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Abstract

In the 1980s, an electromagnetic infrared metha iwitially developed at the US Air
Force Academy (USAFA) and the University of Colaaat Colorado Springs (UCCS) that
produced the first images of EM fields made by m@iinared camera measuring the heating of
absorbing materials. In the 1990s, this field imggnethod was then enhanced by the French
Aerospace Lab ONERA, under the registered name FEMAs an electric field measurement
technique by introducing synchronous modulatiorthef EM incident signal. EMIR provides
two-dimensional representations of the electricldfiethrough a quasi-instantaneous
measurement. This can be useful for fast charaeteyn of radiating sources, especially in the

microwave frequency range. In addition, it is cdealf imaging subwavelength details.

In this paper, a digital signal processing schesngréoposed that consists of applying a
temporal and spatial filtering to the video sigrabnsidering the trade-off between additive
noise, uncertainty over system parameters andabptensfer, the signal-to-noise ratio can be
improved by up to 8 dB. Further, the advantagea cohirp modulation signal over a single

frequency lock-in thermography system is demorestrat



1. Introduction

Characterizing electromagnetic (EM) fields emitbgdvarious sources is an important issue,
either for civil or military applications (telecomumications, radar, antennas, civil and military
aeronautics, medicine, etc.). With a single prabdecal EM field measurement can be performed, but
for the visualization of a spatial distributiontaep@wvise displacement of the probe is necessaryghwhi
can be time-consuming. Consequently, infrared tbhgraphy is an alternative way that provides a
field map in reduced time. This method was developethe early nineties [1, 2] and is used at
ONERA where we call it EMIR (ElectroMagnetic Infra&) [3]. It aims to obtain a visualization, and
a gquantitative measurement through calibrationthef electric field amplitude radiated by the
microwave source under test. The EMIR method ctssidrradiating a weakly conductive thin film
to the EM field. The induced currents cause tha fib heat up in proportion to the power absorbed,
which is then recorded by the infrared camera (f&dl). In order to increase the spatial resolution,
and eliminate continuous thermal phenomena (comreatonduction), the EM source is modulated

at a low frequency ( = some few Hz), and the series of image frarmademodulated at the same

frequency.
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Figure 1. EMIR method: the thin film absorbs a pmrtof the radiated energy and heats up, Whlcheisaded
by the thermal camera; the video is then digitdéynodulated.

Previously, the demodulation of the lock-in thermagdny was carried out by an analogue
circuit board that was associated with the camedatlae reference signal generator. Each pixel®f th
recorded video signal was multiplied with the sidal modulation signal and a 90-degree shifted
version of it. The resulting in-phase and quadet@mponents were then accumulated into two image
buffers [2]. These could then be converted intaaarplitude and a phase image, the former being
proportional to the EM absorbed power. Since ondydutput images were available, the user had no
control over the signal processing, which presemtsirawback of such an analogue lock-in

thermography system.

However, in the case where all the recorded fraanesavailable (no buffering), it becomes
obvious that Digital Signal Processing (DSP) ccadused to improve the demodulation process. A
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single data acquisition usually consists of hundgredthousands of infrared frames. Considering a
typical high-performance camera with 640x512 pixsdasor (like the one we use [4]), there is an
order of magnitude of 1 GB (for a typical recordimigl000 frames) of data to process. A standard
personal computer can handle this amount of data.

The objective of this paper is to demonstrate B8P techniques to extract the power density
distribution from a thermal video signal. After analysis of the measurement chain in section 2, we
present in section 3 different filtering approagHesm elementary to more complicated schemes; we
illustrate in section 4 how they improve the dynamainge of the image by enhancing the signal-to-
noise ratio (SNR).

2. Acquisition model

Previous works have optimized the EMIR method wéhlpect to certain sub parts of the
imaging system [5]. In doing so, the thin film (esplly its material and thickness), the cameras@o

and framerate), and the modulation process (frexy)emere considered individually.

