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A_bstract

This paper explores some techniques for use in multichannel switching. These techniques are concemed

with minimizing the effect of one in N switches firing in turn reducing the voltages on the remaining switches and
thereby delaying or preventing the closure of some or all of these. The techniques include a bifilar choke, dividing a
transmission line into N such each with N times the characteristic impedanée to achieve transit-time isolation, and
the effect of an N-fold rotation axis. Detailed consideration is then given to an N-conductor transmlssmn hne w1th

this symmetry to obtam sorie measure of the quantltatwe mprovement
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1. Introduction

This paper explores some techniques, which may be useful for multichannel switching. The reader is

referred to [4] for an extensive discussion of multichannel switching, which need not be repeated here.

The general problem of multichannel switching concerns the fact that, if some one out of say N switches
(or arc channels) closes before another, then the voltage across the latter gap is decreased before it closes, perhaps
resulting in the failure of the latter gap to close at all. This is related to the switch jitter or uncertainty as to the time

a switch will close after the application of an excitation (voltage} waveform.

The problem then is one of electrical isolation from one switch gap to its nearest-neighbor switch(es). This

can be achieved by:

transit—time isolation L .
) . . = electrical isolation (1.1)
impedance isolation

The first is achieved by physical separation, including forcing signals from gap to another to take a nondirect route
(nonstraight path). The second concerns making the signal strength reaching a second gap from a first small becaunse
of the impedance associated with the path between the two, such as by increased inductance and lowered

capacitance.

_ | Besides isolation of one switch frorﬂ another, there is another reason to have ali the switches fire at nearly
the same time. If one wishes the risetime (or, better, #;,, the peak voltage divided by the peak tﬁne derivative) to
be as small as possible, then it is necessary that all, or nearly all, of the switches ﬁre”wimin_a time window smaller
than the risetime (calculated as if all switches fired simultaneously). This is again the problém of éw-ifch jittér, or
better the problem of switch spread. By spread we mean the time difference between first and last of N switches

| firing. If N is large, one can relax this to the time window during which some very large fraction (say 90% or '

whatever) of the switches fire. Since _utter is typmally deﬁned in terms ofa standard dev1at10n of the ﬁrmg times, it .

is considerably smaller than the important term: spread. Note that in some applications (e.g., a timed array anterna
[2]) it is desired to have the switches fire in some preprogrammed progression and spread needs to be defined in

terms of a time window about this set of preprogrammed times.




2. Mutual Inductance (Bifilar Choke) to Increase Voltage on Lagging Spark Gap

When one switch fires it tends to lower the voltage across an adjacent switch. One would like to be able to
instead increase the voltage across the second switch. One way to do this is via a bifilar choke, a special kind of
transformer, as illustrated in Fig. 2.1. The basic idea is that the two currents, if equal, link no net fiux in the
transformer core, giving negligible impedance to the common-mode current. If, however, only one gap is closed the
transformer core presents a large impedance to this current and increases the voltage on the second switch. While
this is illustrated with a magnetic core (e.g., ferrite), one can also have an air (or dielectric) core with the two wires
as helices with a common axis but with opposite pitch angles two make two equal currents give zero net magnetic
flux. Note that, in‘opposite sense to the usual bifilar choke, which presents a large impedance to the common mode,

this one presents a large impedance to the differential mode.

To analyze this problem consider the impedance matrices presented to the voltagés and currents. For the

transformer we have

(70 (s) = 7)) = (Zam) + (T (5))
() = 1 )

?-M%2>0 (positive semidefine matrix)

two-sided Laplace transform o 2.1).

s = Laplace-transform variable

One defines the coupling coefficient by

M 1k | T |
k=T MW=t (Ln,m)=L(k_1] Co | | B

Note that M can be positive or negative. For our case of interest \:nfé want mihimal_voltage drop for Il' = Iy, 50 wWe . '

take M negative.

