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 Abstract— This note is a revised version of a paper the authors have published [1]. A significantly 
condensed version of this paper may also be seen in [2]. Jackson [3] states, “It seems necessary from time 
to time to show that the electric and magnetic fields are independent of the choice of gauge for the 
potentials.” We have demonstrated the veracity of this statement in classical electrodynamics with an 
example. Vector and scalar potentials and an arbitrary gauge relationship are used for convenience in 
solving boundary value problems involving electromagnetic (EM) fields. Two of the most common 
gauges are the Lorenz and Coulomb gauges. However, they are not actually needed if one assumes that 
currents and charges are continuous functions of space and time. The EM fields, in this case, can be 
obtained directly without the intermediate step of calculating the potentials and taking various derivatives 
to obtain the fields. It is less commonly known that the Lorenz and Coulomb gauges are two special cases 
of a generalized gauge called the velocity gauge (or v-gauge). This generalized gauge is usually not taught 
to the students of electrodynamics. In this paper, we review the properties of various gauges and address 
the more general issue of gauge invariance in classical electromagnetic theory with an example. 
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I. INTRODUCTION 
 
Vector and scalar potentials and their gauges are a convenient way of solving boundary value problems 
where the goal is to derive measurable electromagnetic fields. They are commonly introduced in textbooks 

to facilitate the computation of fields from specified current and charge densities, ( , )J r t
 

and ( , )r t


. 
However, potentials are not strictly needed in classical electrodynamics if one accepts that the currents 
and charges are continuous functions of space and time. The first author of this paper was a student of the 
iconic Prof. R. W. P. King [4], who taught him, “Who needs potentials?” if the electromagnetic fields

( , )E r t
 

 and ( , )B r t
 

 can be solved directly from Maxwell’s equations. 
 

 ( , )
 ( , )   

B r t
E r t

t


   



 
 

                (1a) 

( , )
 ( ) ( ,, )

r
r r

D t
H t J t

t


   







 

    (1b) 

                              

   ( , ) 0B r t  
 

                         (1c) 

     , ) ( ( , )t tD r r 
  

              (1d) 
 

where 0 0
 and B H D E  

   
 in free space.  

 
Potentials are presented to students in electromagnetics as a vehicle for static and dynamic computing 

fields. Many students are familiar with Lorenz and Coulomb gauges. It is somewhat less known that these 
two gauges are special cases of a generalized velocity gauge (v-gauge) [5-8], which is characterized by a 
non-physical parameter v that has the units of a velocity and can vary between c (the speed of light) and 
infinity. The two special cases of this gauge, named for Lorenz and Coulomb, result from setting v = c 
and v = ∞, respectively, in the v-gauge relationship between scalar and vector potentials. The use of gauges 
prompts several truly relevant questions. If one uses the different gauges provided by v, are the 
electromagnetic fields the same? In other words, is gauge invariance a sacred principle in classical 
electrodynamics? In addition, is the set of gauges that can be used to compute an electromagnetic field 
discrete, or is it continuous, as the generalized velocity gauge suggests? 

 
There has been some controversy regarding gauge invariance and uniqueness. For example, Engelhardt 

[9] has claimed that Maxwell’s equations have non-unique solutions. It is also interesting to note that Wu 
and Wu [10] have shown that gauge invariance is violable in Quantum Physics by considering the decay 
of Higgs Boson into two photons! Given these considerations from published works, reviewing gauge 
theory and establishing its fundamental precepts is worthwhile. 

 
This note shows that gauge invariance is not violated in classical electrodynamics for the continuous set 

of potentials encompassed in the v-gauge. Furthermore, we will see that the parameter v need not be 
limited to the range of c to infinity, but it can take on any value in the range - ∞ < v < ∞ except v = 0. It 
also can be extended to any number in the complex v-plane, excluding the origin. Thus, the v-gauge 
provides a doubly infinite set of gauge functions for determining the EM fields. 
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This note is organized as follows. In section II, we describe the v-gauge using SI units. Much of the 

mathematical approach in this paper is based on the CGS unit formulation in Jackson’s technical report 
[3]. Section III presents an example calculation of fields radiated by a time harmonic Hertzian dipole using 
the velocity gauge potentials. As demonstrated, the scalar potential will have an apparent velocity 
determined by the selection of v in the velocity gauge. The vector potential will have a contribution that 
propagates with velocity c and another with apparent velocity v. Although the potentials will appear to be 
non-causal in the general case (unless the Lorenz gauge is selected), the electric and magnetic fields 
computed using these potentials will remain causal and will be invariant to the gauge’s apparent velocity 
v. Some summarizing comments are offered in section IV, followed by acknowledgments and a list of 
references.  

