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Abstract 

In the 1980s, an electromagnetic infrared method  was initially developed at the US Air 

Force Academy (USAFA) and the University of Colorado at Colorado Springs (UCCS) that 

produced the first images of EM fields made by an Infrared camera measuring the heating of 

absorbing materials. In the 1990s, this field imaging method was then enhanced by the French 

Aerospace Lab ONERA, under the registered name "EMIR", as an electric field measurement 

technique by introducing synchronous modulation of the EM incident signal. EMIR provides 

two-dimensional representations of the electric field, through a quasi-instantaneous 

measurement. This can be useful for fast characterization of radiating sources, especially in the 

microwave frequency range. In addition, it is capable of imaging subwavelength details.   

In this paper, a digital signal processing scheme is proposed that consists of applying a 

temporal and spatial filtering to the video signal. Considering the trade-off between additive 

noise, uncertainty over system parameters and optical transfer, the signal-to-noise ratio can be 

improved by up to 8 dB. Further, the advantages of a chirp modulation signal over a single 

frequency lock-in thermography system is demonstrated. 
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 Introduction 

Characterizing electromagnetic (EM) fields emitted by various sources is an important issue, 

either for civil or military applications (telecommunications, radar, antennas, civil and military 

aeronautics, medicine, etc.). With a single probe, a local EM field measurement can be performed, but 

for the visualization of a spatial distribution a stepwise displacement of the probe is necessary, which 

can be time-consuming. Consequently, infrared thermography is an alternative way that provides a 

field map in reduced time. This method was developed in the early nineties [1, 2] and is used at 

ONERA where we call it EMIR (ElectroMagnetic InfraRed) [3]. It aims to obtain a visualization, and 

a quantitative measurement through calibration, of the electric field amplitude radiated by the 

microwave source under test. The EMIR method consists in irradiating a weakly conductive thin film 

to the EM field. The induced currents cause the film to heat up in proportion to the power absorbed, 

which is then recorded by the infrared camera (Figure 1). In order to increase the spatial resolution, 

and eliminate continuous thermal phenomena (convection, conduction), the EM source is modulated 

at a low frequency f ( = some few Hz), and the series of image frames is demodulated at the same 

frequency. 

 
Figure 1. EMIR method: the thin film absorbs a portion of the radiated energy and heats up, which is detected 

by the thermal camera; the video is then digitally demodulated. 

Previously, the demodulation of the lock-in thermography was carried out by an analogue 

circuit board that was associated with the camera and the reference signal generator. Each pixel of the 

recorded video signal was multiplied with the sinusoidal modulation signal and a 90-degree shifted 

version of it. The resulting in-phase and quadrature components were then accumulated into two image 

buffers [2]. These could then be converted into an amplitude and a phase image, the former being 

proportional to the EM absorbed power. Since only the output images were available, the user had no 

control over the signal processing, which presents a drawback of such an analogue lock-in 

thermography system. 

However, in the case where all the recorded frames are available (no buffering), it becomes 

obvious that Digital Signal Processing (DSP) could be used to improve the demodulation process. A 
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single data acquisition usually consists of hundreds or thousands of infrared frames. Considering a 

typical high-performance camera with 640x512 pixels sensor (like the one we use [4]), there is an 

order of magnitude of 1 GB (for a typical recording of 1000 frames) of data to process. A standard 

personal computer can handle this amount of data.  

The objective of this paper is to demonstrate that DSP techniques to extract the power density 

distribution from a thermal video signal. After an analysis of the measurement chain in section 2, we 

present in section 3 different filtering approaches, from elementary to more complicated schemes; we 

illustrate in section 4 how they improve the dynamic range of the image by enhancing the signal-to-

noise ratio (SNR). 

 Acquisition model 

Previous works have optimized the EMIR method with respect to certain sub parts of the 

imaging system [5]. In doing so, the thin film (especially its material and thickness), the camera (noise 

and framerate), and the modulation process (frequency) were considered individually. 

However, no optimization process has yet considered the entire system as a whole from a signal 

processing point of view. Therefore, we present here a model of the entire signal chain that associates 

the sub parts of the system, which are the radiation system [resulting in a power density p –modulated 

by a function g- on the location (x,y) of the film], the thin film (with optical transfer function M that 

depends on the modulation frequency f of the g modulation signal, and on spatial variations of the 

heating on the film at spatial frequencies fx, fy),  the thermal camera (that adds a noise n), and the filter 

H. This signal chain is shown in Figure 2. 

 
Figure 2. Signal chain. 

