs. 8 and 14 through 21) the case of simple

resona@ces (mj = 0) only was discussed. In this case 0(%) in
-(bz—bl)nh

Equatiqdn 44 can be substituted by O0(e ) as n +>w,

I a similar way all the coefficients €1y ¢an be computed.

Practiqally one takes n large, neglects the remainder in

formulgs of the type (Eq. 10a), and uses the main term in the
right 1

and side of Equation 10a as the formula for €i1m » ©otc.

Ii ky, a9, b; and Cip: 1 {m g my, are found then one
works with Wy =8 - uy and so on. This is a method for

computing the coefficients Cim from the transient field.
Aq'alternative method is the usual least squares method. If

mj, aq4 and ‘bl are found then Cipme 1 £ m{my can be found
"1 (ia_-b )nh|2

u(a) - z cln(nh)me 11 =
m=0

“from tﬂe requirement

Hes~18
’_l

n
min, ﬂhis leads to a uniquely solvablé linear system for the
coeffigients c¢y,, 1 { m¢ my. If k4, 83, by, my and C1m’
1 $ m § my, are found then one works with u - u; = w; and

considqrs wy as the transient field. The method based on

Equatign 43a is quite simple and does not require solving linear
systemk.

Equations 38-43 give a simple method for extracting
resonagces and their multiplicities from the exact transient
field.f The ﬁuch nore'oomplioated case of noisy data is discussed

as follows.v
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In s?stems theory u often does nétidepend.on X being an
impulse r%spohse of a system.
Noin data. Assume that y(n) = u(n) + e(n) is measured
instead off u(n). Here e(n) is noise. Assume that e(n) is
uniformly| distributed on the interval [-g,el, € > 0 is a given
number. In practice the level of noise is not known exactly
since it bomes not only from the errors in measurements but also
from the pnknown background noise in the environment of the

scatterer| But without some assumptions about the noise nothing

can be defrived. Omne has

-i h-b%_ nh
ml ml aln yln

y(n)i = ¢im b n e (1 + 0(%)) + g(n) =

moom - ialnh-binh

{1 +;0(:—l—) + g(n)c™1 h 1 e } (44
n 1

m

From Equaltion 44 it follows that, regardless of the method used,

the extrag¢tion of the complex poles kj from noisy data is
highly unistable and depends on the magnitude of o, = 0(%)

-m 1b nh -1 ’
+en 1 e‘1 €Ci1m -+ If there exists n such that a, <C1 (say

1

o, < 0.1),, then the pole k; = a; - iby can be computed by

Equations{38 and 39 in which y(n) (a.) should stay in place of

n

u(n) (0(&)). Similar considerations hold for other poles.

b nh

Since bj‘) 0 the factor e J is growing as n > o,

Thereforej ¢ should be small in order that e, be small and k

24

)

:

J

O




O

‘could be computed. In this case it is not advisable to take n

too large because for large n the second term in « becomes

n

. i, 1
~large. Since the bound on O(H) is not available it is not

worth while to compute the optimal n, but practically n should
i .

bg takenias a value for which

s stati#nary when one computes by, and

;

———— te e ke s s e

K# zj(n +.1)

B

&

is statibnary when one computes bj+1'
If ihe constant clml is small, then the second term in an,
is largefunless g€ 1is suffigiently small. Therefore, it is
difficuli to compute resonance with small Laurent coefficients
(couplini coefficients) in fromt of the singular terms
(k - kj)fm. All fhese arguments are simple but they clearly show
the natu;e of the difficnlties for which noise is responsible and
the limi%ations of any method of resonances extraction from noisy

Ve éssumed'that the scatterer was convex. This assumption
‘implies &he basic result: the validity of Equation 35. In the
outstand?ng paper (Ref. 6) it is proved that for the scatterer
consisting of two strictly convex reflecting bodies (Eq. 35) does
not holdé there exists countably many poles kj on some line
Imk % co?st. Therefore, one cannot order the poles by the rule

IImkjl <1|Imkj+1l in the case of two disjoint convex reflecting

bodies. fIf the scatterer is just one strictly convex reflecting

25
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body then

35 (Ref. ).