The switch impedance matrix is diagonal as

. op > ) ) : . -1 o o _
@)= e =T | ey
[: | ) o #N) ( J -_



Transformer
(bifilar choke)

V(l) . V](Z) —p ' V](3)

0 O

V =0, ground return (e.g., coaxial shield)
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Fig.2.1 Bifilar Choke = = |



This does not apply to general time varying inductance and resistance, so we will use it with simplifying

assumptions. This is used in

DY (70 ) - (56 )+ (1ol OIONAD
(7)) - (7)) [zn,,f(_)] ({n())_ A0 1

Consider an important special case:

' fés)(s) = oo-.(o'pen' circuit)
Z)(s) = 0 (short circuit)

. 'fz(.s‘) =0 |
‘ ;/1(3) =.V1(2).

;73(1)(3) - 171(3) (s) = sLI(s) (making I; small)

70y - PD(s) = s M Fi(s)

Setting
(70) = 17(‘)(3)@ . (Pe) = 17(3)(s)@

we have

7P - 75 = s[L-MFi(s) = s L[1-k]Fi(o)
7 - 79 S
7O - 70

1-k

2.4)

2.5)

(2.6)

@n

Since % is negative and nearly —1 the voltage across the second gap has been almost doubled instead of being
decreased. Of course, this assumes that there has been a negligible change in 7D and 7O in the process. This is
the case for small /; which applies for times of interest if L is sufficiently large and/or the source and load

impedances are sufficiently small.




At the same time that L should be large, L + M should be small so that if both switches close

- - I ' .
[70¢) - V(%)M = 5(Lnm) + (T(s))
L) = Ly , I(s) = Li(s) + Ir(s) (common mode) ‘ 2.8)

70y — PO (s = SL;M I(s) = sLlJ;kf(s)

and sL [I +k]/ 2 is sufficiently small compared to source and load impedance for high frequencies (or early times)

of interest. So we need small | 1-%|.

Having seen what can be done for two switches, the technique can be extended by bifurcating each switch,
i.e., by replacing each switch with two switches plus a bifilar choke. This results in four switches and three chokes.

This can be extended to some number of switches which is a positive integer power of two.




3. Dividing Transmission Line into N Parallel Transmission Lines with Switches

One way to ‘provide transit-time isolation between switches is to place each switch in a separate
transmission line. This delays the signal from a closing switch from reaching another switch by the transit time to

get out of one transmission line plus that to reach the switch in a second one.

So as to present equal impedances to each switch let each of these N transmission lines have the same
characteristic impedance(s). Using symmetry to give identical conditions for each gap we have Cy symmetry [5].
N_fold rotation axis). Assuming coaxial source and load transmission lines (O5 symmetry) we have the geometry

illustrated in Fig. 3.1. This also has N axial symmetry planes (Cy, symmetry).

Variations on this theme are also possible. The V transmission lines need not be straight. Using optical
windows (perhaps with lenses) adjacent to each window, light (including ultraviolet) can be fed through each of the
N transmission-line outer conductors to illuminate the other gaps, thereby making the early-firing gaps assist the

closure of the remaining gaps.
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A. Side view

'B. Corss-section view

 Fig. 3.1 Divided Transmission Line for N Switches: Example for N=6



4. Multichannel Switching in Cp,, Geometry

Relaxing the requirement of & uncoupled transmission lines, let us consider N switches with some division
of the source- and load-transmission-line center conductors. - This brings in both transit-time and impedance-
isolation concepts. Figure 4.1 shows an example of this in which slots are cut in the tubular center conductor to
provide isolation of one switch-gap region {of ) from its nearest neighbors. Currents must flow around the slots,
the slot length providing some transit time isolation. Of course, there is capacitive/inducting coupling across the slot

{impedance isolation).

