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Abstract

This paper considers some technigues for correcting nonconstant trmsfer functions {corresponding to
nondelta-function temporal operators) directly in time domain. Depending on the analytic form in the Laplace-
transform (complex-frequency) domain, appropriate temporal deconvolution operators are found. Several examples
are considered. rg{‘k
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1, Introduction

In processing of electromagnetic scattering data associated with. an incident broadband pulse, there is the
problem of removing the filtering of this data by the radar antenna(s), the characteristics of the incident pulse, and
other electronic equipment (such as directional couplers). One approach to this'problem is to construct, transfer
‘fiunctions (frequency domain) corresponding to these various factors. Then by use of numerical Fourier transforms
one iransforms the radar data, divides by the transfer fanctions and numerically inverse Fourier transforms to obtain
the delta-function response of the target.

Ome of the advantages of looking at the delta-fimction response is the separation of thie target response from
that of other scatterers (clutter) by looking only at a time window corresponding to the time of retorn of the target
signal. Such time separation is corrupted by the temporal convolution comresponding to the transfer functions
mentioned above. There is also the inevitable problem of noise in the data as well. This can affect the accuracy of
the deconvolution required by making the above transfer functions correspond as closely as practical to single delta

functions in time (i.e., minimum dispersion).

An alternate approach, applicable in some cases, is to use analytic deconvolution directly in the time-
domain. This applies to the cases where the inverse of the transfer functions mentioned above can be written .
analytically in the time domain, and where the form that the deconvolution takes is relatively simple. This paper

explores a few such cases.




- The Typical Passive Integrator

-As a simple case, let us consider a simple passive integrator (RC integrator) characterized by

" ' i
Vour(s) = [L+sz] V()
7 = time constant > 0

—

n

- two-sided Laplace transform over time ¢

2.1)
s = QQ + jo = Laplace-transform variable or complex frequnency
‘What we wish to obtain is the time integial of ¥, () . This is usually expressed as an approximation
' .
Tz 1
Vour (@ = — | V3 @Ndt for t << 7 : :
cmt( ) 3'.[ m( ) ) (2. 2)
0 ' -
Vip(s) = 0 for £ < 0
A more accurate approach observes that the-inverse of the transfer function is a-convolution operator
d
1+st © [5(t) + z'-&?é'(t)] °
» = comvolution with respect to time 2.3
Thus we have
Vin(s) = [1+57]our(s)
t .
J‘V;'n(t')df’ = [@) + #()] © Vou () - | 2.4)
! .

r
= 7 Vour(t) + IVm(r')dt'
0

If we have some data stream for ¥,,,,(f) , then this can be corrected by the addluon of a simple integration to give a
more accurate version of the time integral of ¥y, (f) .




Time-Domain Directional Coupler

1)

A previous paper [3] considers a special type of time-domain directional coupler. See this paper for the

case for which we have

Z

O Y
Cnm Zc],2 ch,l

() = 3{Zenn)

R = resistance loading ail four ports (e.g., 502)

det((z"’n,m )) - 231,1 B 231,2 =B

det((Xpm)) = X — XFp =1

J = characteristic impedance matrix

The port convention has

port1 = port into which a pulse is launched

port2 = adjacent port at same end as port 1

port3 = port out of which the pulse is propagated to a load (e.g, radar antenna,

well terminated)
port adjacent to port 3 which receives the reflected pulse to be recorded
(e.g., a radar backscatter) and receives o signal from port 1

port 4

W

n [3] it is observed that for a time T, the round-trip transit time through the coupler, with

T =2%
v

£ = coupler leﬁgth
v = propagation speed (< c) in the lossless, dispersionless dielectric medimm

The scaitering matrix elements of interest are

development of a two-conductor (plus reference) ideal transmission line. Here we consider only the fully symmetric

@3.D

(3.2)