it is known that |Imki| > 4+ as j > o and Equation

v

3. A BRIEF REVIEW OF THE EXISTING METHODS FOR THE RESONANCES
EXTRACTION |
The post popular is Prony's method (Refs. 8 and 15). One
L N st v
| = = . J, = -ik., s = t.
assumes that u #(t) jgi cj e s 1kJ ©; const Qne
observes |u(t) experimentally and wants to compute S5 and cje

If the dalta are exact (there is no noise) then the Prony’s method

consists {n the following. Let f_ = u(ah)

N
n
1 J = = . .
fixed num+er, e = oz, Then Z cjzj, £0

linear algebra argument shows that

a where h > 0 is a

s h
An obvious

det A(® = 9, n) o0, 0 <p,

Pq
q <N, whjre A%g) = fp+m"A§g) = zg. 0 {p<N, 1¢gq¢&N,
Therefore
iN
0 = ﬁi foim Apr m 20 o (45)
=0

where Ap1

are the cofactors corresponding to the elements f

p+m
of the mawrix A(m). Notice that Ap do not depend on m.
' pPq

Write N # 1 Equations 45 taking m =0,1,...N, and find a
nontrivial solution (AO.AI.H.,AN) to the N + 1 simultaneous
Equations|{45. Consider the equation

N |

) Aga? = 0 ,  (46)

p=0 7} ’
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From the structure of the matrix A(O) it is clear that Equation
P4 ‘

i

\ s h
46 has sodlutions z;=e J.. Thus, $; = a1 Enzj. If one does

not know jthe number N (and this is usually the case in

practice) then there is a problem of choosing the right N. In

Referenc% 14, p. 140, thére is a method (due to Kuhnen) for
choosingi N. If the data are noisy then one faces difficulties
explaine4 in Section II and reported in the literature (Ref. 8).
If the d?ta are noisy then the matrix £p+m, 0 {p, m N is
nonsingu*ar and system (45) with O { m ( N has only the trivial
i
solutionjf Ap =0 which can not be used since Equation 46 in
this cas% gives no information. Therefore, in practice one takes

as Ap, % £ p £ N the components of an eigenvector corresponding

to the mﬂnimal eigenvalue of the matrix F*F. Here F* is the

i

=

adjoint ﬂatrix, and F is the matrix of the noisy data, Fp+m

i

feom * sé+m. where €p+m is noise. If there are several
eigenvec&ors corresponding to the miniqal eigenvalnue, one has no
rule to ;ick up any particular eigenvector. But this situation
is not g%neric in the sense that a small perturbation of the
matrix will split up the multiple eigenvalue into a number of’
simple o;es. However the simple eigenvalues will be close to

each oth‘r and it will be difficnlt to find the minimal
! »

i

w

eigenvalLe numerically. (Recall that an eigenvalue is called
simple i; there is only one linearly independent eigenvector
correspo‘ding to thi: eigenvalue). An extensive bibliography and
a discus%ion of Prony's method one can find in Reference 8. The
Bruns me%hod described in querenne 14 is essentially the Prony
method f%r real resonances,

)
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Let jus outline another method for extracting the resonances.

Let |

and N  is assumed known. Then
, N s t
e(aley = E cjsme I,
[ .
i=1

Taking } =0 and m= 0,,..N,... one obtains

£CO) {1 ..... 1 ‘ £ 1 1
f'(o) 1‘ 31 SN = O) 8 s0ccscesoernoe = o;oon
, (N+1) N N
e00scsctinsescsccarnse f Sl SN (47)
(N) N N
f ca s, Sy
Therefore|
i
N
2} PN0A, = 0, m = 0,1,2... (48)

