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ABSTRACT

An efficient algorithm to estimate the natural
frequencies and the residues of a system from spectral
magnitude data is presented. The transformation of the
spectral magnitude response into the autocorrelated sequence
has made it possible to use existing time-domain, maximum
likelihood, pole estimators and to suppress the noise Which

originally contaminates the magnitude data. By the

condition of stability the poles are uniquely identified and

the residues are estimated by the imposition of the minimum-
phase condition. The estimation of the residue magnitudes

using an approximation technique is also discussed.
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Section 1 Introduction

Experimental techniques used to obtain the response at
the terminals of important equipment within a complex
facility illuminated by electrohagnetic fields can be both
difficult and costly. If tfansient fields are used, signal-
to-noise levels are often a problem. If continuous wave
(CW) fields are used, both amplitude and phase data are
normally required. Amplitude data can be easily measured,
but accurate phase information 1is significantly more
difficult to obtain correctly. Also, the requirement for
phase information greatly complicates the data acquisition
system and subsequent data analysis.

In this paper, existing techniques to reconstruct the
signal without phase information are examined in section 2.
A new method for signal reconstruction is formulated and the
effects of noise in the data and methods of using noisy data
are discussed in sections 3 and 4. Example cases a;e
considered in section 5 and conclusions are ‘presented in

section 6.




Section 2 Signal Reconstruction Algorithms

The system parameters can be directly estimated by
using the least squares method to fit an appropriate curve
for the complete frequency response data ([1]. In many
practical situations, however, the complete information
about the spectral data may either be difficult to obtain or
unavailable. For instance, in optical image processing one
must reconstruct the images from the intensity measurements
of the spectrum without the knowledge of phase spectrum;
some of the measurements in electromagnetic scattering
experiments are given in the form of magnitude spectral
density over a certain Frequegcy interval; a digital filter
may be specified by only the magnitude characteristic, oo
etc. The desire to reconstruct the signal from
insufficient information about the Fourier spectrum has
resulted in the development of many technigues. Among those
techniques two main approaches are eminently identified.
One is the Gerchberg-Saxton algorithm (GSA) and the other is
a nonlinear optimization technique known as the Steiglitz-

McBride algorithm (SMA).
2.1 Gerchberg-Saxton algorithm (2]

Basically the GSA is an iterative algorithm
that fully utilizes the imposed constraints existing in both
the time and frequency domains. Fig.l illustrates a common
approach for the iterative scheme. The G$%A algorithm begins

with an  initial guess of the desired phase. At the k th
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fteration, the time constraint is imposed on the signal
estimate ‘hk(n) and this step yfelds ﬁk(ni. The algorithm
again imposes the frequency constraint om the ﬁk(u), the
Fourier transform of ﬁk(n). Thus ﬁk(&) is replaced by
Hk(m). With the increase of an index by 1, the whole
procedure is repeated until convergence occurs. Reference
(2] origina}ly proposed the phase reconstruction scheme when
the constraints in both the time and frequency domains were
given by the known magnitudes. Several modified versions of
the Gerchberg-Saxton algorithm have been studied by giving
a different set of constraints [3,4].

Despite the fact that there are always ambiguit}es when
the phase is retrieved from the spectral magnitude data
[2,5,6], some recent works have revealed that the signal can
be uniquely specified by the additional information to the
spectral magnitude [7,8]. The uniqueness problem may not be
severe in multi-dimensional signal reconstruction [3,9,10].
GSA has been attractive beéause of its simplicity in
structure of the. algorithm, but both the 1less reliable
capability against noise and the slow convergence are

problems in reconstructing the signal [2,3,5,6,11].

2.2 Steiglitz-McBride algorithm

The Steiglitz-McBride algorithm (SMA) [12,13,14] is a
nonlinear, least-squares, parameter identification technigue
which estimates the system parameters in the time domain
from noisy data. Likewise SMA can be applied to estimate

the parameters in the frequency domain when the data set is




the magnitude spectrum. The procedure described in [16] uses
a least square approximation based on an iterative solution
to fit an appropriate curve for the giveh‘magnitude response

data. To determine the parameters of the transfer function

Jong & Shanmugam [16] used the magnitude squared function

G(w2) = |F(ju) |-

L]

After the parameters ai’s and bj’s are estimated using the
SMA, the original parameter set can be found under the
assumption that the system is stable an& is minimum phase.
[t has been reported [16] that when the technique is applied
to spectra having resonant peaks with large Q, the iterative
solution becomes highly oscillatory. Unlike the time-domain
SMA, the freguency-domain SMA has difficulty in analyzing
the noise statistics. Because the magnitude squared data is

no longer Gaussian even if the original magnitude data was
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Gaussian. Note that the SMA was applided to estimate the
parameters in the frequency domain directly while the GSA
utilized both the  time and frequency domain constraints

repeatedly until the convergence was obtained.

