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Preface

(3

In Reference [R1] (among other Places) there is derived a result which
gives confidence level as a function of reliability of a finite population and
experimental data (subject only to the maximum ignorance assumption). Of
recurrent special interest is the confidence level when the test results are
uniformly good, i.e., all tested elements pass their tests. One situation in
which this special case is of interest is optimistic test planning. The
question in that situation is, "If everything passes the test, what is the

smallest sample size we can test which will provide certain predetermined
inimum levels of confidence and reliability?" (The reason for the interest
in this question is, required sample size is minimized by having all tested
Tements pass.) Sometimes of special interest also is the confidence leve]
hen the test results are uniformly bad, i.e., all tested elements fail. A
ituation in which this case is of special interest is when one wants to know

nother situation is that in which the (pessimistic) question is, "If everything
ested fails, how many will we have to test before the confidence level or
eliability drops below a prespecified threshold?"

To answer such questions it is necessary to be able to invert confidence
s a function of reliability, popu1ation size, and sample size. To achieve such
inversions economically it is desirable that the confidence function be as simple
as possible. The present note derives a few such analytic simplifications. The
principal results for purposes of applications are equations (11) and (14), and
their even-more-special-case corollaries, implications (12) and (15). These
results allow some reliability-confidence calculations which previously were

practicable only on a computer now to be performed easily on any hand calculator,
and sometimes even by hand.
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Some Special Case Results for Confidence and Reliability in a Finite Population.

1. (Introduction.) 1In Reference [R1] there is derived a result which gives
confidence level as a function of reliability of a finite population and
experimental data (subject only to the maximum ignorance assumption). That
result is presented as equation (4) in that reference. In Reference [R2] the
same result is presented again, there as equation (1), but with a slight change
in notation. With that change it appears as:

%ith
CRN, LM = DINRLL - (1)
I=M

where finite cardinality of the population,

number tested to date (sampling done randomly without
replacement),

number which have passed the test to date,

population reliability (by which we mean a lower bound
on the fraction of the population which would pass the
test if every member of the population were tested),

confidence level in R as a result of test data to date,
least integer greater than or equal to x, and
greatest integer less than x.

ne> s

e He>

C
Mx1
Lx]

e we> He>

2. (Purpose.) The goal of the present note is to present analytic simplifications

of equation (1), above, for two special cases, viz., M =1L (i.e., all tests
successful) and M =0 (i.e., all tests failed). To achieve this goal we begin
by establishing a theorem and three simple lemmas.
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Symmetry Theorem for Confidence in Reliability of a Finite Population:

C(R,N,L,M)

(2)

1 - C(1-R,N,L,L-M)

N-1

1

i)

g

1 - C(1-R,N,L,L-M) L g I

1
N-L+(L-M)
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3.

Proof:




LN(1-R) §,

I\/N-1
A — \KJALK
R ey N-%th)i .
2 |6
KJ\L-K
I=k L i
LN(1-R) ] - )
I\(N-1
106
1=k L /]
N-L+K v

Now, since M is defined in the present note (and in Reference [R2]) as number

- observed good to date, it follows that K as defined above is the number observed
bad to date. Therefore the last expression above is the same as the right hand
side of equation (4) in Reference [R1], which is just C(R,N,L,M), q.e.d.

4. Lemma 1: N+1) N N '
() - ) () @

This lemma is just equation 3.1.4 in Reference [R3]. It is easy to remember,
since this is the fact which one uses to write down Pascal's Triangle. (The Lth
entry in the Nth row of Pascal's Triangle is (ﬁ) .) A proof is provided as
Appendix A of the present note.

5. Lemma 2: N

0ss = 3 (1)- (2) ) @
I1=N-J

Proof: By induction (on J):
Ground step (J=0): Equation (3) ={>

> () - (@) (uha) - () ()
= (1) - (4) - (&) - g-e-d.
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Pro

Induction step (true for J-1 = true for J):

N .
Assume Z (ll-) = (E:i) - (N-f_iil)) (5) .
I=N-(J-1) ‘

e 3 (5): 3 ()@
@ (%) (':ii) (-350)
() - [ - ()]
@ (- () e

ernative, non-inductive (i.e., direct) proofs of Lemma 2 are also provided
Appendix B.

Lemma 3:

I=L

) - () R

of: By induction (on N):
Ground step (N=1):
If N=1 and there is a sample then L=1 ,
So N=1 means we must prove 1

. « » which is obvious. .
Induction step (true for N-1 = true for N):
N-1

Assume ( ) = (L+1) (7) .

I=L
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N N-1

- 20 0-50

I-L =L
- (E) ' (;El> = (E:i) » q.e.d.

Alternative, non-inductive (i.e., direct)

proofs of Lemma 3 (from Lemma 2) are
also provided, in Appendix C.