Here Ap‘ is the cofactor corresponding to the element £(P)(0)

in the fiirst matrix in Equation 47, This argument above is

similar fo that given previously, and ' £(®*P)(0) plays the role of

fm#y Tafking m=0,1...N in Equation 48 one obtains a

homogene;ns system of linear egquations. If AO,H.AN
is a solqtion to this system then the N roots of Equation 46
3.2 are ﬂ'ual to ;5. 1 ¢ j &N This gives a method of

extractinlg the resonances sj from the exact transient data. It

2.8,
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0, one hps u(t) =

is inter%sting fhat only the data near t =0 .is used in this
procedur%, while the procedure in Section III.2 needs the data
at large: t. On the other hand, the_p¥ocednre based on Equation
48 is se&sitive to the noise in the data because one needs

to diffe#entiate the data.
Ve @ssumed that the number N of resonances was

known. tf N is not known, then one cam find N as the

smallest number for which det fp+ﬁ =0, 0. p, m { N,

Theisimple algorithm in Sectionm II requires that

by < b,y ( by ... . In practice the poles a; - ibj occur in

{
pairs iyj - ibj and the measured transient field is a real-~
i

valued flunction. Assuming that the poles are simple, i.e. mj =

b t
- , N+1
c; exp( bjt)cos(ajt + ¢J) + 0(e ) as

IINAZ

; j=1
t > +o, fTherefore for large t one obtains u(t) =
i

-b t ,
-2 ), t » +®, If the values wu. =

cq exp(—Plt)cos(alt + ¢q) +0(e a

u(nh) ate measured, then the valaues €y, by, a; and $1, 0 < ¢4
{ 2m, ca% be numerically obtained from the requirement

1
i

!  npim
F(C&,b1,31,¢1) = 2
i n= no

B

clgexp(-blhn)cos(alhn + 91) - uw, 2 = min (49)

Here no§ is a large number such that exp(—blhno) >> exp(-byhny),
m > 4 ﬁs a fixed number, and the function F(cl,bl,a1,¢1) is

to be mi*imized numerically. If this minimization problem is

i

solved ine can consider wy u(t) - uwy(t), where uy(t) =

: 29




cq1 exp(—bq

‘02; bz, 82‘

t)cos(agt + $1) and apply the same procedure for finding

> 99 Each step requires minimization of a function of

four varihbles only. The basic new idea in this method is to use

the asympt

lotic behavior as t -+ +® of the transient field. One

should have in mind that the basic asymptotic SEM expansion (Eq. 35)

is proved |
star—shapd

consists o

d) . It does not hold, for example, when the scatterer

if two convex obstacles. In this case there exists

infinitely many poles kj. such that |k, - icg - ﬂdgll £

c(1 + Ijl*
d is the 
on the prﬂ
Iy ama T

82 4 rz, s|

J

“1/2 oy all large j, j = tig, £(jg +1),... . Here

distance between the two obstacles, ¢o depends on d,

%cipal curvatures, and principal directions of the surfaces

2 of the two obstacles at the points sy e I'y and

hch that |31 - 32| = d, This remarkable result was

proven recdently in Reference 5.

4. BIBLI

DG RAPHICAL REMARKS.

Of thie older references oniy Prony’'s paper (Ref. 15) is

of ten menﬁ
of this g |
the same ij
Theré are

in detecti

ioned by the modern authors. There is a translation

per in Reference 8. Bruns (Ref. 16) used practically

dea as Prony. His work is discussed in Reference 14.

Iseveral authors, mostly astronomers, which were interested

on of hidden periodicities (Refs. 16 through 21).

Although 6n1y the case m; = 0, b. =0 was discussed in these

J

papers, the basic questions (extracting the resonances from

the transi

were actua

ent field, determining the number N of resonances etc.)

11y identical with the questions discussed in a very

30

only if the scatterer is convex (Ref. 1) (or, more generally,




recent réview (Ref. 8) of the state of art in this f1e1d Papers
(Refs. 16 through 21) are not cited by modern western authors in the
field. @ne can find review of these papers in Reference 14.
i

An %xtensive modern literature exists on the extracting of
resonanc%s. One can find a large bibliography and a review of
;he basié results in Refetence 8. We did not discuss here some
of the methods mentioned in Reference 8.

|

Theﬁe are many reasons for being interested in the

t

extractxqg of Tesonances. Ve ment1on only two major theories:
szngular*ty expansion method (see Refs., 2, 22 and 10) for the
mathematqcal results) and systems 1dentif1cation (see the

b1b11ogr4phy in Ref. 8).
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APPENDIX A