Also shown is a potential improvement by the addition of ferrite (or other magnetic material) #side the
coaxial center conductor in the regions of the two sets of slots. One can think of this by considering the common
mode (associated with all N switches firing) having a quasi uniform current density around the outside of the slotted
“cylinder with negligible magnetic field inside the cylinder to interact with the ferrite. Note the absence of ferrite
near the slots to minimize interaction of the ferrite with the common mode. On the other hand if only one switch
closes the current on that sector of the cylinder gives magnetic field both outside and inside the cylinder, the latter
interacting with ferrite to increase the inductance presented to this current. However, the effect may not be large
(say a factor of two). No ferrite should be on the outside of the cylinder as this would interfere with the common

mode.
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A. Side view
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Fig. 4.1 Multicharmel Switch in Cp;, Geometry: Example for N = 6.
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5. Multiconductor Transmission Line with Switches in C)y Geometry

Consider the equivalent network in Fig. 5.1. On the left we have the source impedance matrix and open-
circuit voltage sources. - This gives voltages (V,gl)) —( V,gZ} ) across the N switches with currents ([,) through

them into the load impedance matrix. Relating these variables we have

(720) = (22 ) - (1)

((1)(3)) (V(s)(s)) ) (S)) (fu)
(7o) = (796) - (zggm (s)) < (Ta))
() (20.] -
(@)= () ()

. . » |

5s a0 (50 | -

(Z:(zsr)n(s)) = Zl( )(S)"- ~(S()) = (f; “ (-5')) o {h )., ,,(S? = switch impedance matrix diagonal
’ 0 “w® 0 H©

~
S
\._/
|

= source impedance matrix (real)

load impedance matrix (real)

For convenience we define

(zm) B [mej * (zgz)m) B (Zc;,mJT = (Yc,,,,,,)—l - | o | | )
and we have. _ | |
(fég)@) (ﬁ?’@) - (”f’@) - (#20) - [{ze,0) + (2] - ()

-1 _
- [(ln, m) + (ch’m ) . (ﬁss,,), (s))] . (17-,55’) (s)) = voltége vector acrpss gwitch' gaps

+

(53)
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For present purposes the N-conductor transmission line is assumed lossless and nondispersive due to

assumed perfect conductors embedded in a uniform dielectric medium with real, frequency-independent

permittivity, £, and permeability, x (typically #q as in free space). Then we have

L J L J L J ® . L J
(z(‘) J _ _ - - ' [z(z) )
Cn,m [ ] * - ’ [ ] L 'C'n’m .
[ ) [ ] [ ] [ ] [ ]

Q
l

ground reference (e.g., coaxial shield)

Fig. 5.1 Equivalent Circuit of N-Conductor (Plus Réference) Transmission Line with N Switch Gaps =
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. 1 1 .
(#.) - =(0,)
[ch,)mj - Zw[fégn),m) : N € X))
(ch’m ) = 2w (fgn m ) '
T B
(f En,m ) = (f En,m ) = (f g(,’l’)mJ + (f éi)m) = geometric-impedance-factor matrix (real)

Note that here we have assumed the same dielectric medium on both sides of the switches, but this is not essential
and Z,, can be appropriately superscripted if desired with little increase in complexity. Also note that all modes

propagate with the same speed

1 1
v=[pe] 2 se= [l 2 :. (5.5)

Note that we have not yet assumed any geometrical symmetry for the transmission lines, We have assumed
reciprocity. Then we have all eigenvalues of ( fgn m) real and nonnegative, and all eigenvectors constructable in

. real form.

Now consider the important special case

_ ?Ig )(5') = I';.;)(s) (s).= Y (large (real) or even — o)

f;rgs) (s) =0 forn=N (opeﬁ circuit) -

Furthermore, let all the source voltages be the same corresponding to a vdltage: wave incident on the switches of - - ..