7. Returning to paragraph 2, above, we can now derive the special case of
equation (1) for M =L , i.e., all tests successful. Well,

N-L+L -
:E: I\ [N-1

1) I=[NR] (L) (P_L)

C(R,N,L,L) NoLL - =

> [0 ()

I=L -

N

> )
N I=F:R1 16)
2

1=

(I)

L

(6) I=fN§11 (8)
L+l

To proceed we may consider two subcases (under the case M = L), wviz., L < [NR]

and [NRT < L. 1In the first subcase we may apply Lemma 2 to the numerator of the
right hand side of equation (8), yielding:
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O

N -

ot O O w

Ed

(N+1) ) (TNRT)
oLy 44\ ” \is

(9) .

.

n the sécond subcase we invoke the fact, from the definition of binomial
oefficients, that

K<L = (t) =0 (10) .

his implies that the summands of the right hand side of equation (8) equa1
ero until I =L, Therefore

MNR] s L =D i (i) - i({)”b

I=[NR1 I=L

={> the numerator and the denominator
of equation (8) are the same >

=> C(R,N,L,L) = 1

ut TNRT g L =D [NRT < L+l , so if we apply implication (10) to the numerator
f the rightmost term of equation (9) we get exactly the same result, viz.,
(R,N,L,L) =1 -0=1. Therefore using implication (10) allows equation (9)
o work for both subcases. Therefore we have proved:

INR]

9 (ul)

CRN,L,L) 8L . (N+f)
L+1

[ [NRT! ]
L+ T{TNRT-L=17]

(N+1)!

[TEITTTTH?[TT]

= 1 -
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1 jTNR]!(N-L)!

= C(R,N,L,L) - (fNR]-L-l)}(N+1)!

INRT

T !
_ I=[NRI-L

= |C(R,N,L,L) N1

1]
[y

#

i

—t

]
o
Z|Z
|
L gt f0ON ]
~—t
]
—

It should be noted that evaluating the right hand side of equation (11) requires

(11)

Tittle more than multiplying together L+l simple (i.e., just integer-over-
-integer) fractions. Thus equation (11) can be handled easily on any hand
calculator, and even more trivially on any programmable calculator (unlike

equation (1), i.e., equation (4) in Reference [R1] or equation (1) in Reference

[R2], which generally requires a computer).

8. Corollary 1: N-1 Al
N < R a’b C(R’NQL’L) - N+1

Proof: Eﬁl <R =D N-1 < AR

But R < 1=D>NR < N. Therefore we have N-1 < NR < N . Therefore

MR w1 o=
(11) - (N-L)
N-1 13 11 N-L)}+]
Therefore == <R U3y C(R,N,L,L) 1l - IN-L+17+1
1=0
o . N-L)+0
(N-L+1)+L
A E )
TN+l N+1
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(12)

(13) .

s Qe€.d.




| e B < "R T = B ~ T RN =)

D

-

>

n alternative proof of implication (12), which is direct in the sense that it

does not use equation (11) (i.e., which treats implication (12) as a result in

ts own right rather than as a corollary) is offered as Appendix D.
. For example, suppose the Air Force has a type of airplane of which there

nd all have passed. Then the conditions of Corollary 1 are satisfied, and
he confidence level in a fleet reliability of 90% is, by imp1icatioh (12),

-

9
are only 9 copies, is interested in a reliability of R = .9 , has tested 5 ,
a
t

IES S
C(og,ggs,s) - N+1 9+1 60% .

f the reliability of interest is R = .9 then of course Corollary 1 would
pply to any fleet size less than 9 also. A real example of such a small
opulation of interest might be the E-4B fleet. (Of course no homogeneity
ssumption is being invoked here. In fact, no more than the maximum 1ghorance
ssumption is being employed. -- For é treatment of this issue cf. Reference
R21.) \

0. Returning to paragraph 2, above, we now seek an analytic simplification of
quation (1) for M =0 (i.e., all tests failed). Well,

CIR,N,L,0) 2L 1 c(1-r,N,L,L-0) =

L
(11) (IN(1-R)]-L)+1
1-41-TT -0+ T

= | C(R,N,L,0) ’fW‘ e (14) .

s was the case with equation (11), evaluating the right hand side of equation (14)
equires little more than multiplying together L+1 simple (i.e., just integer-
over-integer) fractions; this is easily done on any hand calculator.
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11. Corollary 2:

T
r

R < -Nl- =D CRN,LO0) = FF (15) .
Proof: R <L N-(N-1) _ 12N g
N N N
<= ﬁﬁl < 1-R .
Therefore R<3=D crN,L0 &g Cl1-R,N,L,L) H2)
12) 1- ﬁ%% = %i% s ge€.d.

Of course an alternative way of proving implication (15) would be to deduce it
from equation (14); hence the term "corollary".

12. Obviously, by changing Lemmas 1 and 2 appropriately results (14) and {15)
could be -derived first, and then results (11) and (12) obtained from them by .
application of the Symmetry Theorem for Confidence in Reliability of a Finite
Population (equation (2)).