However, no optimization process has yet considéreéntire system as a whole from a signal
processing point of view. Therefore, we present leemodel of the entire signal chain that asscgiate
the sub parts of the system, which are the radiaystem [resulting in a power dengatymodulated
by a functiong- on the locatior{x,y) of the film], the thin film (with optical transfdunction M that
depends on the modulation frequeriayf the g modulation signal, and on spatial variations & th
heating on the film at spatial frequencigdy), the thermal camera (that adds a nojsand the filter
H. This signal chain is shown in Figure 2.

radiating system film camera computer

. " . estimation of the
modulation additive noise power density

donsty P(@Y) M(f, £z £,) i H(f, o f)l— —> B(z.y)
o B
transfer function filter
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A

Figure 2. Signal chain.
2.1. Signal chain

The EMIR method is an imaging system, which is egjeint to making an image (2D map of
the magnitude of the electric field) from a scelBB (power density). Let us sayx, y) is a 2D cut of
the 3D power distribution that we intend to mape Dutput of the imaging system, as a 2D signal, is

then an estimatg(x, y) of the real image(x,y). The process of modulating the power source is
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solely an intermediate step of the imaging prosasse the dimension of time is eliminated after the
filtering step.

First, the real image(x,y) is modulated with the signaj(t), which corresponds to the
squared amplitude of the output of the signal gaieer The resulting tri-dimensional sigm{t,x,y)is
then transformed by the thin film into a temperatuideo signat(t, x, y). This transformation is a
linear shift-invariant system (see paragraph 2i8) the impulse response(t, x, y). During sampling
with the camera, the signal is disturbed by noisgrmmena, that we model with an additive noise
n(t, x,y). The resulting video signal is then digitally pessed by a filter operation with an impulse
responséi(t, x,y) and finally the signal is sampled in timetat t, to obtain an image.

We can, therefore, relate the estimated imag@ad the real image through the following

equation:

p(,y) =[(p-g) *m=*h] (to,x,y) + (n* h)(ty, x,y) (1)

where* denotes the three-dimensional convolution.

2.2. Optical transfer function
With the Fourier transform we can also write:

ﬁ(fo) = (Tl * h)(tO'x'Y)

+[[ PGas) [ GOMUF fu fVH(F, S fy Yo s pemreiznis agaf,

where the uppercase letters stand for the Fouiagsform of the according lowercase lettdis (

(@)

corresponds ta (letter with a bar) since the letter(without a bar) is the heat transfer coefficient).

By neglecting the noise for the instance, we catewvine image spectrum gfas a simple product:

P(fu ) = P(Fo ) OTH fe ;) ©)
where"OTF " is the optical transfer function:

OTF(f,. f,) = f GOM(F fu f)H(f for £, )20 df 4)

The inverse Fourier transform of the optical trandiinction is the point spread function
PSF(x,y) = F; H{OTF(f,., f,)} [6], which will be noted “PSF”. The goal is thaetestimated image

is as close as possible to the real image:



P(f;c'fy) ~ P(f;c'fy) (5)

Thus, we want to design our system suchdhﬁ(fx,fy) ~ 1 for the spatial frequencigs and
fy of interest. For this, we need to choose a moulatignalG and a filterd well adapted to the

transfer function of the film. One might propose to set the filttras the inverse a¥l. However,
we also need to consider the influence of the n@setion 3). But first, we characterize the transf
functionM.

2.3. Thin film transfer function
The heat equation in the thin film is given by:

pCy D — kAT (2, 7) = G(t,7) (6)

wherep is the film densityC,; its specific heat capacity of the film, ardhe thermal conductivity of
the film. The power densit§(r, t) corresponds to the net rate at which energy isrgéed in the film.
This is the EM absorbed power densityminus the heat convection and radiation as the Ifses
energy to the ambient room. As the Biot numBer= h.d/x (whered is the film thickness) is much
smaller than 1 (see below) we can assume ideténgleratures on both sides of the film. Moreover,
if the temperature variation is small compared lte ambient temperaturg,, the radiation and
convection terms can be linearized into a singldifreml heat transfer coefficieht[7]. The equation
becomes:

aT(t) F) - - -
pC, SFTE KAT(t,7) = p,(t,7) — 2h[T(t,7) — Ty]/d (7)
Under the assumption of the “lumped system fornmt [7] (since p= 1420 kg,
Cp = 1090 Jkg'K?, x=0.5 WKml, h =15 WK!m?, film thicknessd =50 um the Biot number

K
pCp2rf

Bi < 0.001 is much smaller than 1 and the thermdusidn length [8]L, = > 0.1 mm, is

large compared to the film thickness), the tempeeais constant over the film thickness. The films
we use are typically made of carbon loaded Kaptith aconductivity in the range of 5 to 20 $m
Since the skin depth is large compared to the filiokness § = 50 ym), the absorbed power is
uniform in the thickness of the film.