In addition to the two techniques ‘which have been
developed to reconstruct the signal Fgom the magnitude
spectrum, the cepstral analysis metﬁod is used for
reconstructing the signal where the cepsﬁrum is defined as
the sequence of inverse Fourier transform of the log-
magnitude spectrum. That is, for a minimdm-phase signal the
log-magnitude of the spectrum is relaaed to the phase
spectrum through the Hilbert transform {é,l7]. However if
the spectral magnitude of certain sampling points is too
small or happens to be zero, one may n&t be able to use
those sampling points for finding the cepstrum. In that
sense the application of the cepstral analysis technique may
be considerably limited especially when the measurements are
noisy. The other technique is rooted from the application
of the Prony method to the magnitude-squared data in the
fregquency domain [18]. It is known that the Prony method
provides the accurate solution when the asta is noise-free,
but it loses its reliability for estimating the system
parameters when the data is noisy [19].

[t seems that the noise which is interfering with the
frequency data makes the estimation problem much more
complicated than does the noise in the time domain. The

method proposed in this paper first transforms the uniformly




sampled energy spectral data, which are obtaifned by squaring
the magnitude data, into its auto-correlated sequence in the
time domain. As the characteristic equation for this
correlated sequence has roots consisting of system poles and
their conjugate reciprocals, the poles are uniquely
determined by the stability condition. Because of the
symmetry in the characteristic equation coefficients,
withbut actually doubling the order of the equation, any
kind of existing time domain |inear prediction algorithm
such as the covariance method or the SVD(Singular Value
Decomposition)- based methods can be applied to extract the
poles. We also use the existing time domain iterative pote
estimation algorithm which works well when the data contain

the measurement noise.




Section 3 Mathematical Formulation
Suppose that the continuous-time system response h(t)
is expressed as
K
h(t) = ¢ rjexp(s.t), (1)
— J
j=1
then for the predetermined sampling petriod T the n-th
sampled data hn = h(t)‘t=nT is expressed as
K n
hn =‘§ rjexp(sz) . (2)
J=1
The z-transform of the sequence {hn. n=0,},...} is defined

as

K .
=Z_____J_ (3)

where pj = exp(sz) are the simple poles in the z-transform
domain and rj are the residues of the system.

The problem is formulated as follows:
Given the uniFormly sampled spectral magni‘tude data

Ho = (H(z=ed™"/M) |, m=0,1.....M-1, (4)
it is desired to extract the poles and the zeros.
Instead of finding the 2K unknowns (fj.pj:j=l'2....K},
one first identifies the different set of 2K unknowns

{Ao,z;,....Zk_l.pl,...,pk} in the equivalent pole-zero model




K=1 i | (]}
Ag n(l—z‘z )
i=1
H(z) = (5)
K -1
n(l~piz )
i=1 ’

and then residues are found from the relationship

r=H(@) (1-p,27 ) (6)
ZzZ=pP..

1
Direct attempts to find the parameters from the
spectral. magnitude data {Hm} lead to a nonlinear optimi-
zation problem. This approach begins with the approximation

of H(Z) to the finite impulse response model

M-1
-m
H(z)= ¢ h_ =z (7 ‘
m=0 " . CZ)

The approximation is Justified only when ; |hmt is
negligibly small. Fortunately selecting a 1argemgndoes not
make the compUtations heavily burdensome; rather, it helps
to suppress the noise level. The approximation enables one
to take advantage of the simplicity of the discrete Fourier
transform. This treatment wuses (7) .as an alternative
expression of H(z) under the assumption that (7) is a good
approximation to H(z). It is well known that the energy

spectrum is related to the auto-correlation sequence via the

discrete Fourier transform (DFT) [17]. Formally this yields

M-1
H(z)H(1/z) = £ R_z " with R_=R__. (8) (:}
m m m

m=-M+1
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A sample auto-correlated sequence {Rm.m=o.1,2,...n-1}
can be obtained by taking the DFT of the known energy spec-
tral data, which are generated by squaring the magnitude
data. The next step is to extract the poles from the sample

auto-correlated sequence. The system model (5) can be

written as

H(Z)

i

A(z)/B(2)

