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Abstract

Single input, single output system identification techniques are extended
to the single input, multiple output case. The extension makes possible
the investigation of complex resonances of scatterers from output data at
multiple spatial locations. An example is included involving acoustic¢
scattering from a hard sphere. A model is proposed us1n% a state-space
formalism that takes into account the constraint that pole pos1t1on is
invariant with observation point.
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I. INTRODUCTION

Identification of a system involves the extraction of information
from input-output data obtained in an experiment. The techniques are
rooted in early studies in economics (Ref. 1) and have matured in modern
control theory (Ref. 2). Parametric identification is a subclass of
system identification where the information concerning the system is
obtained in the form of a set of parameters. Such a set, for example,
could be the poles and zeros describing the system in the frequency domain.

Identification of an electromagnetic system is a concept that has only
recently begun to surface in the electromagnetic'journa1s. The subject
received its impetus from two investigations. The first was the research
of Marin (Ref. 3) who, although not concerned with system ide%tification,
showed that the electromagnetic scattering from a large class of conducting
scatterers is a meromorphic function of frequency. The second was the
modal study by Baum (Ref. 4), who formulated the Singularity Expansion
Method (SEM) for the formal study of body resonances. These two papers
gave rise to the resurrection of Prony's method (Refs. 5,6), a method for

fitting data with a compiex exponential series. Subsequently, Dudley

(Ref. 7) showed that Prony's method is a special case of pole-zero parametric

identification. In addition, he showed that there are serious bias problems
in the identification of parameters caused by the il11-posed nature of the
problem.

Recently, Dudley (Ref. 8) has shown that the electromagnetic modeling
problem can be fitted into the larger framework of identification proposed
by Ljung (Ref. 9). Ljung uses a generalized linear model with generalized

error norm minimizations. Subsequently, Dudley and Goodman (Ref. 10)




have reported results using a nonlinear least squares algorithm (NLS)
constructed by Goodman (Ref. 11) and based on the output error model
(Ref. 8). |

To date, emphasis in electromagnetic identification has been on a
single aspect angle, primarily backscatter. Baum (Ref. 4), however, has
shown that the complex resonances of a body are aspect angle independent.
It has been conjectured that identification using multiple aspect angles
can improve the ability to identify body resonances in the presence of
noise.

In this paper, we consider multiple aspect angle identification.
We begin with a review of the difference equation model for single-input,
single-output (SISO) systems and show its extension to the single-input,
multiple output (SIMO) case. We next use the NLS algorithm éo study the
SIMO case for a canonical structure. For the structure, we choose scalar
scattering (acoustic case) from a sphere with Neumann boundary conditions.
Finally, we develop a state-space formulation for electromagnetfc scatter-
ing, incorporating the aspect-independent characteristics of the poles.
For future work, we propose critical testing of the state-space formulation
with both synthetic data and data obtained from a transient electromagnetic

range.




II. THE DIFFERENCE EQUATION MODEL
Consider a SISO system with data sampled at a uniform sample rate T.
Such a system can be modeled (Ref. 8) by the difference equation
Ay(t) = Bu(t) (1)

where y(t) and u(t) are the output and input data, respectively, from the
model at the tth time step and where A and B are time-stepping polynomials

with, typically,

N
Aq”) = 1 a.q™" | (2)

‘where
q y(t) = y(t-1) (3)

For convenience, the time steps have been normalized to unity. The utility
of the model described by Eq. 1 is that the delta function response of the

model h(t) is the complex exponential series (Ref. 8)

N Snt

h() = ] Ry (4)

where Sh and Rn are, respectively, the poles and residues of the model. In
Eq. 1, if we replace the output from the model }(t) with the output from the

electromagnetic process y(t), we obtain
Ay(t) = Bu(t) + v(t) (5)

where v(t) is an error temm arising from noise in the process output and

from any inadequacy in the model.
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The formulation in Eq. 5, called "equation error model," is usefyl

in obtaining initial values of the parameters in A and B. Indeed, a

least-squares minimization of the error v(t) leads to the so-called

"normal equations" of Teast squares, the solution of which follows

standard procedures (Ref. 7). The algorithm NLS (Ref. 11) uses the

values of the parameters so obtained as initial values for identification
in the output error model

y(t) = Bue) + e(e) (6)

where e(t) is the output error. The minimization of the Euclidean norm
of this error results in a NLS problem solved by descent methods.