2.1.  Signal chain 

The EMIR method is an imaging system, which is equivalent to making an image (2D map of 

the magnitude of the electric field) from a scene (EM power density). Let us say ���, �� is a 2D cut of 

the 3D power distribution that we intend to map. The output of the imaging system, as a 2D signal, is 

then an estimate �̂��, �� of the real image ���, ��. The process of modulating the power source is 
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solely an intermediate step of the imaging process since the dimension of time is eliminated after the 

filtering step. 

First, the real image ���, �� is modulated with the signal ��	�, which corresponds to the 

squared amplitude of the output of the signal generator. The resulting tri-dimensional signal p(t,x,y) is 

then transformed by the thin film into a temperature video signal τ�	, �, ��. This transformation is a 

linear shift-invariant system (see paragraph 2.3) with the impulse response ��	, �, ��. During sampling 

with the camera, the signal is disturbed by noisy phenomena, that we model with an additive noise 

��	, �, ��. The resulting video signal is then digitally processed by a filter operation with an impulse 

response ℏ�	, �, �� and finally the signal is sampled in time at 	 = 	� to obtain an image. 

We can, therefore, relate the estimated image �̂ and the real image � through the following 

equation: 

 �̂��, �� = [�� ⋅ �� ∗ � ∗ ℏ] �	�, �, �� + �� ∗ ℏ��	�, �, �� (1) 

where ∗ denotes the three-dimensional convolution.  

2.2. Optical transfer function 

With the Fourier transform we can also write: 

�̂��, �� =  �� ∗ ℏ��	�, �, �� 

+ � ����, ��� � �������, �� , ��� ��, ��, ���!"#$%&'(�!"#$%)�!"#$%*� (��(�� 
(2) 

where the uppercase letters stand for the Fourier transform of the according lowercase letters (  

corresponds to ℏ (letter with a bar) since the letter ℎ (without a bar) is the heat transfer coefficient). 

By neglecting the noise for the instance, we can write the image spectrum of �̂ as a simple product: 

 
�,���, ��� = ���� , ���OTF���, ��� (3) 

where "OTF " is the optical transfer function: 

 OTF���, ��� = � �������, ��, ��� ��, ��, ���!"#12&'(� (4) 

The inverse Fourier transform of the optical transfer function is the point spread function 

PSF��, �� = ℱ6,789:OTF���, ���; [6], which will be noted “PSF”. The goal is that the estimated image 

is as close as possible to the real image: 
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 �,���, ��� ≈ ���� , ��� (5) 

Thus, we want to design our system such that =	���� , ��� ≈ 1 for the spatial frequencies �� and 

�� of interest. For this, we need to choose a modulation signal � and a filter   well adapted to the 

transfer function � of the film. One might propose to set the filter   as the inverse of �. However, 

we also need to consider the influence of the noise (section 3). But first, we characterize the transfer 

function �. 

2.3. Thin film transfer function 

The heat equation in the thin film is given by: 

 ?@A BC�&,D⃗�
B&  − G∆I�	, J⃗� = ��	, J⃗) (6) 

where ρ is the film density, Cp its specific heat capacity of the film, and κ the thermal conductivity of 

the film. The power density ��J, 	� corresponds to the net rate at which energy is generated in the film. 

This is the EM absorbed power density �K minus the heat convection and radiation as the film loses 

energy to the ambient room. As the Biot number L" =  ℎ. (/G (where d is the film thickness) is much 

smaller than 1 (see below) we can assume identical temperatures on both sides of the film. Moreover, 

if the temperature variation is small compared to the ambient temperature I�, the radiation and 

convection terms can be linearized into a single modified heat transfer coefficient h [7]. The equation 

becomes: 

 ?@A
∂I�	, J⃗�

∂	 − GΔI�	, J⃗� = �K�	, J⃗� − 2ℎ[I�	, J⃗� − I�]/( (7) 

Under the assumption of the “lumped system formulation” [7] (since ρ = 1420 kgm-3, 

Cp = 1090 Jkg-1K-1, κ = 0.5 WK-1m-1, h = 15 WK-1m-2, film thickness d = 50 µm, the Biot number 

Bi < 0.001 is much smaller than 1 and the thermal diffusion length [8], R	 =  S G
?@�2T� > 0.1 ��, is 

large compared to the film thickness), the temperature is constant over the film thickness. The films 

we use are typically made of carbon loaded Kapton with a conductivity in the range of 5 to 20 Sm-1. 