: PERTURBATION OF RESONANCES
|

1.  ABSTRACT SCHEME
FirsL let us present an abstract scheme. Assume that a

compact oﬁerator function A(k) on a Hilbert space H is

analyticsin k in a domain on the complex planme Kk, and A(ko)
has an ei%envalne =1, Then ‘(I + AGRND™Y  pas a pole at &k =
kOf Suppg¢se that A(k,e) is a compact operator function such
that A(kjLO0) = A(k), which is analytic in k and e, lx - ko' <
59 fel <y81. Assume that kg is an isolated pole of i + A(k).
(This is fhe case if I + A(k) is invertible for at least one k

in the diisk |x - kol { 8g). Then, in a neighborhood of kg

) i

there exiLt a finite number my of points kj(e) = kg +

Y} enp m/p, 1 <$j<ijgr such that the operator (I + A(k,e))” %

m=1 }; |
has poles| k(s). Here jo is the multiplicity of the pole kg,

It
which is rased on the idea in Reference 2, p. 582.
!

and the m+aning of the integer p 'will be explained in the proof
Let | ¢1+.0e0; be an orthonormal basis of N(I + A(ky))

‘where NGk) is the null space of an operator A, Let Wl,u.wn

be an orthonormal basis of N(I + A*(kgy)), where the star denotes

n
the adjoimt operator. Let Th = Z (h.¢j)¢j. The operator I +

A(kyg) + T| is invertible in A, Jf:deed, (I + A(ky) + T)h = 0
implies }hat (Th,wj) =0, 1 ¢ j {n This leads to (h.¢j) =0,
1 {j ¢ ice. Th =0, and (I + A(kg))h = 0.. Thus h ¢

.N(I + A(kp)) and h 1 N(T + A(ky)). Therefore ‘h = 0, and by

Fredholm’p alternative (I + A(k,) + TVl =T is bounded.

Consider| (I + A(k,e))™1 = (I + A(kg) + T + A(k,s) - Alkg) - )" 1=

34
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= (I + a(k,e)™1. T(k,e), where I(k,e) = (I + Alkg) + T +

A(k,e) - Alkg))™1 is analytic in k and & in a neighborhood A
¥ . .

of (kg,0), and a(k,e) =

-I'(k,e)T is a finite—dimensional

‘ ‘ ‘ n
operator }nalytic in k and e 1in A, ah = -2 (h.¢j)P(k.s)wj.
: 21 _

; ' i=
Since F(ﬁ,s) is an isomorphism of H onto H for k,e e A,

the eleme*ts wj(k,s) = *F(k,a)wj are linearly independent and

analytic {n k,s8 & A. Therefore the operator (I + a(k,e))”!

can be contrncted explicitly. If (I + a)h = f, then h +

jgih5¢j(kﬁe) = f, hj = (h,¢j). Multiply by ¢, to obtain h, +
b

3

jglcmjhj =g= fgo where fp = (£,04), opj = (b (k.e),0p), op; are
. dp(k,e)

analytic %n k,e ¢ A. Thus, h = PTER where d =~ and 4 =

det(&mj +¥c ;) are analytic in A. One has (I + a(k,e))"1¢= ¢ -

18
7 2

j=1

poles of ?(I + a(k,e))"! can occur only at the zeros of d(k,e).

d;(k,e) ¥;(k,e). From this formula it is clear that the

Thus the 4quation for the perturbed poles is

a(x,d)

f(k.s?

For e = @ the function

det 8, - (T(k,e)¥;,¢,)] = 0,

(I + T + A(k,e)”1 (A1)

d(k) = d(k,0) has, by assumption, a

zero of méltiplicity jo- By the Weierstrass' preparation

i

3
theorem (pee e.g. Ref. 2, p. 583) one has d(k,e) = [k 0 +

jozt 4.
02 cj(s)ﬁqls(k.e) where
i=1 ;

iv

g(0,0) # 0, cj(O) =0, ¢j and g(k,e)
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are holom¢rphic functions.

equivalenﬂ

k 0 “t' cj(S)k.j = 0
1

This equaﬂjon has j,

several g

group can§

m |
/pvl

amj -4

! 2 p, =
v

Therefore Equation (Al) is

L to

o1
(A2)

