Mathematics Notes

Note 93

17 March 2001

Relationships Between Time- and Frequency-Domain
Norms of Scalar Functions

Carl E. Baum
Air Force Research Laboratory
Directed Energy Directorate

Abstract

This paper addresses the relationship between time-domain waveforms and their Fourier transforms in
terms of various norms of the two, specifically the 1-, 2-, and co-norms. As one might expect, norms in time domain

can be used to provide some bounds concerning the norms in frequency domain, and conversely.
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1. Introduction

Norms have been introduced to reduce the number of parameters characterizing transient waveforms to a
few nonnegative numbers, which can be used in some kind of bounding sense [1-5]. This applies to both excitation
and response waveforms and the transfer operators that relate them. Such transfer operators model the properties of

electromagnetic systems. The present paper is concerned only with waveforms.

As it is common to consider the Laplace/Fourier transform of waveforms for their (complex-) frequency

spectra, one can also consider such norms of these frequency-domain functions. This raises the question of the

relation between the various norms in time and frequency domains, the subject of this paper.




2. Functional Norms

Consider now some generally complex scalar function A(x) where x is a real variable. The norm is an

operator | || with the following properties [4]

ll"(x)ll =0 iff h(x) = 0 or has zero "measure” per the particular norm
>0 otherwise

le hx)| = || |px)| . @ = scalar @2.1)

I @) + o) | < e + @)

Note that unlike N-component vectors, functions (which can be thought of as co-component vectors) need certain

continuity requirements to avoid isolated points which contribute nothing to integrals.

A commonly used norm is the p-norm defined by

“ P
o, = J' |A(o)|P dx ., l<sp<ow 2.2

with the special case of p. = « given by

[, = supfce)] 23)
X

For present purposes we are primarily interested in p = 1, 2, co.

In [3] we discuss the concept of a “natural” norm based on the physical properties of systems of interest.

For time-invariant systems we have the concept of a time-invariant norm, which takes the form
Irx—x0)| = [JAx)| . xo real (2.4
where x in this case takes on the role of time. The p-norms all have this property.

Another interesting property of the p-norm is its dilation property
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x>0

Note the inclusion of a second subscript to be clear that x, and not yx is the integration variable. Note at this point

1
that x can also be negative with the result | xl_ p - With x taking the role of time this exhibits the time-reversal

invariance of the p-norm.




3, Holder Inequality

We shall also make use of the Holder inequality [4], which for functions takes the form

L

| b b n b P2
| J‘hx(x)hz(x)cbc < jllq(x)l”l dx ﬁhz(x)lpz dx
a a a
1=p1_1+p£1 » mz2l, pp21
Extending the integration from - to +o, and setting both functions as the same gives

Il < ool o,

whiéh has the special case

B < el Jreol,

(3.1)
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4, Frequency and Time
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Now consider some time-domain function f(¢). In complex-frequency domain we have

two-sided Laplace transform over time t

Q + jo = Laplace-transform variable or complex frequency

5’1?}_- J. F(s)e™ ds (inverse Laplace transform) (.1
Br

“Br = Bromwich contour parallel to jo axis in s plane in strip
of convergence of two-sided Laplace transform

Setting Q =0 (with @real) defines the Fourier transform

fljo) =

f ( ja))e_j @ gt

]

[ ]
O = - I Flme®do
2z

(4.2)

Note|that the above assumes that f(s) has no singularities on or to the right of the jw axis, otherwise the contour

of integration has to be appropriately modified.
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plex conjugate
Jj@)

Re (f"( ja)el® )da)

Re( F—jw)e I )da:
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Usually one is interested in real-valued time functions, which imply

4.3)




Furthermore, our functions usually (but not always) start after some time fy and decay exponentially at late time

insuring that all singularities are in the left half s plane with the right half plane analytic in .

In Section 2 we found the time-invariant result for p norms
|7 (-2 )||p ;= | f(:)]]p’t , 1o real (4.4)

Going to frequency domain we have

-

[~ o]
% ; YR 4
Ve, = _[ |7 jo)ff do (4.5)
QD
Frorfp the shifting theorem of the Laplace transform we have

i @

| I ft-t0)e™dt = f(s)e™0 (4.6)
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Applying this in terms of the p-norm over @ we have
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as tﬂe consequence of a time-invariant norm in frequency domain.

”IT:he dilation property (2.5) in time domain also carries over to frequency domain as
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tive y is also handled via | Z|; and conjugate symmetry in (4.3).
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5.1 2-Norm for Time and Frequency
We have the well-known Parseval theorem [4] relating the 2-norms in frequency and time as
@y, = - 17 o) .1)
2 an 2.0

This can be considered in some contexts as equating energy in time and frequency.