Since the skin depth is large compared to the film thickness (( =  50 µ�), the absorbed power is 

uniform in the thickness of the film. 

Under these assumptions, the heat equation can be written as a function of two spatial 

dimensions only. The pertinent power entity is now the surface power density ��	, �, �� and we have 
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?@A( YI�	, �, ��
Y	 −  G( Y#I�	, �, ��

Y�# − G( Y#I�	, �, ��
Y�# = ��	, �, �� − 2ℎ[I�	, �, �� − I�] (8) 

By applying the Fourier transform with respect to t, � and �, we can derive the transfer function 

M of the film, which transforms an EM surface power to a temperature signal: 

 ���, ��, ��� = 1
2ℎ + G(4T#���#+��#� + \?@A(2T� (9) 

This function is tri-dimensional, but it has a radial symmetry. We can thus introduce the polar  

frequency �D =  S���# + ��#�. Figure 3 shows the modulus of ���, �D� for carbon loaded Kapton and 

the iso-� lines (for integer multiples of a typical modulation frequency f = fm = 0.5 Hz): 

 
Figure 3. Film transfer function ���, �D� on a logarithmic scale in the �D direction, on a linear scale in � 

direction. 

 Filtering approaches 

Several filtering approaches are considered. 

3.1. In-phase demodulation 

The video recording containing all the frames is processed after the measurement. By 

multiplying the time signal of each pixel by a complex exponential at the modulation frequency f, i.e., 

ℏ�	� =  !]#1%&, as it was achieved by the analogic circuit board, the optical transfer function can be 

expressed as: 
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 OTF��D� = ^ !8]#$%_&
2ℎ + G(4T#�D² + \?@A(2T� (10) 

with a normalization constant ^ and the time shift Δ	 between the modulation and the demodulation 

signal. Because of the radial symmetry, we can calculate the PSF by using the zero-order Hankel 

transform [9]. It can then be expressed with the modified Bessel zero-order function a� [10], which is 

depicted in Figure 4: 

 PSF�J� = c!8]#1%_&
2TG( a��cJ� (11) 

with J =  d�# + �# and c =  S"efgh#$%i#j
kh  ≈  9i"

√#
9
mn (R& is the diffusion length). 

 
Figure 4. Point spread function when the heat energy transfer exceeds convection, i.e., 2ℎ can be neglected 

and no time shift ( o	 =  0). 

We notice that the PSF is complex with the real part being better resolved than the imaginary 

part. Also, the real part dominates the imaginary part around zero. We can, thus, increase the resolution 

by taking the real part of the complex image. However, we must assure that the time shift is zero, i.e., 

Re:!8]#$%_&; =  1 . This can be achieved by demodulating in phase. In addition, taking the real part 

eliminates the imaginary part of the noise. This improves the SNR by 3 (L compared to taking the 

absolute value. 

3.2. Spatial filtering 

Through spatial filtering of the demodulated image, we can eliminate high (spatial) frequencies 

that are generally associated with noise. This can be done after the demodulation process, by applying 

different low-pass filters that truncate, or attenuate (Butterworth filter, Gaussian filter etc.) high 
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frequencies. However, the cut-off frequency used for these spatial filters is somewhat arbitrary. This 

limits the significance and, therefore, the interest in spatial filtering. A better approach is, therefore, to 

use the transfer function that represents the physical behavior of the thin film, to address spatial 

filtering. This can be done by using a spatially matched filter that maximizes the SNR: 

  ��D� = ���, �D�
|���, �D = 0�| (12) 

In this equation (as in the following ones), the overbar is for complex conjugate. The 

denominator is a normalization constant that ensures that the absorbed power does not change. This 

operation is a low-pass filtering with a cut off frequency of �D  =  9
#$mn. The PSF is now a real function 

and it takes the form of the Kelvin kei function, as it was the case with the imaginary part of the PSF 

in section 3.1.  

Instead of spatially filtering the already demodulated image, we can design a filter that is 

applied in all three dimensions at once. Nevertheless, applying the spatial filter after the demodulation 

can be useful in the case where the video recording is not available or for the purpose of computing 

efficiency. 