K-1 _
¥ a; z
i=0

= ’ with by =1. (9)

i

The expression for H(zZ)H(l/2) direct‘y‘From (9) can be

decomposed into the right-sided and the left-sided sequences

, K s
si.e., there exists a unique polynomial G(z) = % gi z ! such
' i=1
that
G(z) G(1l/2z)
H(z)H(1/Z) = —— + R, + : . (10)
B(z) B(i/z)
Comparing (8) with (10), one obtains
G(z) M-1 _
— = fR z". (11)
B(z) m=1

11




The sequence {Rm.m=l.2.3....} can be thought of as an
impulse response of an unknown system whose poles are
fdentical to those which are to be found. Finding the
system poles is equivalent to identifying the set of

coefficients {bi}' Equation (11) can be written in terms of

the difference equation

J-1 ~

izoRJ"' by = g J=1.2.....K (12a)
K

IR, .b, =0, M+K=13 j2K+1. (12b)
j=o 471 1

The homogeneous equation (12b) can be used for extracting
the poles. Note that G(Z) does not have any direct role in
finding the poles. Not’all M data points are used for pole
extraction. Instead, the first L points are used for the
following reasons: a) considerable reductions are achieved
in computations, b) relative errors due to truncation of the
infinite sequence are in general smaller in the first part
of the sequence. Using the first L samples {Ri,i=0.i. cee
L-1}, the equation (12b) can be rewritten in the matrix

equation form

/ 4 Y
R, Rz - Ry Bx
R, R, cee Rets O
) ) e . 3 - 0. (13)
bl
R ) | 1
Rk Rioker ==+ R ‘

12




Matrix equatfon (13) can be solved with respect to {bi}
using least squares method [20,21] or 'SVD-based methods
[22,23,24].

The next phase 1{is to find the coefficients of
A(z), {a;}. Let

- K-i-1
a; = hX a B,k 0<itK-1, (l4a)
k=0
K-
Bi kzobk bi+k ’ 0<i<K. (14b)

Then from (8) and (9), the following set of equations are

obtained:
I R B, = a, for i=0,1,...,K-1 (15)

where Bi = B8 ..

Once {Bi} are identified, {ai} can be calculated using
K=1 .
the equation (15). The roots of ¥ a; z_', where a; = a_go
f=-K+1 ‘
consist of zeros of the unknown system and their conjugate

reciprocals. The contribution to the spgctral magnitude by

*

the zero at z=z, is the same as that by the zero at z=l/z0 .

*
Quantitatively, ll—zoz—lt = H-—z0 zl when these are
evaluated on the unit circle. If one selects a zero(z:zo) as
»*
a root of A(z), the conjugate reciprocat zero (z=1/z0 ) is

the root of A(1/z) and vice versa. The ambiguities in

selecting the =zeros result from the insufficient spectral

13




information originally given. The minimum phase condition *
can be imposed to resolve the ambiguities. That is, not only (:)
Poles but zeros of H(z) are restricted to lie i{nside the
unit circle. For more dfscussions see {el. Once
{aj.J=0,l,....K—l] and {zj.jal,z,....K-l} are in bhand, the
scale factor A, can be found by comparing the highest order

in the numerator of H(z)H(l1/z). That is,

kep K=1 2
(-1) (izlzi}Ao = - (16)

The positive Ao is chosen by the same argument as above. The
residues can be obtained using the equation (6) after H(z)

is identified.
Now consider the problem of noise in measuring the (:)

spectral magnitudes, one has

D =H_ + ¥m for O<msM-1i, (17
where Hm is the true spectral magnitude as expressed in (4)
and Y is a zero-mean uncorrelated Gaussian noise sequence