J=

roots. These roots can be divided into

oups so that the p foots (kl(s),”.kp (e)) in  v-th

be expanded in a Puiseux series

N1 8

kj(e) = ko + .
j=1

jg- The number of groups and the integers P,

can be co%puted by the algorithm known as Newton's diagram method

(Ref. 23).3 Let us summarize our arguments: a method for
compnting}the poles kj(e) of the perturbed operator

(I + A(k.a»)_l is given. The method is valid under the
following assumptions: A(k,s) is a compact analytic in k and
€ linearioperator function on a Hilbert space, the operator

(I + A(k,O”)—1 ‘has an isolated pole at &k = kg. To use the
method co}vutationally one needs to compﬁte (or to know) the
bases in jie subspaces N(I + A(kgy)) and N(I + A*(kg)). This

is a linealr algebra problem.

2. REDUdeON'OF A CONCRETE PERTURBATION PROBLEM TO THE ABSTRACT

ONE.

Suppol

se that the surface ' of the obstacle is perturbed.

Let x; =3xj(u.v), 1 (j<3 be aparametric equation of I', and

xj(n,z

v) + eyj(n.v) be the equation of the perturbed surface

g

where r

is a smell parameter. Assume that the funmctions

X5

and Y ﬁ‘i i£3, u,vesSz{u,vi0<u v £1} are smooth.
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Considergequation (8) in sectiomn 1. Assume that ko is a pole
of the &perator (I + A(x))"1, Suppose that the bases of the
subspacels N(I + A(kg)) and N(I + A*(kgp)) are computed.

Considergthe problem corresponding to the perturbed surface Te.

The operator A(k,e), associated with this problem, is of the

; d g ‘ ’
form fgg 2 {ﬁ:;hds = IS A(u,v,u’,v',k,e)hdu’dv + Here

A(u.v.u'%ﬁ',k,e) is the kermel of the integral operator in the

variables wu,v,u',v'. If e = 0 then Fe =T and we assume

that th%ksets {¢j] ({wj}), 1 <j<&n of all linearly

independ%nt solutions of the equation ¢ +

fs A(u,Vﬁu'.V'-k0.0)¢du’dY~' = 0 (\P + fs A(n';v’,u, V.kO.O)‘Pdu'dv'
= 0) isgknown. Then the abstract scheme is applicable.

Sin%e small perturbations of the kernel cause small

§

t

perturbajtions of the poles, one can approximate the kernel A by

i

a degeneﬁate,kernel and consider the corresponding matrix

problem.’

As }n example consider a simple case when the matrix is

2x2. Let
i
it ek by £
e 1 by £, .
| . nk 1 ~
Then the inverse matrix is 1 ~e"% | ———_—— -, It

!
) —e"k 1
i

i
has simple poles ky = im, m =0, +1,... . Consider, for

example&;pole kg = 0. The set ‘(¢j} corresponding to this pole

is the s?t of linearly independent solutions to the equation
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feq +cyi=0 Thus, there exists onelinearly independent
icl + ¢yl = 0.
solution f¢1 = -11. In our example the matrix 1 | ok is
1 e Mk 1
se1fadjoqnt for k = 0. Thus vy, - 61 = [-1) . comsider the
G
Perfurbémbmatrix 1 + 3311' : e“k + 3#12 . The poles of this

e”k + sazi 1 + g8ag9

oot p—

matrix arle the roots of the‘eéuation (1 + sayq4)(1 + gagy) -

(eTk 4 sal,) (e™k + €ay3) = 0. We are interested in the root

k(e) suwP th;t k(g) > 0 as &> 0. One has 1 - 027k

elegy + spy = e™lag; + a1 + s2(ag5m5; = 233057 = 0. Let

2nk _ la : : ‘ ,
T Bif11 %t a3 = 8, agy ¥ apy = b, 2332875 - a3p8y; = oo

, A ‘ .
Then %2 4 z6b - 1 - ga - e2c =0, z(e) = - 5{ +

e 2p2 s n .
i + 1 + €a + g%c V1 + 5 (a - b). The plus sign in

front of the radical is chosen because z = 1 if k =0, Thus,

~in this e*ample the perturbed pole ko =0 can be compﬁted for'