3.3. Matched filter  

So far, we have demodulated the temperature signal at one frequency, i.e., the modulation 

frequency � =  �v. However, the measured signal might have a richer spectrum than the one of a 

purely sinusoidal signal. For instance, if a periodic on-off switch controls the microwave power source, 

a square wave is generated. The modulation signal and, consequently, the temperature signal then have 

harmonics of higher order. We can use these parts of the signal to increase the SNR. Instead of 

demodulating at several frequencies and then combining the resulting images, we can use a filter to 

extract all the useful information of the signal at once. However, if we exploit the entire spectrum of 

the measured signal (not only � =  �v, but � ∈  x0, yz{
# |), we must consider the transfer function 

���, �D� for all �. Consequently, it is useless to apply the spatial filter after the temporal filtering as 

in section 3.2. But we can develop a tri-dimensional filter  ��, �D�. One way of designing   is by 

using the matched filter which maximizes the SNR for a single ideal image point [EM density is a 2D 

Dirac impulse: ���, �� =  ��δ�� − ��, � − ���, with the intensity ��]. We define the SNR as the 

signal power S =  �̂���, ���# over the additive noise power ~�hh using the Parseval's theorem and the 

Wiener–Khinchin theorem respectively: 
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 SNR = �
~�hh = ��#�∭ �������, �D� ��, �D�!"#1%&'(�(�� (���#

∭ ����, �D�| ��, �D�|#(�(�� (��
 (13) 

where �� is the noise power density of the additive noise and with an arbitrary (not only a square 

wave) modulation signal with the spectrum ����.  By maximization of the SNR, the tri-dimensional 

filter is then given by: 

  ��, �D� = �������, �D������������������
� ����, �D� !8"#$%&' (14) 

where � is a normalization constant that assures that OTF��D =  0� = 1[11]. This filter acts differently 

on the spatial components depending on �. 

3.4. Heat coefficient influence 

If � and �D are small, then the term 2ℎ corresponding to natural convection phenomena 

determines the transfer function [see equation (10)]. This term is in general not well known and 

depends on the temperature difference between the film and the ambient air as it is obtained through 

linearization. Values between 5 and 20 WK-1m-2 are usually used as a rough estimation for h. This 

uncertainty can be included in the filtering process by describing ℎ as a random variable with its 

probability density function. For example, we can represent h with a normal distribution : ℎ� centered 

and with standard deviation σj. 

We use this probabilistic approach to derive a noise power that arises from the propagation of 

the uncertainty over ℎ. We define the noise power ~�&% as the variance of the optical transfer function 

accumulated over the power spectral density �A��D� of the image ���, ��: 

 ~�&% = � �A��D���J[=	���D�](��d�� (15) 

where ��J[⋅] denotes the variance operator with respect to the distribution of ℎ. We remark that 

equation (15) can be generalized to include uncertainty over several system parameters at the same 

time. 

As we are still considering an ideal image point, the power spectrum is uniform. i.e., 

�A��D� =  ��#. However, we note the more general form as we will reuse this result in the next section. 

Through extension and rearrangement, we can write the noise power in the form of a filtered 

noise power density: 

 ~�&% = � ��&%��, �D�| ��, �D�|# (�(��(�� (16) 
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The noise power density ��&%��, �D� =  �A��D����, �D� can be written as the product of the 

signal power spectrum and, what we call the “uncertainty transfer function”: 

 ���, �D� = a��, �D�[ 1
�[���, �D�]��������������� � |�����|#

a���, �D� �[����, �D�]����������������������, �D����, �D�������������(��

− � |�����|#
a���, �D� |�[����, �D�]|#(��] 

 

(17) 

with �[⋅] denoting the expected value with respect to the distribution of ℎ. Then, we can extend the 

definition of the SNR: 

 �~� = �
~�hh + ~�&% (18) 

where � and ~�hh are, respectively, numerator and denominator from equation (13). Since ~�&% has 

the same form as ~�hh, we can regroup the interiors of the integrals to 

 a��, �D� = ����, �D� + �A��D����, �D� (19) 

The SNR is now under the same form as equation (13) so that we can reuse the previous result, 

the matched filter. We, therefore, have: 

 H��, �D� = �����[���, �D�]���������������������
� a��, �D� !8"#1%&' (20) 

where Z is a normalization coefficient. 

The expected value operator around ���, �D� is necessary because of its probabilistic nature. 

The correction term a��, �D� represents the additive noise, as before, plus a contribution due to 

uncertainty over h.  