Under these assumptions, the heat equation canrittenwvas a function of two spatial

dimensions only. The pertinent power entity is rtbessurfacepower density(t, x, y) and we have



oT(t,x,y) 02T (t,x,y) 2T (t,x,y)
T d—— e d —— T = - - 8
pCpd ™ kd %2 kd 372 p(t,x,y) — 2h[T(t,x,y) — Tp] (8)
By applying the Fourier transform with respect,to andy, we can derive the transfer function
M of the film, which transforms an EM surface power temperature signal:
1

M(f. fu fy) = 2h + kdan (24 1,7) + ipCodznf ©

This function is tri-dimensional, but it has a @dymmetry. We can thus introduce the polar

frequencyf, = /( 2 + f;7). Figure 3 shows the modulus M{(f, f;) for carbon loaded Kapton and

the isof lines (for integer multiples of a typical modutatifrequency = fm = 0.5 Hz):

Transfer function

I 20 log,, M (f, f;)
& f=k-05Hzk=1,2,..

10° fulm™Y)
Figure 3. Film transfer functioM (f, f,) on a logarithmic scale in thg direction, on a linear scale ifi
direction.

3. Filtering approaches

Several filtering approaches are considered.

3.1. In-phase demodulation

The video recording containing all the frames i®cpssed after the measurement. By
multiplying the time signal of each pixel by a cdmpexponential at the modulation frequenmciye.,
n(t) = e/?™t as it was achieved by the analogic circuit botrd,optical transfer function can be
expressed as:



c e—J2mfAt

OTF =
() 2h + kd4n?f,? + ipCyd2nf

(10)

with a normalization constamtand the time shifat between the modulation and the demodulation
signal. Because of the radial symmetry, we canutatle the PSF by using the zero-order Hankel
transform [9]. It can then be expressed with thelifred Bessel zero-order functidy [10], which is
depicted irFigure4:

—j2nfAt
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Figure 4. Point spread function when the heat epérgnsfer exceeds convection, izh,can be neglected
and no time shift 4t = 0).

We notice that the PSF is complex with the real paing better resolved than the imaginary
part. Also, the real part dominates the imaginany around zero. We can, thus, increase the résolut
by taking the real part of the complex image. Ho&vewe must assure that the time shift is zerq, i.e
Re{e™/2mfAt} = 1 . This can be achieved lgmodulating in phasén addition, taking the real part
eliminates the imaginary part of the noise. Thipraves the SNR b$ dB compared to taking the

absolute value.

3.2. Spatial filtering

Through spatial filtering of the demodulated image,can eliminate high (spatial) frequencies
that are generally associated with noise. Thisbeadone after the demodulation process, by applying

different low-pass filters that truncate, or atteteu (Butterworth filter, Gaussian filter etc.) high
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frequencies. However, the cut-off frequency usedtiese spatial filters is somewhat arbitrary. This
limits the significance and, therefore, the intenespatial filtering. A better approach is, tHere, to
use the transfer function that represents the paly&iehavior of the thin film, to address spatial
filtering. This can be done by using a spatiallytchad filter that maximizes the SNR:

M, ) 12)
|M(f, fr = 0)I

In this equation (as in the following ones), theeiar is for complex conjugate. The

H(f) =

denominator is a normalization constant that ersstirat the absorbed power does not change. This

operation is a low-pass filtering with a cut oduency off, = ﬁ The PSF is now a real function
t

and it takes the form of the Kelvike/ function, as it was the case with the imaginany pathe PSF
in section 3.1.

Instead of spatially filtering the already demodedhimage, we can design a filter that is
applied in all three dimensions at once. Neverdslapplying the spatial filter after the demodalat
can be useful in the case where the video recoindingt available or for the purpose of computing

efficiency.