2
with variance ¢ . Then

2 2
D = Hm + 2 Hmvm + Ym for m=0,1,2,...,M=1

and H, = H when M<js<N-1. (18)

o~
Here one sets N = 2M. Let the inverse DFT of the corrupted ,(:>

14




data {omz) be (P } and denote W = exp(-j2m/N). Then

P R, + n

where nj = elj + eZJ (20a)
2 N-1
and e,y = — I Hv wodIm, (20b)
N m=0
I N=-1 2 - 3jm
€,. = — T v_ W (20c)
2] N m=0 m
where elj is the first noise factor and er is the second

noise factor. If M is sufficientliy large, it can be shown
that the noise {nj}~which contaminates the sample auto-

correlated seqguence {Rj} is jointly Gaussian with second

moments
2 2
E{nj } = E{elj }
2
20 .
= " ( RQ + sz ) for j>0 (21a)
and
E{n‘j nm} = E{elj elm}
202
= ” ( Rj+m + Rj—m ) for j#*m . (21b)

The second noise factor has little effect on {Rj}, and

2

E{nj } is relatively much greater than E{nj_nm}. It is safe
to assert that for large enough M the noise is approximated
to be uncorrelated Gaussian. Thus the estimation of the

system poles from the noisy transformed data described in

15




the equation (19) can be put into the general category of
max i mum likel fhood (ML) estimation. The Iterative
Preprocessing Algorithm (IPA) (151, which is based upon ML
estimation may be used, for extracting the poles from the

noisy auto-correlated sequence.

16 -




Section 4 Residue Estimation

An important property of the ML estimator is the invariance

property. Formally,

£(a) = f(a) (22)

where “°’ denotes the ML estimate. Now the coefficients of

~

the denominator polynomial of the transfer function, {bi}
are estimated using the IPA. The pole estimates {;i} are
the roots of the polynomial.’got‘:j 23 by the invariance
property of the ML estimator.J—To find the estimate of the

residues, one begins with the pole-residue expression of

equation (11)

zG(z2) K Ei
= 3 -1 (23)
B(z) i=1 l-piz

where Ei is the residue associated with pi in the rational

-~

function zG(z)/B(=z). The estimation of {Ej}, Ej’ can be
found by combining equation (23) with egquation (11).

—_) ’ (24)

Comparing the coefficients on both sides of equation (24)
and using the vector notation, one can simplify it in a

matrix form:

R

C(p) & (25)




where

I
|
~
m
-
m
N
.
°
.
ul
X
d

and

Equation (19) in a vector form can be written as

n="P-C(p) E. (26)

Selecting the value of £ which minimizes the L,-norm of (26)

leads to
| O
E=+( ¢tk i lcm® p. (27)

Equating (12) to (25) and applying the invariance property

of ML estimator

K . K -
= *

Using the equation (10), (12) and (15), one can show that

= - g / b (29)

o
|

K ~ ~
ag = RoBo + 2 ¥ b.g., (30a) O

18




and

- A a K-j-1, ~ K"Ja
%y = RoBy * I PiygeiFrar * L Pk-4- 1k~ ] (30b)
for j=1,2,...,K-1
where
N Kel. .
B jzo Biag- (31)

The estimates of zeros are selected as those located inside

the unit circle on the compliex z-transform plane among the

K-1 .

roots of § «a
Jj==K+1

The estimate of the scale factor A, can be found from (16):

jz—J by imposing the minimum~-phase condition.

Ag = a_ /DO z (32)

The denominator of the right hand side of the equation (32)
has the same sign as ;K—l so that ;o is real. There exists
also an ambiguity in selecting Ao. We choose the
”positive value of A  again by imposing a minimum-phase

condition. Once the estimates of poles and zeros are

obtained, the residue estimates can be found from equation

(5),

>

r. = H(z) (I—Siz-l) (33)




Section 5 Numerical Examples
5.1 Two simple examples

To 1illustrate the fitness of the proposed technique
this algorithm is applied to the couple of examples. As the

first example the system is assumed to be described by

2-1.8/z
H(z) = 3
1-1.8/z+.97/2 .
The system has two poles P, » = .9 % J .4 which are located

close to the unit circle (radius = .984886). The noiseless
spectral magnitude data is taken by sampling the H(Z)
uniformly {n angle at the points on the unit circle, z =
exp(jmw/M), m=0,1,2,...,M-1. Poles are extracted using the
covariance method from the transformed auto-correlated
sequence. The results are shown in Table 1. The estimated

values of poles are shown as the data length M varies.