Since ���, �D� depends on K�f, �D�, the correction term is defined implicitly. Therefore, we cannot 

calculate the filter directly, but we can compute it iteratively starting with K�f, f�� =  ����, �D� until 

we reach the fixpoint. 

This filter is designed such that it attenuates the signal in spectral regions of high uncertainty 

related to the heat transfer coefficient ℎ; however, it also alters the PSF and may, thus, introduce 

artefacts to the image. 

3.5. Wiener filter 

Previously, we have optimized the SNR for a single image point �A��D� =  ��#. However, an 

image is constituted of a superposition of many points. Hence, it is not enough to consider the SNR, 
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but we must take into account the optical transfer function as mentioned in section 2.2. Therefore, we 

now consider the mean squared error in the frequency domain: 

 ϵ��D� = � x��,��D� − ���D��#| (21) 

with �[⋅] denoting the expected value with respect to the statistics of the signal ���, ��. By insertion 

of the Fourier transform of equation (1) and using the solution of the matched filter (20) as an 

assumption, we can minimize ���� , ��� with respect to a��, �D� by differentiation: 

 K�f, �D� = S��f, �D�
S���D� + K��, �D� � |G�f ��|#|M�f �, �D�|#

K�f′, �D� df � (22) 

This result is known as the Wiener filter [12], which can be interpreted as an inverse filter 

���, �D� (right summand) regulated by the reciprocal of the frequency-depending signal-to-noise ratio 

SN�%��, �D� =  {g�% �
{¡�%,% � (left summand). As we are minimizing the squared error solely over the spatial 

frequencies ���, ���, i.e., � excluded, the filter takes again an implicit form.  

If we want to take into account the uncertainty over the heat transfer coefficient ℎ, we can 

replace ����, �D� with ����, �D� + �A��D����, �D�. We then obtain an interpretable result: 

 K��, �D� = 1
�~�%��, �D� + U��, �D� + ���, �D� (23) 

which is a modification of equation (19), i.e., division by �A��D� and extension with ���, �D�. 

We observe that the matched filter is modified through the interplay of the three terms of the 

correction term a. If the term � dominates, when the SNR is high and only small uncertainty prevails, 

we can check that OTF��, �D� ≈  1. Otherwise, the modified matched filter   attenuates spectral 

regions of low SNR or high uncertainty related to ℎ. We have, thus, found a compromise between 

optical transfer, noise reduction, and the influence of the uncertainty over the heat transfer coefficient 

ℎ.  

It remains to determine the quantities �A��D� and ����, �D�. The latter is the spectral noise 

density, which is camera specific and can be measured. High performance thermal cameras should 

exhibit a white noise, i.e. ����, �D� =  ~�. The power spectral density �A��D� of the real image cannot 

be determined without making assumptions on the image, i.e., the EM power density distribution 

���, ��, that is to be measured. In some cases, the EM energy that is absorbed by the thin film is known 

(usually 20% of the incoming EM power [13]). Since the absorbed EM power is defined as 

��£¤ =  ∬ ���, ��(�(�, we can deduce by the definition of the power spectral density that: 
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 �A��D = 0� = ��£¤#
¦  (24) 

with the area ¦ of the image. Further, we suppose that ���, �� is smooth to some degree. As it is done 

with natural images [14], the power spectral density is set to decrease with �D to a power α. 

Additionally, we introduce the cut-off frequency �̈ ©&, so that we can write: 

 �A��D� ≈ ��£¤#
¦

1
1 + ��D/�̈ ©&�ª (25) 

Eventually, we have reduced the filtering process to four degrees of freedom that need to be 

set heuristically: the expected value of the heat transfer coefficient ℎ� and its standard deviation σj, 

the exponent α, and the cut-off frequency �̈ ©&. However, the values of α,  �̈ ©& ��( ℎ� can be 

approximated by matching the expected temperature spectrum to the radial average of the measured 

temperature spectrum. 

3.6. Chirp modulation signal 

In lock-in thermography it is common practice to modulate the power source by switching it 

on and off periodically [9] which generates a square wave of a modulation frequency �v and associated 

odd harmonics. This, then, raises the question of how to choose this frequency. Suppose that we choose 

�v too small such that the influence of the heat transfer coefficient is considerable. The matched filter 

(20) will then figuratively try to avoid this frequency and will prefer higher harmonics of the signal. 