- - amplitude ¥} as

1
. , | |
(ﬁ}f)(s)):% 1 . '(V,S”(t)): 2V0#(t)§1 B 6
1

The factor of 2 accounts for the +1 reflection from all open-circuited switches. The physical basis for all source
voltages being the same concerns the common coaxial center conductor before it is slotted. Here the common

conductor is assumed infinitely far away (far compared to transit times of interest). Then (5.3) takes the form

13



YZe, 1 | o |
(bom) + ; . (V,.Eg)(:)) = W) (5.8)

YZCN,N 1

Beginning with the Nth component we have

ij,g)(r) = Vou(t) >0 as ¥ > - (5.9

1+YZCNN

Substituting this result in the equations for the remaining N-1 gap voltages gives fornz N

.
o1 - 2 Zemn
WY Z,,

2200 Vou(®)

Z"n N

ZCN,N |

= 2|1 - Vou(t) as ¥ - w _ (5.10)

J; En N

=2{1 - Vou(t) as ¥ >

Sew |

. This gives the reduction in voltages on the remaining N-1 switches in terms of _fhe elements of the geometric-

impedance-factor matrix.

Now let us assume Cp symmetry on the two multiconductor transmission lines. Practically one may use
Cpua symmetry but this does not add additional properties already given by reciprocity (Cu symmetry} [8]. This
makes ( fgﬁ m) not only circulant (row elements shifting to the right by one as one increases the row number by
: ong), but bicirculant (s_éme shifting pfopé;ty for cdlum:@ gi\iiﬁg the general fori_h R
-fn’m'=functionof]n——m|only L e ' (5.11)

- applying to all appearing in (5.4). Cy symmetry is defined in one re#resentatioﬁ by rotation matrices as

cos(d,) ~sin(g)) | -
Cy = =1,2,....N _ _ _ o .
N {(sin(;ﬁn) cos(qﬁn)Jn e | } | .k . . _ L | .(5-.12)

. The identity (no rotation) is just (C )y = (Cn ), i.e., the Nth (or Oth) element.

14



Summarizing from [3] we have for circulant matrices

PO Ry
(om) = M ey
@ e ; - - (5.13)

2
15 = Z 7 (£+1),, JrJ‘N = eigenvalues (fyy = £)

Bicirculant matrices have, in addition,
D = s+2-p | - | (5.14)

and can be written as

fn, Zfﬁ(wn)ﬂ(w,,)ﬁ . e (5.15)

Note that bicirculant matrices are symmetrlc and being real have real exgenvaiue and can be constructed w1th real

eigenvectors. Furthermore being positive semidefinite we have

f3 20 for f=1,2,.,N o R (5.16)

‘Most eigenvalues are doubly degenerate. For y even we have

2 2

fi fN 1> fZ fN—Z, sf_"“l_f_'"l
with FN ; and N gwmg N/2+ 1 elgenvalues and for Nodd we have
A= o =S oo SN =S ©18)

with 7, giving [3+1)/2 eigenvalues

Note that

15
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(fn,m)v = Zf}a’(wn)ﬁ(wn)ﬂ (5.19)
A=1

=z

and that the inverse of a bicirculant matrix is itself bicirculant (has same eigenvectors).

The eigenvectors take the form for the first “half”

A

(
N
s =[2]]
g = | —
N 2 -
cos[—————”[N l]ﬂJ
N
.1 /
1, 2, ,E—IforN even
g = 2 (5.19)
N-1
1,2, ..., 3 for N odd
-
+1
-1
(wy)N = N Y21 for N oeven
2 H
-1
\*+1)
For g= y, or equivalently g= 0, we have
' 1
w) = () = - (5.20)
( ”)0 ( n)N Jv
‘For the second “half” we have
o \
sm(i’i@) R
I
W, = ,|—
- ¢ n)ﬁ \/; ] 2E[N—I]ﬁ) :
o | sin
N {5.21)
. 0 J
iV—-:—l,ﬁr-+2,...,N—lforN even
B = 2 2
' -]Y;—l, N;?’,_..., N-1for N odd

For p= j, or equivalently g= 0, we have '

16



(#n)g = (wn)y = N7V2|’ (5:22)

These modes have the general orthonormal property
(wn)g + (o), = 14,5 . (5.23)

For the bicirculant matrices which characterize our Cy; symmetry, the computation of the eigenvalues and

eigenmodes {eigenvectors) is considerably simplifted.