1 -
small 8| as k(g) = = Ln z(g) = ———uu—l2l
LS 2n

values of a and b  the perturbed pole can move in any

. Depending on the

directiog. If a =1b then k(s) = 0(e). If a=b then
k(e) = 0(‘2). The bifurcation theory and the Newton diagram

! .
method sofl ve the following problem. Given an equation F(k,¢) =

0 find ifts solutions k(e) such that k(g - 0 as e > C. It

is assum:ﬁ that F(0,0) = 0. If Fy(0,0) = 0 then the solution

is well Kkinown and is given by the ;tindard implicit function

theorem:. | If Fk(0,0) = 0 then the solution is more complicated.
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Method% and algorithms for solving this problem can be found in

RefereﬁLe 23.
t
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‘ '~ APPENDIX B

! . : o i
METHODS OF CALCULATING THE ZEROS FOR ANALYTIC FUNCTIONS
|

1,; Abrief review of the known methods of calculating the
zeros f&t smooth fnnctions. Some methods for finding zeros of
smooth *unctzons are described in References Bl through B3. They
include!Newton s method, various modifications of this method,
and som‘ methods used in computational pricticekbut not well

underst?od theoretically in the sense that convergence of these

methods}is not proved and theoretical estimates of the rate of

convergpnce are not obtained. Among these methods we mention
Muller'f method. and Wegstein’s method (Ref. Bl). Newton's method
was disgussed in dozems of papers and books. There are some

modificgtions of this method which converge globally and not only

in'a nejghborhood of the zeros (Refs. B2, B4, and BS5),

2.; In Reference B6 a method for calculating zeros of

analytig¢ functions is suggested. The method is based om the

formula.

1_ £'(z) RV -

m Jo Tt s(was § #(z;) (B1)
where 3; are the zeros of f(z) which lie inside the domain A

on the qpmplex plane z with boundary C, f and ¢ are
anilytih functions of 2z in A. If ome takes ¢(z) = @,
m = 0,14&. then Equation Bl yields

: N '
i 1 : f'(z) m., - m =
a7t Jo TEGy Ter s Lef w0 (82)

ey
1
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provided 'that there are N zeros?(coun;ing their multiplica=

tions) of! f£(z) ia A. If one computes the numbers .

then EquationB2 is a system of nonl inear equations for the

unknown rjpots z5s 1 < j £ r. Among the roots in Equation B2

some can be equal to each other. Let zj

mul tiplidity r; so that 25 = z; if j = i. Then Equation B2

be a root of

can be wrlitten as

by

m
' T.Z,
m : j=1 j J

("
1]

(B3)

where ré
ro|
N )

j=1 "

in Equation B3 demotes the number of different roots,

It iﬁ now clear that the unknown quantities are the

multipliiities rj, the different roots "z and the number r.

j*
The diffi%ulty in the numerical solutionm to Equation B3 is to
discrimingte between two close roots and orne multiple root.

Suppose o?e wishes to find the roots in the domain A-N.N =

(-N < x {N,-b {y<O0}, x+ iy= 2., Computing integral Jo

with Cnt where C, is the boundary of A-N,n =

{-N<x {nh,-b {y 0} hn=NN=-1,..., where h > 0 is a
discretizption parameter, one can locate the rectangle

{nh < x ii(n + 1)h,-b { y £ 0} in which a zero of f(z) lie} by
the jump of the quantity Jo(h) provided that in this rectangle
there is pnly one root possibly multipleQ By this scanning
procedure which can be used in the y v;riable as well, one can

isolate tdhe roots in the rectangles {nln £ x £ (nl + 1)k,
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i

;
1
{

i
i

n, <y ié(nz + 1)h}. This requires many computations, but the
cohputations are of the same type: one computes the integral in

t
the left*hand side of Equation B2 along various rectangles.

3. E The general methods for solving equation f(x) = 0 do
‘not use ?nalyticity of - f(x) (Newton's method, various
relaxati?n me thods, e.g. the stoepest descend method etc¢.) and

therefor* are not discussed here (see Refs. B2 through BS).
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