(33)

the pulse received in port 4 is a faithfut replica of the pulse presented back to port 3. The same is true for the pulse
from port 1 to port 3. In a radar application this leaves the antenna transfer function as an additional problem for
possible deconvolution. '




S1() = [xl ; smh[%] + cogh[f-z'*'-']]“1
S43(5) = 851(5) X1 smh(i;i) | | “ o (3.4

Sa1(s5) = 0 = 83 (s)

and the product of the first two of these. For convenience we define

1- X1 .
= "% <90 . N (3.5)
1+ X3 ' .
Rearranging we have
sT R
53’1 (S) =2 I:l + Xl,l]e 24 [1 + Xl,l]e 2
' 3.6
T (3.6) .
e 2 -1
1+ Xl,l
Expand the last part as a geometric series
Ss()=[1+&"] = > et G
n=0 : - . _
In time domain this is
35(¢) = Z[_g]"(s(r — nT) | - 6
n=0 :

So except for the delay of 772 in (3.6) this is a successive set of delta functions, each -£ (positive) in decreasing

amplitnde times the previous and delayed by successive times 7.

Note that if we delay Ss by time 7 and multiply by £ (négative) we have
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£85(¢-T) = —Z[—g]’”‘a(r—[nﬂ]z') -
”:0 | (.9)
= =Y [=T"s(t-n7)
n=1
‘We then find
S5(r) + €85(t-T) = 8()
(3.10)

Ss()1+ & =1

So taking a signal coming from the coupler and mulliplying by £, delaying by T and adding, removes the effect of
831 except for a constant multiplier and delay by 772, as

2 T .
$31(2) + £S5 (-T) = 1+X116(t_5] . (3.11)

Continuing we have

i Xi5 o~
Sa3(s)= s ;.11 S(s)

. (3.12)
Ss(s) = [l + g7 ]_ [1 - e'"sr]
Apply the previous procedure (as in (3.10))
$1(s) = S6(s) + e TS5 () =1 - &7 (3.13)

Thus the previous shift by‘T, mmultiplication by &, and adding removes the denominator again. In time domain this

leaves

$7(8) = 8(f) - 5(t-T)

X,
Saz(t) + £S43(-T) = :’; S7(2)
11
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(3.14)
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f/ ﬂ?‘,‘.’ .

To deconvolve the remaining S-(f) one can observe

N-1 : S L . :
Ss(t) = 6(1) - 8(t—Nr) = Sy (t-nT) ' AT
' n=0 . ‘ -

‘By appropriate choice of N the second delta function can be moved into an appropriate time where there are ideally

no cluiter signals which could shift into the time window of interest for the farget.

Noting that scalar convolution integrals commute, we can remove the effects of S31 and S43 by a

succession of opetations, in any order. There are two operations of multiply by £, shift by 7, and add. Then there

" - ig the succession of shift and adds N - 1 times in (3.15). Ideally this leaves us with an operator

'__.___[1 iX;’il]zl:a[t—%) —6(:—[.N.+ %H] | o (3.16)

where the second delta fanction Véan be neglected by comsiderations of the received time-domain waveform. This
leaves a signal multiplied by a constant factor and shifted by 7/2. '

Another interpretation of (3.16) concerns what might be called an “equivaleﬁ_t directional coupler”.
Comparing Sg to S7 the double transit time of T has been extended to NT, effectively making the coupler N times

as long.




4, Jdeal Reflector Impulse Radiating Amtenma ~~~~ K

. . . /" .
A reflector impulse radiating antenna (IRA) bas a transmitted waveform when driven by a step function L ’
pulse Fhu(f) as [4]

ha
2rcfy

R() = H[-u() + u(t-1)] +&(-T)

Vf (I) = rEf (f) =1 R(t) ~ (far “voltage™).