17



6. Example of N Thin Wires in a Circular Cylinder with Cp,, Geometry

As indicated in Fig. 6.1 let N wires, each of radius g, lie on a circular cylinder of radius ¥ = ¥, ina
cylindrical (¥, ¢, z) coordinate system. These are in turn surrounded by a perfectly conducting surface on

W =Y¥,;. We assume that the wires are thin, i.e.,
a << ¥y - ¥, 29 sin[%] : ' (6.1)

so that we can solve the problem using line currents or charges. The wires are placed on ¢ = ¢, where the ¢, are

defined for Cyy symmetry in (5.12). There are also N axial symmetry planes, but we do not use this fact.

" For the self term (diagonal term in ( fgn m) or f (l)) we consider the Nth (or Oth) wire on ¢ =0 . Note the

image wires located outside the conducting cylinder on ¥ = ‘P%/‘Pl. This is an example of reciprocation
symmetry {9] and so we have given the image wires a similarly scaled (reciprocated) radius. However, these are

replaced by line currents on Wy for purpose. of analysis.

Of the various ways to solve this let us use the conformal transformation for two line charges or currents as

in [1] with .

g =x+ jy= pel?
. 4—‘P3J
W=+ Jy = !_’n(
¢ - _ _
_g _yaa?) o | | |
“= g[léiﬂ) - Ly BFal oy . | 62
Ié‘"lPll 2 [x—‘Pl] +y . : : : ’ ’
{22
¢
¥ .
W3 = —= = image radius

1

For convenience define a normalized parameter -

'5531_:2_2_>1, ,5“-'2:..‘.*.11_. R (6.3)
?2 lP3 | \Pa . ) - _ )

18



image wires,
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radius a -\?i
/o ki

»
X

V=0
(reference
conductor)

Fig. 6.1 Thin Wires in a Circular Cylinder with Cyp, Symmetry -
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Rearrange the equation for u as

et [[x«‘Pl]z +y2] =¢? [[x—‘l’3]2 +y2}

uo_ —u
[e“ ~e¥ ] [ y% +x? —ZxM«:l + Pl vl =0 : (6.4)
et —e ¥

14 —H (4 —U

2 2 2 -
Yiet - Pag ¥ U _\p Wit — Wi
L Fe 3e . yz - Yie” =Wae ! 3

e’ —e e —e ‘

This is the equation of a circle. So equipotentials (constant u) are circular cylinders. The circle of interest passes

through ¢ = ¥, = x for which (6.2) gives

]
=

| ¥3-Wa)
u_en(‘f’z—‘PlJ - le) _

c R (6.5)

corresponding to ¥ = 0 in our geometry. This equipotential surface is centered (from (6.4)) at

Pt -yt welowag
eu _e—u g_é:-"]

0 : (6.6)

with radius ¥, as can be verified from the right side of the last equation in (6.4).

For the potential on wire N (or 0) we look at u close to §' = ¥;. Note that { =Wy is technically the

- location of an equivalent line current or charge,. Based on the solution of a related problem [1], we can find by
‘shifting the coordinate center to ¢ =[¥; +¥3]/2, with effective centers at + [¥3 —'¥]/2, that a potential ug

holds on a circular cylinder of radius aat . -

2a N 2ap, ot
i o) 0 - 2[ors ]
W v, ©SC] (uw) v, 5 ‘:‘f
u,, = arccsch(p) = a:ccsch[%y—;—] ' | | o | 6.7

1l

En[b'"l +[b‘2 -1]”2J

- So bisthe appropriate normalized wire radius. For small & we have [6]
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u, = m[-j-) + O(bz) as b0 (6.8)

The geometrical center of the wire ¥ (g % is & little to the left of the electrical center at

1
. 1
1 2
FNRNC R Tk 4 | U2 TR B & hk 3 LN AN G
1 1 2 2 2

(6.9)
a2 . 2
= ————[l+0(b ” as b >0
E£ T 41

which is negligible for sufficiently small 5.