The Holder inequality (Section 3) then gives

52 PG, < 7@k, 170,
2 |70, < [7Ga), 70, ,

IR,
lGa)g,

(5.2)

The 2-norm relation between frequency and time then brings on some relations involving 1- and w-norms, mixing

time and frequency norms.




Bounds for co-Norm in Time and 1-Norm in Frequency

Consider a bound as

“f(t)“mt = sup|f ()| = sup_zl_ j;(ja))ejmda)
’ t t v 2
L I i 1 -
< s1:p Py Ilf(jw)elwtldw = Ilf(jm)ldw 6.1

= i),

This is useful provided the 1-norm in frequency exists. This requires that f(jw) full off faster than o ! as

@ —> o and that any singularities on the jo axis be integrable (or just that f(j®) be bounded). In (6.1) one can
also|avoid the use of supremum by choosing ¢ such that equality holds (assuming that the supremum is a maximum).
For a lower bound we have
“f(t)|Lo , = suplf(t)l = sup J'f(ﬂo)efa"dw
6.2)
[« o]
1 ( : jt _
2~ J-f(ja))e] do | = |7 (1)
—a0
So choosing some arbitrary ¢ gives a lower bound. As a special case we have (setting ¢ = 0)
[+ o]
1 T
Vol = 5| {7Uoy
e (6.3)

-1 I F)d
T
0

for real f(¢) using (4.3). More generally we have
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ol 2;1[- Re(f(j@))e/ do| (arbitrary real r)

a0
0
. Summarizing we have

IRe(f(ja))ejm')da)

0

<V, < o),

o=

any real ¢

11

6.4)

(6.5)




7. Bounds for 1-Norm in Time and «-Norm in Frequency

Consider a bound as

v, = spffo) = snl [16)e o
= .[ If (')e-jmld’ = J.If (1)]a 7.1)
= o,

Except for the factor of 27 (from the Fourier-transform convention) then (7.1) is dual to (6.1).

Note that £, ; also bounds I Vi (O)l (the low-frequency content of the waveform), but this is a looser

bound than the above. For the special case that f(f) is unipolar (nonnegative or nonpositive), then we have

Vok, - [vol -| [roa
= [70)] = |7 Go)l,, 7.2)
f(t) = unipolar waveform

giving an equality rather than an inequality.

For a lower bound we have

||.7(Jw)||w,w = sup lf(_}a))l = sup Jf (t)e]a)tdt
o ]
- (7.3)

> I f()e™™a| = | i(ja))l

So choosing some arbitrary @ gives a lower bound. As a special case set @= 0 giving
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2 I f(@)ar| = |7
More generally we have for real f(¢)
7G|, 022

(arbitrary real )

wjf(r)cos(mr)dr
0

Summarizing we have

|f~(ja))l =2 If(t)cos(wt)dw
0

any real

< oal,, < 7@k,
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Application of the Holder Inequality

From (3.3) we have

1 1=~
e, = 5- Vel < ok, bol,, @®.1)

which bounds the 2-norm in frequency in terms of the 1- and w-norms in time. From (6.5) we have

giving

——-2; |7 (jw)llz » SOk, -—-21” G, 8.2)
|7 G,
L) 8.3
s (’)"1,1 2 H ja’)"],m « (8.3)

as anpther lower bound. This involves the 1- and 2-norms over frequency. However, it is not as tight as the co-norm

over frequency in (7.6) since from (3.3) we have

Gk,

"f(-,w)"w,w 2 lf(/w)"],w (8.4)

Summarizing we have

_ 6o,
) i X 8.5)
Ok, = Voo, * oo
Similarly from (3.3) we have
7o)k, = 220, =< G, Gall,, ¢

which bounds the 2-norm in time in terms of the 1- and co-norms in frequency. From (7.6) we have
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2|7 0, < PG|, 17 O, @®7)
giving

_VOE,

bUoka = 2 f7ey

(8.8)

as another lower bound involving the 1- and 2-norms over time. However, it is not as tight as the co-norm over time

in (6,5) since from (3.3) we have

I 0k,
o, = oL, ®.9)
Summarizing we have
- Iy Ok,
"f(jm)"l 2 27 "f(t)lLo,t 2 27 Ilf( )"1 (8.10)
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9. Concluding Remarks

The results included here are quite general, and provide some simple bounds for norms one may not wish to
calculate in terms of other norms one may have already obtained. In a previous paper [3] we have considered
window norms for a time interval #; < ¢ < t,. Since this is equivalent to the norm of a waveform function
f (t)[u(t-—tl) -u(t-n )] , then the present results apply to such functions as well. However, the Fourier
transform of such a window function does not have the same form as a window in frequency domain. Of course the

p-norm of such a windowed function is bounded by the p-norm of the (unwindowed) function.
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