3.3. Matched filter

So far, we have demodulated the temperature smnahe frequency, i.e., the modulation
frequencyf = f,,. However, the measured signal might have a rispectrum than the one of a
purely sinusoidal signal. For instance, if a pegah-off switch controls the microwave power sajrc
a square wave is generated. The modulation sigialc@nsequently, the temperature signal then have
harmonics of higher order. We can use these péarteeosignal to increase the SNR. Instead of
demodulating at several frequencies and then cantbihe resulting images, we can use a filter to

extract all the useful information of the signabate. However, if we exploit the entire spectrdm o

FPS

the measured signal (not onfy= f,,, butf € [O, T])’ we must consider the transfer function

M(f, f,-) for all f. Consequently, it is useless to apply the spéliat after the temporal filtering as
in section 3.2. But we can develop a tri-dimensidit@r H(f, f,). One way of designingl is by
using the matched filter which maximizes the SNRafgingle ideal image point [EM density is a 2D
Dirac impulse:p(x,y) = pod(x — x4,y — yo), With the intensityp,]. We define the SNR as the
signal poweS = p(x,,V,)? over the additive noise powd},,, using the Parseval's theorem and the

Wiener—Khinchin theorem respectively:



S _ o3l GOMUE H(S, fe?™odfdf, df,|”
Noad [T $.CF, IOIH(F, fO12df df.. df,

wheres,, is the noise power density of the additive noisd with anarbitrary (not only a square

SNR = (13)

wave) modulation signal with the spectrd@qf). By maximization of the SNR, the tri-dimensional
filter is then given by:

GHOM, f)
Z Sn(fo fr)

whereZ is a normalization constant that assures@i&t(f, = 0) = 1[11]. This filter acts differently

H(f, f) = e~ b (14)

on the spatial components dependingfon

3.4. Heat coefficient influence

If fand f,. are small, then the teri®h corresponding to natural convection phenomena
determines the transfer function [see equation](I)is term is in general not well known and
depends on the temperature difference betweenlthemd the ambient air as it is obtained through
linearization. Values between 5 and 20 Wk? are usually used as a rough estimationhfofhis
uncertainty can be included in the filtering pracéy describingh as a random variable with its
probability density function. For example, we capresenh with a normal distribution b, centered
and with standard deviatiar),.

We use this probabilistic approach to derive aapiswer that arises from the propagation of

the uncertainty oveli. We define the noise pow#,. as the variance of the optical transfer function

accumulated over the power spectral denjty,) of the imagep(x, y):

Noey = f f S,(fVarlotf (F)1df.df, (15)

whereVar[-] denotes the variance operator with respect todisigibution of h. We remark that
equation (15) can be generalized to include uniceytaver several system parameters at the same
time.
As we are still considering an ideal image poitig fpower spectrum is uniform. i.e.,
Sy(f,) = p§. However, we note the more general form as weretilse this result in the next section.
Through extension and rearrangement, we can wriabise power in the form of a filtered

noise power density:

Noey = f f f Socs (Fs VH(, VP df dfid, (16)



The noise power density,.((f, f,) = S,(f)U(f, f) can be written as the product of the

signal power spectrum and, what we call the “uracety transfer function”:

_ 1 |6 e T TS|
UGS = KU s | e, oy EMU IIEIMUE LM f)df
GO (17)

— -7 - ! 2 14

with E[-] denoting the expected value with respect to te&idution ofh. Then, we can extend the
definition of the SNR:

S
SNR = —mM8M 18
Nadd + Notf ( )

whereS andN,4q are, respectively, numerator and denominator fegomation (13). Sinc#/,.s has

the same form al, 4, we can regroup the interiors of the integrals to

K(f. fr) = Su(f. ) + S (FU(S f7) (19)

The SNR is now under the same form as equations@d #)at we can reuse the previous result,

the matched filter. We, therefore, have:

Her )y = COFMGEIN e, 20)
ZK(f 1)

where Z is a normalization coefficient.