Noting that v changes by 2r in passing around the wire, and that the potential on the wire relative to the

reference is ug —u, we have

I
£ 2 Tenn = E[arccsch(b) - |

é[arccsch(b)'i'f”(‘f)]
1o o)«

ifn(z—ij + O(bz) as 5—>0
2 b :

{6.10)

The other matrix elements are found by evaluating u at the locations of wires 1 through N-1, giving

1, [‘Eﬁcos(gain)—‘I-'ﬂ2 + lesmz(¢n)
\[_‘PI cos(qﬁn)—‘f’]]z_ + .‘1‘,’%5i112 (9n)) -
(‘*'12 + ¥ - 2%¥; cos(g,)
2‘1‘% - 2‘1’12 cos{g,) e

- (6.11)

This translates to matrix elements

=21



SO =g for £ =|n—m + 1

-4
1 l+§ _ ;—2COS(¢’2)

— —l—f_’n
2mr) 2 1- cos(qﬁn')

Q) S 8 bg

(g2, 22
) % - cos(g,)

ax 1 - cos{g,)

I

Noting that this is a function of £2 we can write
4

£2 El-p , [ ]
£2=

2, g2 2
———f 2‘: p2+0(p3) as p—>0

[l
T
"
+
*U
+
o
—
“'a
8
B
v
o

(6.13)

I
-
|

we have

© - Ll 2, o3
_f 4:r£n[l+2 1-cos{g,) ¥ O(p )J
1 _ (3
8 1-cos(g, ) * 0(p )

(6.14)

This gives us enough to be able to calculate the modal eigenvalues discussed in Section 5, if desired. These apply to

cach of the geometric-impedance-factor matrices.” Similarly expanding () for small p we have

f(l) = ;L—arccsch(b) + %fﬂ(l— p)] |

) = -—---arccsch(b) - g + 0(p2)] as p—0 | _ - : (6.15)
=%{-:ﬂn[§-] - —;!jl+ ‘:O(bz) as'b.-> 0]+ [O(pz) a? p—)O}

- Now we are in a position to evaluate the voltage on the switch gaps assuming that number ¥ (or 0) is

. shorted as in (5 10). The above results can be used to evaluate the mamx elements as
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ra (OFS I GO I t2) - 2L [arccsch (b(l)) +arcesch (b(z) ) - fn(f(l) ) - En(c_';‘(z) ):I

Fia

1y, (2 2 ) 0 _ Pal
243’{50)] * f’{bcz)] 2~ 2
+ o(b(‘)zJ + o[b(z)zJ + O(p(l)zJ + O(p(?')zJ

as these four parameters — 0

]

W2, 02 | @, 7

£ +& _ COS(%) ‘f—"'_{(%)"_, - cos(¢ )

f & —1- in 2 + In 2 .
Ax 1 — cos(g,) 1 - cos(g,)

o
_ LAY 4 p® »® @
= 1—-cos(¢n) + 0| p +O_p 1

as these two parameters — 0

{6.16)

where the additional superscripts 1 and 2 apply respectively to the parameters to the left (negative z) and right
(positive z) as in Fig. 4.1. '

The fractional voltage reduction in (5.10) can then be expressed as

Sewn 7O

ng,N f(l) for 1322.- ) : o ) _ 6.17)

For small parameters as in (6.15) this is -

2 2
£ 1 U7 4 @ 9 2 ) 5D ) 0
73 T |G®) TG T T o 61y

As we would like this ratio to be small we can see that w1res farther ﬁ'om the shorted gap (smal]er cos( @y )) have the

- least voltage reductlon The largest reductlon occurs for the nearest uelghbor gaps w:th n=1,N-1. Movmg the

wires closer to the conducting circular cylmders (reference conductors) reduces both p(]) and p( ) lowering the
: above ratio for all switch gaps (except » = N, the shorted gap). Similarly lowering wire radii and hence 5 and
52 » also fowers the reduction factor, but only logarithmically. The normalized voltage on the nearest_oeighbor to

the n =N (or 0) wire is now -
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[ §2+5‘2—cos(¢1)]
£n
1 1-cos()
=1- 2 arcesch(b) + £n(&)