M pole (estimated) order of error
16 .91165 + j .38162 1072
32 .89981 + j .38533 1072
64 .90063 + j .40013 10”"
128 .90000 + j .40001 10°°
256 .90000 + j .40000 <10”°
or more

Table 1. Pole estimation from the auto-correlated sequence

20
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The errors of the estimated poles for the smaller M are due
to truncation. In fact it has been observed that the poles
are accurately found regardless of the pole locations
whenever the spectral data do not contain noise.

As the second example the fourth order transfer

function is chosen

(1.-.82 ' )(1.-.82"" +.652"2)

H(z) = - ‘ - p o
(1.-1.82" " +.972" %) (1.+1.22" " +.612"2)

where the poles are: P, o = .9 % ] .4, Py , = ~-.6 = J .5 and
L] *
zeros are: z;, = .8, z, 3 = 4% J .7, The magnitude
* R
spectrum is shown in Fig.2 when the number of sampling data
' 12
points M are equal to 2 with noise level o = .5. The
results for the various values of the noise level are

summarized in Table 2 for the same M. It is seen that the

poles are less sensitive to the noise tham the residues.

5.2 Validity of minimum phase signal

The two examples which have been chosen in the previous
experiment happened to have minimum-phase transfer function.
One may have a question at this point; is it wvalid in
general to impose the minimum-phase condition over the
practical situations? To the authors’ knowledge, it is not
possible to explain anything about the validity
analytically. Literature seems to assume the minimum-phase

condition whenever there is an ambiguity about the phase.
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Table 2. Pole-residue estimation for the noises

Noise(o)

pole

zZero

residue

(.89994,%.40003)

(-.59776,+.50076)

.80534

(.13785,+.01265)

(.36881,+.82410)

(.89979,+.40008)

(-.59452,+.50238)

.81499

(.39550,+.68903)

(.13901,+.00932)

(.37187,+.82860)

(.89966,%.40011)

(-.59245,+.50378)

.82254

(.39660,%.69639)

(.13994,+.00803)

(.36995,%.83467)

(.89940,%.40015)

(-.58949,%.50636)

.83548

(.40226,%.72153)

(.14161,+.00771)

(.36009,+.84918)

1.2

(.89919,+.40017)

(-.58763,+.50840)

.84509

(.41056,*.75119)

(.14292,%.00912)

(.34697,+.86401)

1.5

(.89882,+.40020)

(-.58500,%.51194)

. 86080

(.45541,+.86453)

(.14461,+.02120)

(.29364,+.91421)

** Only L=32 points are used for parameter

estimation. The

true residues are (.13717,2.01584) and (.36284,+.82417).
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Fig.3 Incident wave to the thin wire

Now consider the electromagnetic interaction problem
shown in Fig.3; the incident wave impacts on the thin wire
with the Iincident angle 8. The induced current can be
measured at some points on the wire. If the incident wave is
of CW (Continuous Wave) type, one can obtain the correspon-
ding spectrél amplitude accurately from the steady state
response. For a given angle of incidence and an observation
point, the amplitude spectral data is collected over the
frequency range of interest. The poles should be the same
regardless of the incident angle and the observation point,
but the residues are determined by the product of the
natural mode, the normalization factor and the coupling
coefficients. The reader may refer to (15] and its
references for more discussions. It is -interesting to see
how much the true residues are different from the residues

estimated from the minimum phase solution. The same poles

used in [15] are chosen here, i.e.,
P, , = .5589 = j.7325,
Py , =—.2831 * j.8396,

+

P g =-.8320 & j.2237.
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The magnitude of the complex residues are shown in Table 3.
From the algorithm described in Section 3 and 4, the poles
and the residues of the minimum phase solution were found.
Table 4 illustrates whether the true residues for the
specified incident angle(ei) and observation point(xj) are
of minimum phase. If they are of nonminimum phase, the table
also shows the locations where the relative error betwéen
the minimum phase solution and the true one is within 5%.
If the error is greater than 5%, an ‘X’ has been placed on
the corresponding blank. {ei} and {xi} are chosen 0, 20,
35, 48, 70 degree and .16, .245, .5, .755, .84 m respecti-

vely (the wire length = 1m).