The expected value operator aroudf, f,.) is necessary because of its probabilistic nature.
The correction ternX (f, f,-) represents the additive noise, as before, plusn#&ribation due to
uncertainty oveh.
SinceU(f, f,,) depends oK(f, f), the correction term is defined implicitly. Thesed, we cannot
calculate the filter directly, but we can computéaratively starting wittK(f,f.) = S, (f, f;-) until
we reach the fixpoint.

This filter is designed such that it attenuatessilgeal in spectral regions of high uncertainty
related to the heat transfer coefficignthowever, it also alters the PSF and may, thuspdate

artefacts to the image.

3.5. Wiener filter

Previously, we have optimized the SNR for a siriglage pointS,(f,) = p§. However, an

image is constituted of a superposition of manysiHence, it is not enough to consider the SNR,
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but we must take into account the optical tranffection as mentioned in section 2.2. Therefore, we

now consider the mean squared error in the frequéomain:

e(f) = E|IP(5) = P[] (21)

with E[-] denoting the expected value with respect to thtissics of the signah(x, y). By insertion
of the Fourier transform of equation (1) and usihg solution of the matched filter (20) as an

assumption, we can minimizéfx,fy) with respect t& (£, f,-) by differentiation:

S ( £) G 2IMCE, £) 2
5,07y T RO K(, 1)

This result is known as the Wiener filter [12], whican be interpreted as mverse filter

K f) = df’ (22)

W (f, f,) (right summand) regulated by the reciprocal offtequency-depending signal-to-noise ratio

SNR¢(f, fr) = %f;)) (left summand). As we are minimizing the squanmedresolely over the spatial

frequencieg f,, /), i.e.,f excluded, the filter takes again an implicit form.
If we want to take into account the uncertaintyrote heat transfer coefficieht we can
replaces, (f, f) with S,,(f, ) + S, (fF)U(f, f-). We then obtain an interpretable result:

1
K(f, fr) =W+U(ﬂﬂ)+w(ﬁfr> (23)

which is a modification of equation (19), i.e., idien byS, (f.) and extension wit/ (f, f,.).

We observe that the matched filter is modified tigto the interplay of the three terms of the
correction ternk. If the termi/ dominates, when the SNR is high and only small tac#y prevails,
we can check thadTF(f, f,) = 1. Otherwise, the modified matched filtér attenuates spectral
regions of low SNR or high uncertainty relatedhtoWe have, thus, found a compromise between
optical transfer, noise reduction, and the inflleeatthe uncertainty over the heat transfer coeeffitc
h.

It remains to determine the quantiti€s(f,) andS, (f, f.). The latter is the spectral noise
density, which is camera specific and can be medsiigh performance thermal cameras should
exhibit a white noise, i.65,,(f, f,) = Ny. The power spectral densify(f,.) of the real image cannot
be determined without making assumptions on theganae., the EM power density distribution
p(x,y), that is to be measured. In some cases, the ENMetiet is absorbed by the thin film is known
(usually 20% of the incoming EM power [13]). Sintee absorbed EM power is defined as
Pus = Jf p(x,y)dxdy, we can deduce by the definition of the power spédensity that:
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2
S, = 0) = -2 (24)

with the area of the image. Further, we suppose fh@t, y) is smooth to some degree. As it is done
with natural images [14], the power spectral dgnsgst set to decrease witfi to a powera.
Additionally, we introduce the cut-off frequengy,;, so that we can write:
Pgbs 1

A 1+ (fi/feud)®

Eventually, we have reduced the filtering procesfour degrees of freedom that need to be

Sp(f) = (25)

set heuristically: the expected value of the hesidfer coefficienk, and its standard deviatian,,
the exponentr, and the cut-off frequency,,,. However, the values o, f.,; and h, can be
approximated by matching the expected temperapeetsim to the radial average of the measured

temperature spectrum.