 

II. GAUGE THEORY IN CLASSICAL ELECTRODYNAMICS 
 

Gauge theory has been introduced in classical electrodynamics for convenience and simplicity rather 
than as a necessity. Considering a volumetric distribution of current and charge, as shown in Fig.1, we are 

interested in determining the vector electromagnetic fields E


 and B


 at a location ( , , )r    outside the 
source region. 
 

For this problem, it is possible to solve Maxwell’s equations directly to yield integral formulas for fields 
in terms of sources, as shown in [11] and numerous other references. 

 
When the right side of (1a) is zero or negligible for quasi-static and electrostatic problems, the E-field 

may be represented using the gradient of a scalar potential, the same function used to describe voltage in 
circuits. A single scalar potential function representing three components of the vector E-field simplifies 
the solution. 

 
Extending the use of potentials to solve the time-dependent Maxwell’s equations in (1a) to (1d), or to 

their frequency-domain versions, originates with (1c): ( , ) 0B r t  
 

. This infers the absence of magnetic 
monopoles, which means that magnetic flux lines close on themselves instead of terminating on magnetic 

charges. Since this divergence of ( , )B r t
 

vanishes, one can write 
 

( , ) ( , )B r t A r t
  

 .                            (2) 
 

The consequence of (2) is that one is free to choose the divergence of the vector potential ( , )A r t 
 

 
to be any convenient scalar function we wish, and there will be no effect on the B-field. 

 
Following Jackson’s formulation in [3], we substitute (2) into (1a), and we note that the curl of the 

gradient of a scalar function, namely the scalar potential, is zero. This allows us to represent the electric 

field using both the scalar and vector potentials ( , ) and ( , )r t A r t
 

 as 
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( , )
( , ) ( , )

A r t
E r t r t

t



  



 
  

 .                    (3) 

 
If one performs the curl operation on both sides of (3), we will recover (1a). The derivation of (3) also 

indicates that there are an infinite number of pairs of scalar and vector potentials that generate the electric 
and magnetic fields using (3) and (2). To show this, we recall that the curl of the gradient of a scalar 

function is zero  ( , ) 0r t  


 and  
 

 
 

Fig. 1. A current and charge distribution producing EM fields at  , ,r   . 
 

using this, we can develop different vector and scalar potentials '( , )A r t
  and '( , )r t

 that are then used to 
compute EM fields, 

                                    '( , ) ( , ) ( , )A r t A r t r t 
   

                                                              (4a) 
 

                                    '( , ) ( , ) ( , ) /r t r t r t t    
  

 .                                                      (4b) 
giving 

                           
 '( , ) '( , ) ( , ) ( , )

            = ( , )  ( , )

B r t A r t A r t r t

A r t B r t

        

  

     

                                     (4c) 

and 

 '( , ) ( , )
'( , ) '( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
           ( , ) ( , ) ( , ) .

A r t r t
E r t r t r t A r t r t

t t t

r t A r t r t A r t
r t r t E r t

t t t t

  

  

   
       

   

   
        

   

  
      

     
   

         (4d) 

 

The scalar function ( , )r t 
 is termed the “gauge function” for the potentials and has units of Tesla-m2. 

This function is used to convert pairs of vector and scalar potentials from one gauge to another via (4a) 
and (4b) while keeping the same electric and magnetic fields [3]. 
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The coupled equations for the scalar and vector potentials are found as follows: 
 

2 ( , )
( , ) ( ( , ))

o

r t
r t A r t

t





     




  

                                                      (5a) 

2
2

2 2 2

1 ( , ) 1 ( , )
( , ) ( , ) ( , ) .  (5b)o

A r t r t
A r t A r t J r t

c t c t

 
    

          
    

  
     

 

 
We observe that (5a) and (5b) are coupled partial differential equations for the scalar and vector 

potentials. 
 

A. Lorenz and Coulomb Gauges Explained 
 

Let us examine the third term on the left side of (5b), recalling that we have yet to set the value of 

( , )A r t 
 

. The following choices for this quantity lead to the two well-known gauges: 
 

2

1
( , )

( , )
A r t

c

r t

t


   




 


   (Lorenz gauge)    (6) 

 

( , ) 0A r t  
 

                  (Coulomb gauge). (7) 
 

We can now solve for the potentials for these two gauges by substituting ( , )A r t 
 

 into the coupled 
equations of (5a) and (5b). We will delineate the potentials for the two gauges by subscripts L and C, 
respectively, for the Lorenz and Coulomb gauges. 

 
For the Lorenz gauge, (5a) and (5b) become,  

 
2

2
2 2

( , )1 ( , )
( , ) L

L
o

r t r t
r t

c t

 



   



 


                       (8a) 

 
2

2
2 2

( , )1
( , ) ( , ) .L

L o

A r t
A r t J r t

c t


   


 
   

      (8b) 

 
We observe that the two potential equations decouple completely for the Lorenz gauge. 
 