The generalization of Eq. 6 to the SIMO case is immediate. Let ‘
ui(t) be the input at the iCtP spatial location. Let yj(t) be the output
at the jth spatial location. (Note that for backscatter, i = j). Then,
Eq. 6 becomes

. ij o, .
i) = Bz i) + My
A

Note that, if there are I transmit Tocations and J receive locations,
there will be IJ difference equations describing the experiment.

There remains, however, a serious Timitation to the formulation in
Eq. 7. Nowhere in the formulation is there contained the constraint that
the poles are aspect-independent. Indeed, the solution to Eq. 7 is
s

s N . s
n=1

whereas what is required is




.. N .. S t :
h'i(e) = § R @ (9)
n=1
We shall next examine the use of £q. 7 for the case of the acoustic
sphere. We first briefly describe the forward problem for the sphere and

then follow with some identification results using the NLS algorithm.




ITI. THE ACOUSTIC SPHERE, THEORY

In this section, we give the well-known Mie-series formulation (Ref. 12)

for the scattering from an acoustic sphere with Neumann boundary conditions.

The formulation will be used to provide data for the identification algorithm.

Consider a sphere of radius 2 located at the origin of a spherical
coordinate system (Fig. 1). We excite the sphere with a plane wave traveling
in the negative z-direction. The problem is rotationally symmetric about
z and, therefore, has no ¢ - dependence. For this case, the velocity

potential V(r,6,u) can be decomposed into its incident V; and scattered

Vs components, viz:

V = Vi + VS . (10)
where
V.(r,8,0) = 'Krcose . E (2n+1)i"j_(kr) P_ (coss) (1)
i : n=o n n
and
® i+ (ka)
Vo(r,8,w) = § -(2n+1)i" i h<§> (kr) Pn(cos 8) (12)
S n=0 hiy '(ka)

In Egs. 11 and 12,jn is the spherical Bessel function of order n, Pn is
the Legendre function of order n, h(ﬁ) is the spherical Hankel function of
second kind and order n, and k is the wave number. To produce the formula-

tion in Eqs. 10 to 12, we have assumed the boundary condition

[}
o

HdF (V1'+Vs) (13)

r=a




Plane Wave Source

Observer

Scattered
Field

Figure 1. Plane wave interaction with.a hard acoustic sphere.
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The identification procedure, to be discussed in the next section,
requires input and output data in the time domain. The input data is
obtained by selecting a pulse u(t) with Fourier transform U(w). The output

data y(t) is obtained by multiplying the scattered field in Eq. 12 by U(w)

and taking the inverse transform, viz:

.Yj(t) = ?11; J’:, U(Pi,ei,m)vs(r‘j,ej,w) e'lmt dw (14)

where we have explicitly shown the dependence of both input and output on
spatial location. We have performed the inverse transform indicated in

Eq.14 numerically using Filon's method (Ref. 13).

11




IV. THE ACOUSTIC. SPHERE, IDENTIFICATION (:)

In the ideﬁtification process to be described in this section, we
consider the SIMO case. In al] cases, the input will be a plane wave
incident in the negative z-direction and the outputs will be the scattered
field at different locations around the sphere. We select an input-
output pair and identify the coefficients in the A and B polynomials
in the output error model (Eq.ls) using the algorithm NLS. We next
transform the coefficients (Refs. 7,8) into poles and residues. We then
repeat the procedure for another input-output pair. We shall be comparing

the poles so obtained with theoretical poles, produced by solving the

equation

hr(f)'(ka) =0, n=0,1, ... asy O

These pole locations are well-known and have been included in Fig. 2.
In all, we shall include identification of a sphere of unit radius where

the output is measured at r = 10 m and ¢ = 0, 15, 30, 45, 60, and 90
deg.

1. INPUT SELECTION

We choose for the input signal u(t) the time-limited pulse

( t<0
u(t) = { cos2r (150)t sin® 350t 0 < t < U ~ (16)
L t> 355 |
We display the pulse in Fig. 3 and its Fourier transform in Fig. 4. We

have chosen the pulse form so that its frequency spectrum is that of a

12
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bandpass filter. The center frequency of the passband has been adjusted to (:)
coincide with the frequency of the n = 3 pole (152.5 Hz) in the first layer

(Fig. 2). The bu1se energy falls off either side of the n = 3 pole so

that a relatively small number of poles on the first layer are in the pass-

band. (The relatively high attenuation of the poles on successive higher

layers makes them a small contributor to the pulse waveform.) The principle

here is that the smaller the numbervof pales in the passband, the smaller

the model order necessary in the identification. In usual cases, the

smaller the model order, the better the results of the identification.