However, with the predominant portion of the signal energy being concentrated on the fundamental 

frequency � =  �v, only little energy will be transferred and, thus, the SNR will be low. Similarly, if 

we choose �v too high, we obtain a low SNR since the transfer function ���, �D� decreases with �.  In 

other words, if we set the modulation signal to have a single modulation frequency, the matched filter 

cannot figuratively avoid regions of high uncertainty without significantly degrading the SNR. This 

motivates the use of a chirp as the modulation signal, i.e., a signal that sweeps over several frequencies. 

[15, 16] use similar approaches to improve the temporal resolution in non-destructive evaluation 

through impulse compression. However, as EMIR images do not have a time dimension (modulation 

in time is an intermediate imaging step), we propose to use the chirp solely to increase the spectral 

diversity of the signal. Since a chirp is more difficult to implement, one might still prefer a square 

wave if the measurement conditions are well known. 

Let us derive a temporal expression for a chirp. The instantaneous (time dependent) frequency 

of a signal is defined as the derivative of the instantaneous phase: 
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 ��	� = 1
2π

(
(	 ϕ�	� (26) 

Further, we remark that the energy in a frequency range d� of the modulation signal ��	� is 

proportional to the time dt spent in that frequency range. We can thus write: 

 |����|# ∝ (	
(� (27) 

We deduce here that a linear chirp exhibits a flat spectrum over the modulation band L. But, 

considering that the transfer function declines with �#, the energy spectral density can differ 

significantly over the band. We can avoid this problem by requiring that the modulation signal 

compensates the low-pass characteristic of �: 

 |����|#|���, �D = 0�|# =  constant,   where �� ≤ � ≤ �� + L (28) 

We can use this to rewrite equation (27): 

 (	
(� ∝ 1

|���, �D = 0�|# ∝ �# (29) 

where the second proportionality follows from an approximation of ���, �D  =  0� by neglecting the 

term 2ℎ. More generally, we can make the energy spectral density proportional to ��89, with a real 

valued and strictly positive degree �. This allows a free choice over the distribution of the energy in 

the spectrum, e.g., � >  3  more energy in the higher frequencies and � <  3  more energy in the lower 

frequencies. 

We can now solve for the instantaneous phase for 	 ∈ [0, Iv]: 
·�	� = 2T��v��� − ����9� �

� + 1 Iv ¸ 	
Iv + ����v��� − ���¹

�i9� − 2T �
� + 1 Iv

���i9

��v��� − ����9�
 (30) 

with �v�� = �� + L and the modulation period Iv. 

Note, only the phases have been determined. Therefore, we still need to choose the signal 

function independent of the phase. As earlier, we propose the usage of a square wave such that: 

 ��	� = rect �·�	��, with rect �·� = º1, if · �=( 2T ≤ T0, otherwise 
 (31) 

With degree � = 3, the resulting signal is a square-waved cubic-root chirp, which is depicted 

in Figure 5.  



14 
 

 
Figure 5. A square-wave cubic-root chirp with �� ≈ 0.1  », �v�� ≈ 0.6  » and Iv ≈ 40 ½. The heating 

signal spectrum is approximately flat in the modulation band. For � <  �� the spectrum raises because of the 
neglected term 2ℎ and imperfections in the chirp generation. 

3.7. Interpretation 

We now illustrate how the filtering is carried out by combining the results from the previous 

sections. Therefore, we refer to Figure 6  where the blue arrows indicate the physical signal flow 

leading to the temperature signal spectrum I��, ��, ��� which is the 3D Fourier transform (dashed 

green line) of τ�	, �, ��. The plot of the spectrum I has a uniform extent in the direction of temporal 

frequencies since the modulation signal is a cubic-root chirp.  Following the green arrows,  I��, ��, ���  

is multiplied with the radially symmetric filter H��, �D�, then it is integrated over temporal frequencies 

(video to image conversion) such that we obtain the image spectrum �,���, ���. The accompanying plot 

illustrates the dependencies described in equation (25). Eventually, by performing an inverse 2D 

Fourier transform, the image  �̂��, �� is obtained. 