3.6. Chirp modulation signal

In lock-in thermography it is common practice todutate the power source by switching it
on and off periodically [9] which generates a sguaave of a modulation frequenfy and associated
odd harmonics. This, then, raises the questiomwaftio choose this frequency. Suppose that we choose
fm too small such that the influence of the heatsi@ncoefficient is considerable. The matchedrfilte
(20) will then figuratively try to avoid this fregmcy and will prefer higher harmonics of the signal
However, with the predominant portion of the sigeakrgy being concentrated on the fundamental
frequencyf = f,,, only little energy will be transferred and, thtls& SNR will be low. Similarly, if
we choosg,, too high, we obtain a low SNR since the trangfectionM (f, f,.) decreases witfi. In
other words, if we set the modulation signal toéhawsingle modulation frequency, the matched filter
cannot figuratively avoid regions of high uncertgiwithout significantly degrading the SNR. This
motivates the use of a chirp as the modulationatjge., a signal that sweeps over several frecjasn
[15, 16] use similar approaches to improve the tmalpresolution in non-destructive evaluation
through impulse compression. However, as EMIR irsagenot have a time dimension (modulation
in time is an intermediate imaging step), we prepmsuse the chirp solely to increase the spectral
diversity of the signal. Since a chirp is more idiift to implement, one might still prefer a square
wave if the measurement conditions are well known.

Let us derive a temporal expression for a chirge iHstantaneous (time dependent) frequency

of a signal is defined as the derivative of theantaneous phase:

12



f(®) _z_E"’() (26)

Further, we remark that the energy in a frequeacygedf of the modulation signgj(t) is
proportional to the timdt spent in that frequency range. We can thus write:
2 o dt
|G(I* (27)
df
We deduce here that a linear chirp exhibits asftetctrum over the modulation baBAdBut,
considering that the transfer function declineshwft, the energy spectral density can differ
significantly over the band. We can avoid this peab by requiring that the modulation signal

compensates the low-pass characteristid of
IG(H)I?|M(f, f, = 0)|*> = constant, wherefy <f</f,+B (28)

We can use this to rewrite equation (27):
dt 1
df M, fr = 0)]

where the second proportionality follows from apm@ximation ofM(f, f, = 0) by neglecting the

o f2 (29)

term 2h. More generally, we can make the energy specaasity proportional tg™1, with a real
valued and strictly positive degrae This allows a free choice over the distributidrite energy in
the spectrum, e.gz, > 3 more energy in the higher frequenciesang 3 more energy in the lower
frequencies.

We can now solve for the instantaneous phase €of0, T, ]:

n+1

max 0

with f.qx = fo + B and the modulation peridd,.

Note, only the phases have been determined. Thierefe still need to choose the signal

function independent of the phase. As earlier, vop@se the usage of a square wave such that:

1,if¢gmod2n <m

g(t) = rect(¢(t)), withrect(¢) = { ’

0, otherwise (31)

With degreen = 3, the resulting signal is a square-wawedbic-rootchirp, which is depicted

in Figure 5
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Figure 5. A square-wave cubic-root chirp wfh= 0.1 Hz, f,,. = 0.6 Hz andT,, = 40 s. The heating
signal spectrum is approximately flat in the modiolaband. Forf < f;, the spectrum raises because of the
neglected terndh and imperfections in the chirp generation.

3.7. Interpretation

We now illustrate how the filtering is carried dayt combining the results from the previous
sections. Therefore, we refer to Figurewhere the blue arrows indicate the physical sidioaV
leading to the temperature signal spectrﬂfyf,ﬁc,fy) which is the 3D Fourier transform (dashed
green line) oft(t, x,y). The plot of the spectrufi has a uniform extent in the direction of temporal
frequencies since the modulation signal is a cubt-chirp. Following the green arroWE(f, frr fy)
is multiplied with the radially symmetric filtéi(f, f,.), then it is integrated over temporal frequencies
(video to image conversion) such that we obtainrtiege spectrurﬁ(ﬁc,fy). The accompanying plot
illustrates the dependencies described in equd#dh Eventually, by performing an inverse 2D

Fourier transform, the imagg(x, y) is obtained.

The filter H(f, f,) consists of two parts: a) the basic matched fitéf)M(f, f,), which
assures maximal energy transfer for white noise l@nthe correction ternk(f, f,.) that balances
between the frequency-depend signal-to-noise (&tiR), the propagation of the uncertainty over the

heat transfer coefficierit and the optical transfer. By inspecting the ploKgf, f,) we observe the
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effects ofa andoy,: the former is the rate at which spatial frequescbeyond the point where the
noise power density dominates the signal poweritjgrsse attenuated; the latter creates an increase
of K(f, f;) in regions of uncertainty with respect o The resulting “hill” of the correction term
around the origin then causes a “dent” in therfiféf, f,.), which is ideally compensated by a bulge
in higher temporal frequencies such that the optieasfer function can still be fl&TF(f,) ~ 1.