T = —Z—E(a ronmd frip time on the antenna)
c ‘ : : o
F = focal length - ' o (CBY

c = [poag]“llz = speed of light

Here only R(Z) concerns us. The various factors are explained in the references in {5]. The &, is an approximate
delta function (a delta function in the limit of » > ). R(#) also characterizes such an antenna in reception (an

approximate replicator). The step functions form what is called the prepulse. There is also a postpulse [2] (more
complicated) which is not considered here. - . | |

The problem is to remove the step functions and leave a delta function remaining. Transforming we have

sT

TR (s) = {;]?[1 - e'ST] + 1]-1

-1 :
- - [1 - —1—[1 + -1—] &7 } (4.2
+ 2 sT sT _
sT
@0
- [sT + 7T
sT + 1

n=0

ﬁ(s) = -z—[—l + -e_sT:l + T

This form has some difficulties. Besides the delay by 7, in fime domuin the ieading term is a dérivative. Essentially -
this is keying on the initial step function instead of the later delta fomction.

An aliernate form has




Tl (s) = i [ST]_" l:l- T ]n
n=>0

=1+-;lf[1——sT]+

@.3)

[szl=]2 i -t

In this form we have the leading delta ﬁmctlon in time domain, but the successive correction terms. are rather
éomplicated. '

Let us now approach this differently. We can characterize R(t} by a recursion beginning with

- . , o
Foua () = &V (s) + -1 + & [Pin(s)
Vin () = signal into “filter”

Vout (2) = signal out of “filter” _ o (4.4)

This is changed to

@@:ﬂaﬁpé¥ﬂ;@yg

t t .
@@zgﬂnn+%f@@nmuj@@mu o
—0 . —® . : . 4.5)
= Vo (t+T) + 1V (1))

' t+I
1) = 2 | V)

t
Define an integral operator

=T

a6y = 3 [

I (-+) = n=fold muitiple integral

T 4Tty +T

1
-] j (- Yty -+l @.6)
t L




Applying this recursively we have

{
Vip() = Vouet+T) + BT ' S k

Vi (G+T) + R0 +TH+ H0(®) | | o 4.7

. [+>) .
= Vour®+T) + ZI{’ (Vous (2 +7))
n=1

So the inverse operator to R(?) can be writien in the form

Vin (t) = AWt @)

el B -
A() = 8(¢+T) = +ZI§‘ (--) . ' (4.8)
. n=1 . : ’
t+2T
) =3 | (e
t+T

Alternately we can deal in terms of ¥,,,,(r+7") without the additional time shift.

This formal solution may have some difficulty in implementation due fo the infinite series of repeated (
integrals. This may depend on whether or not a few terms are adequate for implementation in appropriate
circamstances. This may also depend on the time duration for which it is fo be applied.
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5. Ideal Lens Impulse Radiating Anterina

A lens TRA is basically a TEM horn with a lens at the aperture to make the aperture fields a plane wave.

_The ideal transfer function given in [1, 4] is

Ve) = rEp(f) = ~Hh——L(?)

dncle - _ _ o o
L(t) = 8() + —;-[—u(t) +u(t-T)] o I _ (5.1
T = round trip tramsit time

This is basically a time-reversal of R(t).
Following the procedure in the previous section we have

t t
1 r ] r
Vo) = Vin®) + 3~ [ Vnl)at + [ Vi e-1a
—0 —wo
¥’

= V) - - | Vi)
)
Vin (1) = Voua () + 53(Vin (1))

By =2 [ e

t-T

Vin1) = 6() © Vo) + )1 (Vout (1)
n=1

(5.2)

) o o) o + D H()
n=1

As one can see, this is quite similar to the previous resulf.
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6 Concluding Remarks

Here we have analytic formulas for deconvolution in the time domain. These have varying degrees of

simplicity. The shift-and-add form for the directional coupler is simpler than the recursive integral formulas for the '

IRAs,
Such analytic procedures will not solve all deconvolution probiems. To the degree that they remove some

of the disﬁersion in the data, the corrected data can perhaps be more accurately processed by numerical Fourier
transforms since the remaining transfer fumction to be unfolded then corresponds more closely fo a delta function.
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