The filter  ��, �D� consists of two parts: a) the basic matched filter �������, �D������������������, which 

assures maximal energy transfer for white noise and b) the correction term K��, �D� that balances 

between the frequency-depend signal-to-noise ratio (SNR), the propagation of the uncertainty over the 

heat transfer coefficient ℎ and the optical transfer. By inspecting the plot of a��, �D� we observe the 
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effects of α and σ¾: the former is the rate at which spatial frequencies, beyond the point where the 

noise power density dominates the signal power density, are attenuated; the latter creates an increase 

of a��, �D� in regions of uncertainty with respect to ℎ. The resulting “hill” of the correction term 

around the origin then causes a “dent” in the filter  ��, �D�, which is ideally compensated by a bulge 

in higher temporal frequencies such that the optical transfer function can still be flat OTF��D� ≈  1. 

This deformation can also be seen in the plot of the product of I and    (Figure 6). 

In conclusion, we can say that a high ¿j removes perturbing thermal phenomena (strong heat 

convection and conduction causing high uncertainty over h) at the cost of increasing additive noise, 

whereas a strong α and a low �̈ ©& suppress additive noise by smoothing the image. 

 
Figure 6. Illustration of the filtering process: the physical signal flow is depicted with blue arrows and the 

computed signal flow with green ones. Intermediate calculations are in black and user parameters are 
colored in red. The top row of symbols illustrates how the frames, i.e., the temperature signal À�	, �, ��, are 

obtained. In the Fourier domain, the radiated power distribution is multiplied by the film transfer function � 
and the camera noise ~ is added. The conjugate product of � and � provides the matched filter which is 
corrected by the a term and then applied to the I signal. After integration, the inverse Fourier transform 

provides the final image. 
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 Filtering results on the near field of an antenna 

4.1.  Experimental set-up and results 

To illustrate the effect of the proposed signal processing, we perform several measurements of 

a multiple-feed-per-beam antenna [17], whose electric near field exhibits a complex structure with 

different levels of intensity. The peripheral waveguides are connected to the central one by thin radial 

rectangular waveguides, which form coupling slots. Therefore, the intensity is decreasing from the 

central (powered) guide to the outside.  

The film is placed at 5 mm from the source. We use a standard 50-mm lens to avoid large angle 

aberration as we place the camera at almost 1m. The images, therefore, correspond to a size (due to 

the lens field of view –FOV–) of about 10 x 10 ^�². The source and the experimental set-up are shown 

in Figure 7: 

  
Figure 7. Multiple Feed per Beam radiating source; Set-up with source, film, and camera (located outside the 

anechoic chamber). 

As shown in Figure 8  [18], lock-in thermography allows an accurate measurement that 

matches the numeric simulation. Here the incident power was Pi = 3 W, (which leads to the highest 

signal without saturating the camera sensor). 

Measurement Simulation 

  
Figure 8. Power density map in the near-field zone: measurement vs. simulation. 

IR Camera 
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To better illustrate the effect of the proposed signal processing, the incident power was chosen 

more than one order of magnitude lower (Pi = 0.25 W). Conventionally, the only way of compensating 

a small signal power was by increasing the number of frames since the noise power is inversely 

proportional to the number of frames (which is equivalent to a decrease of 5 dB per decade in EM 

power density). This can be achieved by increasing either the sampling rate (FPS) or the acquisition 

time (see yellow line in Figure 10). However, the filtering approach is more efficient as it is illustrated 

in the next paragraph. 

4.2. Square modulation 

We apply a square modulation at a frequency of 0.3  », which is somewhat an arbitrary choice 

as mentioned in section 3.6. However, our experience shows that a modulation frequency between 0.1 

and 1  » yields acceptable results for the given antenna. Before beginning the acquisition, we wait 

about 30 seconds to avoid the transient thermal state. Then, we determine ℎ� =  15 W�8#, α =  8 

and fÄÅÆ =  40 m89 by inspection of the average temperature spectrum, and that ��£¤ ≈  60 �� 

(close to 20% of the incident power (�"  ≈  250 ���, as expected. 

The demodulated image, as well as a horizontal and a vertical slice, are given for different 

filtering approaches in Figure 9. Qualitatively, we observe that the contrast of the images a) to d) as 

well as that of the slices improves with increasing filtering complexity. The conventional approach 

(Figure 9.a) and the in-phase demodulation (Figure 9.b) exhibit the expected difference of 1.5 (L 

(which is half of the 3 (L stated in section 3.1 where we were referring to the signal power, i.e., the 

squared EM power). The matched filter (Figure 9.c) adds 6 (L and the Wiener filter (Figure 9.d) 

another 1 (L of dynamics. The last two reveal details below −20(L in the (green) horizontal slice. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
Figure 9. Power density, vertical (red) and horizontal (green) slices: a) Conventional approach (no filter), b) 
In-phase demodulation (no filter), c) Matched filter -local maxima at -20 and -22 dB appear, d) Wiener filter, 

e) Wiener filter with ¿j > 0. 