This deformation can also be seen in the plot efptoduct of and H (Figure 6).

In conclusion, we can say that a highremoves perturbing thermal phenomena (strong heat
convection and conduction causing high uncertaonigr h) at the cost of increasing additive noise,

whereas a strong and a lowf_,,; suppress additive noise by smoothing the image.

7(t, z,y)
» |- —_——
. ’ ¢
M(f, fr) N(fsfer )+ FLYfer )

T(f, fos fy)

p(z,y)

FH{Haw) .

fr feut

Figure 6. lllustration of the filtering process:alphysical signal flow is depicted with blue arrcavel the
computed signal flow with green ones. Intermediateulations are in black and user parameters are
colored in red. The top row of symbols illustralbesv the frames, i.e., the temperature sigra) x, y), are
obtained. In the Fourier domain, the radiated powtribution is multiplied by the film transferrfction M
and the camera nois€ is added. The conjugate productMfandG provides the matched filter which is
corrected by thé& term and then applied to tliesignal. After integration, the inverse Fourier misform
provides the final image.
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4. Filtering results on the near field of an antenna

4.1. Experimental set-up and results

To illustrate the effect of the proposed signalessing, we perform several measurements of
a multiple-feed-per-beam antenna [17], whose eteoear field exhibits a complex structure with
different levels of intensity. The peripheral waugtgs are connected to the central one by thiraradi
rectangular waveguides, which form coupling sldtiserefore, the intensity is decreasing from the
central (powered) guide to the outside.

The film is placed at 5 mm from the source. Weaistandard 50-mm lens to avoid large angle
aberration as we place the camera at almost 1miri&ges, therefore, correspond to a size (due to
the lens field of view —FOV-) of aboli0 x 10 cm?. The source and the experimental set-up are shown
in Figure 7:

Figure 7. Multiple Feed per Beam radiating sour&et-up with source, film, and camera (located det$he
anechoic chamber).

As shown in Figure 8 [18], lock-in thermography allows an accurate measient that
matches the numeric simulation. Here the incidemtgy wasP; = 3 W, (which leads to the highest
signal without saturating the camera sensor).

Measurement Simulation
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Figure 8. Power density map in the near-field zaneasurement vs. simulation.
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To better illustrate the effect of the proposedhalgrocessing, the incident power was chosen
more than one order of magnitude lowr£ 0.25 W. Conventionally, the only way of compensating
a small signal power was by increasing the numlbdrames since the noise power is inversely
proportional to the number of frames (which is eglent to a decrease of 5 dB per decade in EM
power density). This can be achieved by increasitiger the sampling rate (FPS) or the acquisition
time (see yellow line in Figure 10). However, thefing approach is more efficient as it is illteged

in the next paragraph.

4.2. Square modulation

We apply a square modulation at a frequend.2Hz, which is somewhat an arbitrary choice
as mentioned in section 3.6. However, our expeeahows that a modulation frequency betw@&én
and1 Hz yields acceptable results for the given antenmdiof® beginning the acquisition, we wait
about 30 seconds to avoid the transient thermtd.sthen, we determing, = 15Wm™2, a = 8
andf,,, = 40 m~! by inspection of the average temperature spectand,thatP,,; ~ 60 mW
(close t020% of the incident powerR, ~ 250 mWW), as expected.

The demodulated image, as well as a horizontalaawudrtical slice, are given for different
filtering approaches in Figure 9. Qualitatively, oleserve that the contrast of the images a) tsd) a
well as that of the slices improves with increadittgring complexity. The conventional approach
(Figure 9.a) and the in-phase demodulation (Figubg exhibit the expected difference b dB
(which is half of the3 dB stated in section 3.1 where we were referring €osilgnal power, i.e., the
squared EM power). The matched filter (Figure @ad)is6 dB and the Wiener filter (Figure 9.d)