2. TYPICAL IDENTIFICATION SEQUENCE
In the identification sequence, all signal processing operations are
carried out using the interactive signal processing algorithm SIG (Ref. 14).
The identification of the coefficients in the output error model is then (:)
performed using NLS. Finally, the partial fraction expansion and jdentifi-
cation of the poles and residues are obtained through use of the algorithm
PARTIA, written by D. M. Goodman at Lawrence Livermore National Laboratory, i
but as yet unpublished.
Figure 5 is the scattered field measured at r = 10 mand 5 = Q
deg. The Fourier transform (Fig. 6) clearly indicates the presence
of poles in the passband. The first step in the identification sequence
is to Towpass filter the input and output data and then decimate the data
down near to, but higher than, the Nyquist rate. We filter at 300 Hz
with an Sth order Butterworth filter and then decimate the 1000 points in
the input and output to 200 points. Figures 7 and 8 show, respectively,
the input pulse after filtering and decimating. Figures 9 and 10 show the

same operations on the scattered field. (:)

16
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Input u(t), filtered and decimated to 200 points.
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Output y(t), filtered at 300 Hz, decimated
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The fi]te(ed and decimated input and output are used as drivers of the
identification algorithm NLS. We select a 40th order model, run NLS
and PARTIA and aobtain the results for the poles in Fig. 11, where we
compare the identified poles (x) with the first layer theoretical poles
(+). The numbers on the plots close to the identified poles are indicative

of the identified residues.

3. IDENTIFICATION RESULTS

In Figs. 11 through 16, we give, respectively, the results of the
identification procedure at r = 10 m and for ¢ = Q, 15, 30, 45, 60,
and 90 deg. In all cases, we have used a goth order model except at
90 deg (Fig. 16). Note that at 90 deg, symmetry considerations elimi-
nate half the theoretical poles so that we are able to cut our model
order in half.

The results displayed are the product of mény multiple runs of NLS
at each angle. Even so, the match of the identified poles to the theoretical
poles is quite uneven from angle to angle. Perhaps the best results are
at ¢ = 60 deg, where the d.c. pole and the first four poles on the first
layer have been identified quite closely. It is emphasized that in these
cases, we knew the theoretical pole positions and, therefcre, were selective
in our choice of the "best" in a series of multiple runs at each angle. In
addition, we emphasize that closeness of the theoretical scattered field
waveform to the waveform produced by running the input through the identi-
fied model cannot be correlated with the closeness of the identified poles
to their theoretical counterpart. From another point of view, the size of

the final error in the error minimization procedure in NLS is not an

~ indicator of the closeness of the results in the pole positions.

23
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There are two principal difficulties in the identification procedure (:)

described above. First, it is well known that the pole series does not
completely describe the scattered field from the sphere (Ref. 15), Indeed,
there is an entire function contribution that comprises a sizable portion

of the scattered field waveform. The pole-residue model is, therefore,
incomplete and, in effect, the entire function contribution is being modeled

as a part of the pole series. This difficulty will be discussed more completely
in the next section. Second, there is no constraint in the identification
algorithm that introduces the fact that the poles are aspect invariant. Each
angle has been treated as a separate identification problem by the NLS

algorithm. This difficulty will be discussed and overcome in the next

section.
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V. A STATE-SPACE FORMULATION

Marin (Ref. 3) has shown that the electromagnetic scattering from a
perfectly conducting obstacle of finite extent is, with certain mathematical
restrictions, a meromorphic function of frequency. His work provides a
formal statement of the basic principles underlying the SEM (Ref. 4).

Based on Marin's result and the Mittag-Leffler theorem, the scattered fields
can be expressed formally in the frequency domain by an expansion over the
poles of the meromorphic function plus an entire function (Ref. 15). The
pole expansion yields the complex body resonances of the scatterer, while
the entire function yields, through the inverse Laplace or Fourier transform,
a time-limited response that comprises a portion of the early time scatter-
ing signature.

To date, parametric descriptions of conducting scatterers have included
only the complex resonance portion of the scattering, neglecting the entire
function contribution. In addition, all these descriptions are for the
SISO case, thereby neglecting the spatial aspect invariance of the complex
resonances. Such was the case in the acoustic spere identification described
in the previous section.