' En{fz +&72 ncos(fr/N)J
=1-

(6.19)

1 1-cos(z/N)
2 arcesch(d)+4n(£)

For the reader’s benefit we also have the common-mode impedance of the N-conductor system (plus
reference conductor), as this is the impedance of the source or load by appropriate introduction of the 1 and 2

superscripts. Writing this in normalized form we have

Teom = “com = L [eigenvalue for common mode]
Z, N
Z:om = common-mode impedance (equal voltages on all wires, equal currents in all wires)

N-1

1 )
feon =5 DS
=0

- " 20
va | &2t 003[27:”) 1 o (6.20)
1 1 2 N '
= h(b £ + — £
S | arese (&) + n(£) 5 E n : )
=1 - COS W

* The factor of 1/N comes from summing the & identical cu_xfents_on the N wires.

.+ The reader should note that there are limitations on the range of validity of these formulae. First the wires o

forn=1, ..., N~1 should not be too close to their images, or ,éq'uiva]fcntlyr'to the reference cylinder_, i;pplyi_ng e

L e ¥ -, ,b<<?_2@:‘ﬂ=;~1,1 IR (621
) ; I .

Second the wires should not be too close to each other implying

2a << ¥ 2 sin(%l-) = Wig, for large N

» . S | (6.22)
b << —2‘P1—sin(£J = 2[4"‘2 - 1] sin(%):%[ﬁ'z—l] fqr large N -

W3 -y N
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These in turn limit the range of applicability of & as

—-1/2

ZSIH(N) V2
[6 + 1]_I >> £ 5> — 1 o [2—} for large N (6.23)
T

To illustrate these results and get some feel for the effects of varying the normalized parameters
(normalized wire radius b, and normalized radius of wire location ¢ ) some numerical computations are plotted in
Figs. 6.2-4. Each of these figures corresponds to a separate value of 5 (0.02, 0.05, 0.1). Each figure has three parts.
Part A has v; as a function of & with N =2, 4, 6, 8 as a parameter. The interesting region near & =1 for which v;
approaches 1 (good isolation) is depicted as 1-v; in part B with a vertical logarithmic scale. Part C plots N f,.,.,
as a function of & with N as a parameter, including N = 1. Note that in this form all the curves come together as
E—>1. Note that (6.22) restricts the range of & near £ = 1. A factor of two is taken on the allowed range of £ based

on the left side of the equatlon

As § — 1 each wire is dominantly associated with the circular cylinder defining ¥ = 0, the mutual terms
(4 through ¢y ) being comparatively negligible. This is the case of good isolation betweer the wires (one switch
firing negligibly affecting the adjacent switches. For smaller values of £ we can see the effect of the mutual

interaction, particularly as N is increased. Note that the dependence on b is slight (roughly logarithmic).

While we have illustrated the case for [Z O ) = (ZEZ) ) (left and right multiconductor systems
H,m

nm

identical), the numbers are still valid as long as (252) ) isa posxtlve scalar multiple of (Z(D J . This is due to
n,m

nm

the normalized way of defining v;. So, for example, the left side could have a much lower characteristic impedance

than the right side), giving a voItage increase on passing through the switches. Howeve'r ‘to achieve this simple

~ case, one will in general have a shift in radial Pposition between wires connected to the same switch. Of course, one -

may return to (6.15) and have different £ and & values, as well as the radii of left and right reference cylinders, as' B

one wishes and compute the appropriate f M and f @ to use (6.18).

The reader can find some related material for this geometry in [7].
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Fig. 6.2 Voltage Reduction on Switch Gap Adjacent to Shorted Gap: b =0.02.
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7. Concluding Remarks

This paper considers some of the electromagnetic aspects of multichannel switching. Various techniques
have been described for isolating (in various degrees) one switch gap from another based on transit-time isolation
and/or reduction of mutual coupling (impedance isolation). These results can; of course, be extended by more
detailed calculations. Note that we have not considered the nonlihear/statistical problem 6f the actual closure of the

individual switches.
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