anotherl dB of dynamics. The last two reveal details bele®0dB in the (green) horizontal slice.
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Figure 9. Power density, vertical (red) and horitar{green) slices: a) Conventional approach (ritef), b)
In-phase demodulation (no filter), c) Matched fiklvcal maxima at -20 and -22 dB appear, d) Wiefilézr,
e) Wiener filter withs;, > 0.
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Throughout Figur®b) to d), we can observe a dark spokat 0.01m andy = 0.01m,
which is not part of the radiation pattern of th@emna. Considering an uncertainty over the heat
transfer coefficienk during the filtering, i.e.g;, > 0, we can partially remove this thermal artefact.
However, this comes at the cost of increasing thisenfloor of the image as it can be seen in Figure
9e).

Below, we present the noise levels (measured bynien-squared signal over 10,000 pixels
in areas of the image where no signal from theraraes expected) as a function of the number of
images recorded, for the different filters. Figlileexhibits approximately the expected trend afB5
per decade, but also shows that more than 8 dBegained by using a matched or Wiener filter.
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Figure 10. Noise level as a function of the nunddemages for different filtering approaches (thattdd
lines have the theoretical slope-65 dB per decade).

4.3. Chirp modulation

It has been shown that the proposed signal prawessproves the image dynamics. We now
show how the usage of a chirp can efficiently dei#h the trade-off between thermal artefacts and
noise-floor level. We, therefore, apply the sam#asg-wave cubic-root chirp as in section 3.6. Fegur
11 depicts the demodulated images for four diffevatues ofo,. As we have seen in Figure 5, the

signal spectrum contains energy belgwwve, thus, expect strong thermal artefacts if waat include
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considerations about the uncertainty oken the filtering. Indeed, the image wity = 0 is tainted
with “big stains”. When increasing}, these effects disappear. Howevergat= 1.5 the noise floor
is becoming disturbing, which is caused by thefikuppressing too much signal energy in the low

temporal frequency range. For this acquisitiont besults are obtained with), = 0.6.

Gh=0 Gh=0'3

MFBmar21d_9: Electromagnetic power density map MFBmar21d_9: Electromagnetic power density map

o = 0.6 o = 1.5

MFBmar21d_9: Electromagnetic power density map

8
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Figure 11. Square-wéve cubic-ro@t{ = 39.8s, f, = 0.1 Hz andf,,,4, = 0.6 Hz) with four different
values ofg;, (from 0 to a relatively high value of 1.5).

Finally, we compare the performance of this chirfhwhose of a square wave at the edges of
the modulation bandf{ andf,,,,). In Figure 12we can see that the imagef@at= 0.1 Hz strongly
exhibits artefacts as well as some light but Idsg@ns”. At the other end of the barfg,,, = 0.6Hz,
no thermal artefacts are apparent. However, theerlevel is higher than the onefgt The image of
the chirp does not exhibit thermal artefacts amdrbise level is lower than #f,, = 0.6Hz. This
shows that the usage of a chirp allows an effidbaténcing of the spectral components such that the
image is free of artefacts and that a good SNRstamed.
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Figure 12. Images modulated with a square wavg & f, = 0.1 Hz andf = f,. = 0.6 Hz, and with a
square-wave cubic-root chirp.
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5. Conclusion

The advantage of the EMIR method over scanninggh@sed field mapping techniques is its
short acquisition time and its subwavelength resmiu In contrast to analogue buffered locked-in
thermography systems, digital thermal cameras rtakentire thermal video signal accessible. This
enables the use of DSP to further extend the adgastof the method. By modelling the entire
measurement system as an imaging system, we camzpthe signal processing and the modulation
signal as a function of the sensing film propertigsyond a traditional matched and a Wiener fittgri
approach, we established a filter that efficiendlyals with the trade-off between SNR (image
dynamic), uncertainty over system parameters (imagefacts) and optical transfer (image
resolution). Further, we demonstrate how we canthusdrequency versatility of a chirp modulation
signal to fully exploit the potential of the promakfilter. The achieved gain allows a significant
reduction of the recording time and/or the frante emnd can contribute to better characterize the EM
field of radiating sources in a wide range of fregcies. Finally, it should be noted that the désdi
methods can also be applied in the neighboringesonof fluorescence thermography of the

electromagnetic field [19].
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