-20 dB 
details 

Artefact 
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Throughout Figure 9b) to d), we can observe a dark spot at � =  0.01� and � =  0.01 �, 
which is not part of the radiation pattern of the antenna. Considering an uncertainty over the heat 

transfer coefficient ℎ during the filtering, i.e., σj >  0, we can partially remove this thermal artefact. 

However, this comes at the cost of increasing the noise floor of the image as it can be seen in Figure 

9e).  

Below, we present the noise levels (measured by the mean-squared signal over 10,000 pixels 

in areas of the image where no signal from the antenna is expected) as a function of the number of 

images recorded, for the different filters. Figure 10 exhibits approximately the expected trend of -5 dB 

per decade, but also shows that more than 8 dB can be gained by using a matched or Wiener filter.  

 
Figure 10. Noise level as a function of the number of images for different filtering approaches (the dotted 

lines have the theoretical slope of −5 (L per decade). 

4.3. Chirp modulation 

It has been shown that the proposed signal processing improves the image dynamics. We now 

show how the usage of a chirp can efficiently deal with the trade-off between thermal artefacts and 

noise-floor level. We, therefore, apply the same square-wave cubic-root chirp as in section 3.6. Figure 

11 depicts the demodulated images for four different values of σj. As we have seen in Figure 5, the 

signal spectrum contains energy below ��, we, thus, expect strong thermal artefacts if we do not include 
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considerations about the uncertainty over ℎ in the filtering. Indeed, the image with σj =  0 is tainted 

with “big stains”. When increasing σj these effects disappear. However, at σj =  1.5 the noise floor 

is becoming disturbing, which is caused by the filter suppressing too much signal energy in the low 

temporal frequency range. For this acquisition, best results are obtained with σj ≈  0.6. 

σj = 0 σj = 0.3 

  

σj = 0.6 σj = 1.5 

  
Figure 11. Square-wave cubic-root (Iv =  39.8 ½, �� =  0.1  » and �v�� =  0.6  ») with four different 

values of ¿j (from 0 to a relatively high value of 1.5). 

Finally, we compare the performance of this chirp with those of a square wave at the edges of 

the modulation band (�� and �v��). In Figure 12, we can see that the image at �� =  0.1  » strongly 

exhibits artefacts as well as some light but large “stains”. At the other end of the band, �v�� =  0.6Hz, 

no thermal artefacts are apparent. However, the noise level is higher than the one at ��. The image of 

the chirp does not exhibit thermal artefacts and the noise level is lower than at �v��  =  0.6Hz. This 

shows that the usage of a chirp allows an efficient balancing of the spectral components such that the 

image is free of artefacts and that a good SNR is sustained. 
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Square : � = �� = 0.1Hz Square : � = �v�� = 0.6Hz 

  

Chirp : � =  0.1 to 0.6 Hz  

 
Figure 12. Images modulated with a square wave at � =  �� =  0.1  » and � =  �v�� =  0.6  », and with a 

square-wave cubic-root chirp. 
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 Conclusion 

The advantage of the EMIR method over scanning probe-based field mapping techniques is its 

short acquisition time and its subwavelength resolution. In contrast to analogue buffered locked-in 

thermography systems, digital thermal cameras make the entire thermal video signal accessible. This 

enables the use of DSP to further extend the advantages of the method. By modelling the entire 

measurement system as an imaging system, we can optimize the signal processing and the modulation 

signal as a function of the sensing film properties. Beyond a traditional matched and a Wiener filtering 

approach, we established a filter that efficiently deals with the trade-off between SNR (image 

dynamic), uncertainty over system parameters (image artefacts) and optical transfer (image 

resolution). Further, we demonstrate how we can use the frequency versatility of a chirp modulation 

signal to fully exploit the potential of the proposed filter. The achieved gain allows a significant 

reduction of the recording time and/or the frame rate and can contribute to better characterize the EM 

field of radiating sources in a wide range of frequencies. Finally, it should be noted that the described 

methods can also be applied in the neighboring context of fluorescence thermography of the 

electromagnetic field [19]. 
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