In this section, we give a realization of the scattering problem in
state-space form. For the SISO case, the canonical companion matrix
description (Ref. 16) is selected so that the aspect-independent pole
contribution is separated from the aspect-dependent zeros, the former occurring
in the state equation and the latteroccurring in the output equation. We
next generalize the description to the SIMO case by changing the vector
containing the zeros to a matrix whose rows are the zeros for each output

spatial location. We then discuss the entire function and conclude with

31




Some comments on the uses and limitations of the formulation. We particularly (:)

emphasize the need for a more physical parametrization of the entire function.

1. SCATTERING THEORY

Consider the classic solution to the scattering problem for a perfectly
conducting obstacle with compact support, given by the magnetic field
integral equation (MFIE). In this section, lower case quantities denote
functions of time, while upper case quantities denote, through the Laplace
transform, functions of complex frequency s = ¢ + iw. A current source
Jd(r,t) radiates in the presence of the obstacle with surface S and pro-
duces a magnetic field h(r,t) at the point P(r). Herein, in the spirit.
of linear system theory, it is assumed that the temporal portion of the

current is given by the delta function, viz:
d(r,t) = g(r)s(t) (17)

SO that the resulting fields [gé(g,t),gé(g,t)] at any given observation
point P(r) comprise the delta function response of the electromagnetic
system. Let‘gia(ﬁ,t) be the magnetic field in the absence of the scatter-
ing obstacle. Define the scattered field ﬁé(g,t) to be the difference

between the total magnetic field h® and the incident field ﬂf, viz:
. L e
hlrst) = h&(r,t) - h(r,t) (18)
The Laplace transform of Eq. 18 yields
(r,s) = H(r,s) - H.(r,s) (19)

where it is well-known (Ref. 17) that the incident and scattered magnetic

fields are given by
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and ¥ is the free space Green's function given by

exp(-sir-r'|/c) (22)

! =
¥(r,r',s) brlr -1

In the usual manner, unprimed and primed spatial coordinates refer to
observation and source (real or induced) points, respectively. The final
step in the resolution of the scattering problem involves the determination
of the tangential magnetic field over the surface of the scatterer. This
step can be accomplished by solution to the magnetic field integral equa-
tion (Ref. 17)

Ki(rs) = 2 K(r,s) [ RIS X vers)] a8 (res) (23)
S

where the integral is principal value and

= 0 x H, (24)

=<

i
K=nxH (25)
In operator notations, Eq. 23 can be written

where I is the identity operator and L is the surface integral operator.
the solution to the integral equation, normally carried out by numerical

means, yields the surface current K, viz:

K= (z1-07 .k, (27)
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Once the surface current K is determined, the result is substituted into
£q. 21 to give thg scattered field. The incident field is given directly
by Eq. 20 and the additive combination of incident and scattered field
yields the total field H(r,s) at point P in the complex frequency domain.
The problem is completed by multiplying this result by the spectrum st)
of the incident temporal pulse f(t), followed by the inverse Laplace

transform, viz:

1

h(r,t) = mjs H(r,s) F(s)e’"ds (28)
r

2. THE MEROMORPHIC FORMALISM

Marin (Ref. 3) has shown that, with certain mild mathematica] restfic-
tions on the shape of the scattering surface, the scattering problem
described above has the following properties:

1. The operator inverse (%1-5)'1 is an analytic operator-valued
function of complex frequency s except at a countable set of points
where it has poles. |

2. The surface current K over S is a meromorphic function of complex
frequency. This property is based on the fact thatlﬁi is an entire

function of s.

3. The scattered fields (E ,ﬂs) are meromorphic functions of freguency.

—S

In addition to these properties, it has been speculated that the poles
predicted by the meromorphic property are simple, but this item remains
without proof.

The meromorphic property admits to an expansion of the fields by the
Mittag-Leffler theorem (Ref. 18) in a form comprising one of the corner-
stones of the Singularity Expansion Method. For the scattered magnetic

field, assuming simple poles, we obtain (Ref. 15)
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H(r,s) = Ly Sos 7 &(r,s) (29)

where the summation is the Heaviside expansion over simple poles and ¢

is an entire function. Note that the vector residues Bk and the entire func-
tion are functions of both position and complex frequency s, whereas the
natural frequencies Sy are aspect independent. Note also that ﬂs(;,s)

is a system transfer function in the sense that it is the Laplace transform
of the scattered magnetic field responding to the temporal delta function.
The inverse Laplace transform yields the delta function response

t

ﬁ(r t) = E R (r)esk + ¢(r,t) (30)
= k=] <~ ==

h
which completes the meromorphic formalism.