Table 3. Residue magnitude

Xy X5 X4 Xy, Xg
res(l) 3.81401 5.20688 7.33327 5.20688 3.81401
9, res(2) 3.06062 2.17525 2.93820 2.20582 3.06062
res(3) 0.00869 0.09755 0.00390 0.09755 0.08585
res(l) 3.50894 4.79040 6.74671 4.79040 3.50894
6, res(2) 0.08270 0.05877 0.07939 0.05960 0.08270
res(3) 0.33033 3.70711 0.14828 3.70711 3.26267
res(l) 2.89880 3.95744 5.57359 , 3.95744 2.89880
8, res(2) 3.14411 2.23458 3.01835 2.26600 3.14411
res(3) 0.43460 4.87736 0.19509 4.87736 4.29262
res(l) 2.28886 3.12475 4.40084 3.12475 2.28886
8, res(2) 4.13475 2.93865 3.96936 2.97996 4.13475
res(3) 0.39994 4.48834 0.17953 4.48834 3.95024
res(l) 1.06860 1.45885 2.05463 1.45885 1.06860
8¢ res(2) 2.48395 1.76540 2.38459 1.79021 2.48395
res(3) 0.20896 2.34511 0.09380 2.34511 2.06396
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Table 4. Comparison of the minimum
phase solution to the true one

8; 5% X 0 X X

e, 5% X 0 X 5%

@ 5% X 0 5% 5%

The 11 cases out of 25 different combinations of (ei’xj) are
of minimum phase and 7 cases are close to the true residues
with less than 5% error. The 18 cases out of 25
observations (11 minimum—phase cases plus 7 observations
within the 5% error) show the .closeness to the true
resfidues. This is equivalent'tquaying that the residues can
be estimated with the reliability of .7 (=18/25%) in <this
example.

5.3 Residue magnitude extraction using an
approximation technique

The impulse response {hi} can be expressed as
K
h, = E " Pk - | (34)

Simitlarly  the sample auto-correlated sequence can be

expressed as

26




K
R_=%c p". (35)
n k=1 k Tk

where Ck can be found from equation (11),

G(z) -1
Ck = (l-pkz )

B(z) z=p, - (36)
e »

Thus Rn =i§0hl hi+n can be simplified to
K K )
r. r

R.=3I I —l K P (37)

= = - *
k=1 j=1 1 pj Py

C, =% — K
- *
J=1 1 P Py
|rk|2 K r.*rk
= + 3 = (38)
I-ip, | j=1 1-p. p, .
Kk K J "k

[t is not possible to solve equation (38) explicitly with

respect to {r The first term of the left hand side of

k}'
the equation (38) is dominant {if the poles are well
separated from one another. Thus under tﬁis condition Ck can
be approximated to
‘ 2
tr !

Ic 1 )
-1 17,

IR

N (40)

Hence

e

_ 2 1/2
[Cl-1p 17y 1C 11 7%, (41)

27




Table 5 shows how close the solutions based on  the

approximation are to the true ones.

Table 5. Comparison of the lst order
approximation to the true ones

><1 X5 X x X

3 L S

® 5% 5% 5% 5% 5%

@, 5% X 5% 10% 10%

e, 5% X 5% X X

. 5% X 5% X X

&g 5% X 5% X X

Although only 13 cases out of 25 are close to the true
residue magnitudes with less than 5% error, all the rest of

the observations have the errors bounded to 20%.
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Section 6 Conclusion

This paper presents an efficient method of determining
the system parameters from spectral | magn i tude data.
Uniformly sampled energy spectral data, which is obtained by
squaring the magnitude of the measured data, is transformed
into its auto-correlated sequence in the time domain. This
permits the suppression of noise which contaminates the
magnitude data and allows the use of existing time-domain
estimation techniques. Although ambiguities are inherently
involved in finding the residues due to the insufficient
data originally available, they can be resolved by
increasing the number of sampled points in frequency.

Several numerical examples were considered to test the
new signal parameter estimation method developed in this
paper. It is found that relatively small error can be
obtained for signal parameters with a relatively small M,
the number of data points, and the error can be reduced as M
is increased. It is also found that poles are less
sensitive to noise in the data than the residues. For the
numerical example chosen in this paper, even significant
noise did not result in error greater than 207 for the real
part of the residues. And finally, the minimum phase
solution was used to compute the residues of an
electromagnetic interaction problems with less than 5% error

in 18 cases out of 25.
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