13. In closing, it might be helpful to make a few remarks concerning the ,'
relationship between these results and some other facts in the time-independent-
-reliability field. Suppose the cardinality of the population of elements each

of which might be either a "success" or a "failure" is infinite. Then equation
(10) in Reference [R4] plays the same role for such an infinite population as
equation (11) in the present note plays for finite populations. Sometimes
"success" is defined to be a physical variable's having a value in a certain
interval (or domain). 1If the interval is the data range with one end point
deleted (thus making the interval half open), then equation (13) in Reference [R4]
is the appropriate equation if the population of possible realizations of that
physical variable is infinite. However the present note provides no analogue

for this latter case for finite populations since then M = L-1 . -- Very similar
in form to equations (10) and (13) of Reference [R4] are two variations of Wilks's
Tolerance Theorem. See for example equations (13.6.4) and (13.6.12) of Reference
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[R5], or equation (22-10) of Reference [R6] (there is a sign error in at least
one printing of the latter), or any of several references provided under
“Collateral Reading" at the end of § 22-6 of Reference [R6]. The differences

in form between these variations of Wilks's Tolerance Theorem and equations (10)
an
definitions of “"confidence" being used (viz., Bayesian vs Neyman-Pearson).

The point, however, is that it would be incorrect to use either the equations
of Reference [R4] or those referred to in References [R5] and [R6] above if the
po
population results would be approximately correct if the population is quite
large ("essentially infinite") compared to the sample size; but the errors in
using them when the population size is small, in contrast, can be considerable.
(That Wilks's Tolerance Theorem is not exact for finite populations can be seen
in several ways without tracking through the details of its proof. One way is

d (13) of Reference [R4] can be attributed to differences between the technical

pulation of possible realizations is finite. The results of using such infinife

mply to notice that the result is not a function of the population size.
other is simply to notice that Y in the equations referred to in References
5] and [R6] above is a continuous function of p in those equations. Since it
known a priori that the fraction of finite population objects included in a
xed interval can be one of only a finite number of values (viz., the N+l
Tues % ; % s % s ves % ), confidence in reliability of a finite population
st instead be a step function, with steps at those values.)

Page 13 of 19,




Appendix A | | | <:)

Proof of Lemma 1.

Lemma 1: (Ntl) i} (E) . (Lfl) | (3)
Proof: NY (N . N! N -~ N! '
L L-1 LI(N-L)!? (L=1)V(N-L+1)!
= N(N-1)- --- -(N-L+1) _ N(N-1)e -+= - (N-L+2)
L1 . : (L-1}1!
- N(N=1)> eve o (N-L+1) N N(N=1)s eee o(N-L+2)L _
L! {L-1)'L -

LN e c(NeLe1) 4

+ N(N-1)* +== «(N-L+2)L]

= P NON-L)+ cee <(N-L#2)[(N-L+1) + L] =
= %T N(N=1)* == «(N-L+2)(N+1) = ~ (:)
e ANFL)(N)(N=1)e e« «(N-L+2)
LT
N 15 ) LI 425
T OLTN-C+ DT T ( L ) » g.e.d.
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Appendix B

Alternative proofs of Lemma 2.

Lemma 2:

Alternative proof a:

N
0sJd =D

({) (m) (M) (a) .

Adding up J+1 successive applications of Lemma 1,
equation (3), yields:

I=N-J

Alternative proof b:

_(N-d N-J

+ 1) ° (L+1 * ( L )
. N+l _ [N-J
Sum: (L+1) = (Ll

)
) 3 ) }  qee.d.

I=N-J I=L I=L

Lemma 2 can also be viewed as an immediate consequence of
Lemma 3 (i.e., of eq. (6)) ... provided, of course, Lemma 2
was not used to prove Lemma 3 (i.e., provided Lemma 3 is
‘proved as in the text, not as in Appendix C, below).

N N

M=

Using L $ N-J $ N, so that
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Appendix C

Alternative proofs of Lemma 3.

Lemma 3.

Alternative proof a:

Now choose J 3 N=J = L+1

g &

"
—
+
=
N

, T.€.,

N-L-1

Then equation (16) becomes:

H
P
+
—
g
v
'
P~
—r
+ +
[
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-(N-L-1)
L+1

) -

(6)

(16)

(17) .

s qe€.d.




Alternative proof'b: If Lemma 2 has already been proved (without employing
Lemma 3, of course), then substitute L for N-J in
the two places where that difference occurs in eq. (4).
The subtracted term on the right hand side of eq. (4)
will then vanish, by implication (10). What remains
will be eq. (6), i.e., Lemma 3, q.e.d.

t
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Appendix D

A direct proof of Corollary 1.

Corollary 1: (NQ) < R= CRN,L,L) = %h—]% (12)

Direct proof: Applying implication (13) to equation (8) yields:

N
Ml D eronLL = A .

N N+1
L+1

[N(N—l)' ’(N-L+1):]

L{L-1)s <<« 2

[(N+1)N‘ l:[(N+1)—(L+1)+1]] N

(t-{.l) LI Y '2
L+1
= m s qoeodo
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