3. THE SISO ELECTROMAGNETIC SYSTEM
In the SISO case, consider an electromagnetic source U(s) radiating
one component of linear polarization and producing a response Y(s) at
a fixed spatial location P(r). The response Y(s) can be any component
of electric or magnetic field. From £q. 29, the system transfer function

T(s) is given by the scalar equation

® R
T(s) = b4 = L s_’;k + o(s) (31)
= T (s) + o(s) + r(s) (32)
where
n R
- k
T,(s) = o ;1:;; (33)
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and where I'(s) is the error in truncating the Heaviside expansion after (:)
n terms. In practice, the error can be made small by filtering the input

and output to produce bandlimited data. Indeed, in many cases, the filtering
operation is a natural one supplied by the finite bandwidth of the input

and/or measuring system. The truncated Heaviside expansion can be put in

rational form by gathering all n terms Over a.common demnominator, viz:

n=1
b, s
T (s) = 539——5—-
n n K
) 2,5
k=0
Therefore, if the error I'(s) is made small by filtering, the system transfer
function T(s) is given by the sum of a rational function and an entire (:)
function. ‘
" Efforts in the parametric inverse problem in transient electromagnetic
scattering have to date been concerned with the rational portion Tn(s)
of the system transfer function (Refs. 6,7,8), ignoring the contribution
of the entire function to the system transfer function. If the entire
functiqn is neglected the SISO can be represented by. an nth order differential
equation or, in discrete time, by an nth order difference equation, as in

Refs. 6, 7, and 8. With the entire function neglected, the SISO system

can also be represented by the following state-space description:

X=Fx+qu (35)
y=h'x | (36)
where X is the time derivative of x, x is an n x 1 state vector, F is an

n X n state matrix, g is an n x 1 vector, u is a scalar input, y is a
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scalar output, and h is an n x 1 vector. The controllable canonical realiza-

tion (Ref. 16) of Tn(s) is given by

o 1 0 . 0 7
0 0 1 0
F= (37)
0 0 0 . 1
I I B “n-1 |
. .
g=[0 o 1] (38)
} T
h = [b0 by ... b _q] (39)

Although this is only one of many possible realizations, it is an important
one in the transient electromagnetic case since it separates the coeffieients
yielding the poles from the coefficients yielding the zeros. The former
occur in the state Eq. 35, while the latter occur in the output Eq. 36.

Note that the Laplace transform of Egs. 35 and 36 yields
T
_Y(s) . _h'adj(sI-F)g
T(s) = g3 = Tyls) - BEi (40)

where adj signifies the adjoint operation. The poles of the system are con-

tained in the denominator determinant |sI - F|.

4. THE SIMO ELECTROMAGNETIC SYSTEM

In the SIMO case, an electromagnetic source U(s) radiating one com-

ponent of linear polarization is monitored at p spatial positipns
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_31,52...,55. Let Y(J)(s) be any component of electric or magnetic field

monitored at the jth spatial positions, j = 1,2,...,p. Then, from Eq. 29,

the system transfer function T(j)(s) between U(s) and Y(j)(s) is

. (J)
i) _ Y(J) _ 2 Rk 1
T@(s) = Lls) PR RO (41)
= ng) + ¢(j)(s) + P(j)(S) ' (42)
where
(J)
. n R
Tr(‘J)ng].s_ls__._; i=1,2, o+ ,p (43)

and where r(j) is the error made by truncating the Heaviside expansion in

Eq. 43 after n terms. As in the SISO case, the truncated Heaviside expansion

can be put into rational form, viz:

i)y ke X (44)
k
I as
k=0

where again the error can be made small by filtering. If the entire func-
tion contribution is neglected, a state-space representation of the SIMO

system is given by
i = F_x_ + qu (45)
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where F is an n x n matrix, x is an n x 1 state vector, g is an n x 1

vector, y is a p x 1 output vector, and H is a P X n matrix. The matrix F

and the vector g are again given by Egs. 37 and 35. The H matrix consists

of the numerator coefficients for each output spatial position, viz:

1 1 1) 7
rbo((z )) b, :2 ; ... brg;%
by b, oo il
H = . . (47)
(p)
W WO

The state-space formulation in Eqs. 45 and 46 constitutes a realization

of potential importance in the parametric inverse problem. The formulation

allows monitoring of the scattered field at different spatial positions

with the constraint that the poles are position invariant. To cast the

state-space realization in a form for parametric inversion, Tet y be

the vector containing measured outputs at the p receiver locations. Then

L=Y+e (48)

where e is the measurement error vector. Substitution into Eq. 46 gives the

state-space description

i = Fx + gu (49)

Yy=Hx +¢e (50)

In a SIMO electromagnetic experiment, input-output data [u,jﬂ can be sub-

stituted into Egs. 49 and 50 and the error e minimized in some sense by
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adjustment of the [ak,bk(j)] parameters. A Kalman filter éould be used
to accomplish this, or, any number of continuous or discrete time least
squares state-sbace algorithms (see Ref. 19 for examples). Although

this paper is concerned with the continuous time case, the extension to

discrete time is straightforward.

5. ENTIRE FUNCTION

In consideration of the entire function, it is important to distinguish
between the parametric inverse pfob1em and system identification. In
system identification, models are chosen whose parameters are adjusted to
match input-output data. In the parametric inverse, the parameters must
give physical insight concerning the scattering structure. In the system
identification context, it is possible to model the entire function in many
different ways. Consider, for example, the following series expansion |
of the entire function in the SIMO case:

¢(j)(s) = % ck(‘j)sk ‘ X (51)
k=1

This expansion is simply a power series about s = 0 truncated after g terms.
The series has two disadvantages: First, the coefficients ck(j) have no
physical meaning; second, the powers of s act asdifferentiators in the time
domain and, therefore, would tend to make the modeling system unstable.
A better expansion might be

,‘5(3)(3) = k§1 Ck(J)S-k (52)

This expansion is stabilizing since its terms act as integrators. It has

h

the disadvantage of having a qt order pole at the origin, a fact that

destroys the entire function property at low frequencies. This difficulty
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in practice might be taken care of by highpass filtering the data. The
expansion in Eq. 52 is easily incorporated into the state-space formulation
by augmenting the matrices and vectors in Eqs. 49 and 50. This procedure,
however, will not be included here because the model contains the defect
that the parameters in the Heaviside expansion have physical meaning whereas
the parameters in the entire function series expansion do not. The utility

of the expansion, therefore, is questionable in parametric inverse experi-

ments.

6. DISCUSSION

In attempts to obtain parametric inverses by use of the complex
resonances of a scattering object, efforts to date have been subject to
two Timitations: First, the algorithms have been confined to SISO systems
and, therefore, have not accounted in any systematic manner for the pole
invariance with monitoring position around the scattering object. The
state-space formulation givén above for SIMO systems removes this limita-
tion and, therefore, has potential importance in the parametric inverse
problem. Second, present algorithms ignore the contribution of the entire
function. The state-space formulation, while able to incorporate the entire
function in the context of system identification, does not improve on this
limitation for the parametric inverse. As pointed out in Refs. 20 and
21, the difficulty is inherent to the form of the scattering solution in
Eq. 41. Note in Egs. 31 and 41 that the Heaviside expansion is parametrized
by the poles and residues whereas the entire function is not parametrized
at all. Because of this fact, parametric models continue to be based on an
incomplete model of the transient scattering system. It is essential to

progress in the parametric inverse to find solutions that parametrize the
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entire function. Indeed, the entire function often dominates the transient
waveform (Refs. 22, 23). Since the entire function is important in early
time (Ref. 21), object features such as radius of curvature and physical

optics reflection coefficient should be considered.
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VI. CONCLUSIONS AND RECOMMENDATION

- In this report, we have considered multi-aspect identification. We
began with a description of the difference equation model for SISO systems
and have described its extension to the SIMO case. We next used a canonical
problem, acoustic scattering by a hard sphere, to examine identification of
SEM poles at mu]tiple.scattering Tocations. We find that, despite the use
of modern techniques, SIG and NLS, we obtain at best uneven results as a
function of observation point.

To improve identification results, we have proposed a state-space for-
mulation of the SIMO case. We recommend for future work development of a
state-space algorithm, followed by an exhaustive set of identification
experiments, first with simulated data and then with data from an electro-
magnetic transient range. We caution, however, that dramatic progress in
this regard may depend on our ability to find methods to parametrize the

entire function.
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