The potentials in (8), resulting from the Lorenz gauge, can be solved [3] to yield  
 

 1 1
( , ) ', / '

4
L

Vo

r t r t R c dV
R

 


 
 

           (9a) 

and 
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 1
( , )   ', / '

4

o

L

V

A r t J r t R c dV
R




 

  
 ,          (9b) 

 
where the spatial integrations of the sources at 'r

  in volume V produce contributions to the potentials at 
the location r

 . These contributions are causally retarded by a delay of R/c, where ' ; 'R r r R r r   
     . 

For the Coulomb gauge, (5a) and (5b) become 
 

2 ( , )
( , )

C

o

r t
r t





  




                                (10a) 

 
2

2
2 2 2

( , ) ( , )1 1
( , ) ( , ) .C C

C o

A r t r t
A r t J r t

c t c t




  
      

  

  
     (10b) 

 
Observe that for the Coulomb gauge, the two potential equations decouple in a unique way. Equation 

(10a) has only the scalar potential, and (10b) has both scalar and vector potentials. One way to solve this 
set of equations is to first solve (10a) for the scalar potential, as shown in (11a) below, and then substitute 
this result into (10b) to determine the solution for the vector potential. The development will involve a 

local integration over ( , )J r t
 

and a full space integration over the gradient term ( , ) /
C

r t t  


 computed 

from the solution to (10a). Alternatively, one can use a gauge function, as discussed next in Section B, to 
obtain the vector potential in terms of localized integrations over the charge and current densities. 

 
Carrying out the first analysis approach allows us to write the scalar and vector Coulomb potentials 

corresponding to (3.2), (3.10), and (3.16) of [3] as, 
 

                                
1 1

( , ) ( ' , ) '
4

C

Vo

r t r t dV
R

 


 
 

                                         (11a) 

 

    
/

2

0

1 ˆ( , ) ' , / ', / '
4

ˆ1
             ( ', ) '

4

o

C

V

R c

Vo

A r t J r t R c cR r t R c dV
R

R
d r t dV

R






  


   

 



 

   


         (11b) 

 
or alternatively, by  
 

     

  
/

3

0

1 ˆ ˆ( , ) ', / ', / '
4

1 1 ˆ ˆ  3 ( ', ) ( ', ) ' .
4

o

C

V

R c

Vo

A r t J r t R c R R J r t R c dV
R

d R R J r t J r t dV
R





   


    

    



 

    

      (11c) 

 



 7

In this last expression ˆ /R R R


 denotes the unit vector in the direction of R


. 
 

It is noteworthy that the scalar potential at the observer location given by (11a) for the Coulomb gauge 
is not retarded but is instantaneous. In contrast, the vector potential has source contributions retarded by 
R/c. The Coulomb gauge scalar potential is fully non-causal, reaching the observer instantaneously from 
the source as if it propagated with infinite speed! 

 
What is interesting is the underlying fact that these potentials are non-unique. Although we are now able 

to determine the electromagnetic fields from these non-unique potentials, we defer this calculation to 
introduce the v-gauge [5-8]. We will obtain the same electromagnetic fields, regardless of the gauge used, 
as implied by (4c) and (4d). 

 

B. Generalized v-Gauge 

  

The v-gauge is akin to the Lorenz gauge, and it is obtained by replacing the speed of light c with a 
generalized speed v in our choice of ( , )A r t 

  . Drury [6] has an excellent explanation of this generalized 
v-gauge. 

 
In this gauge, we let  

 

2

( , )1
( , ) 0 .V

V

r t
A r t

v t


   




 

                        (12) 

 
Following the formulation of Jackson [3] but using SI units, we arrive at the expression for the scalar 
potential, as 
 

 1 1
( , ) ', / '

4
.

V

Vo

t r t R v dV
R

r 


  
             (13) 

 

The above solution for V
  in the v-gauge reduces to the corresponding solutions for Lorenz gauge in 

(9a) and Coulomb gauge in (11a) when v = c and v. 
 
Next, we need to determine the vector potential for the v-gauge. Once again, we follow Jackson’s 

formulation for finding the vector potential. We begin using the scalar gauge function ( , )r t


 appearing in 
(4b) to define differences of scalar potentials between the Lorenz and v-gauges, 
 

       1 1
( , ) ( , ) ', / ', / '.

4

V

L V

Vo

r t r t r t R c r t R v dV
t R


   

 


     

 
   

      (14) 

 
The bracketed term in (14) can be written as 
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    
/

/

', / ', / ( ', )
R c

R v

r t R c r t R v d r t
t

    


    


  
  .   (15) 

 
Substituting (15) into (14), we obtain  
 

             

/

/

1 1
( ', ) '

4

R c

V

V R vo

d r t dV
t R t


  



 
 

  


  .             (16) 

 
Then integrating with respect to t, we find 
 

                                         

/

/

1 1
( , ) ( ', ) '

4
.

R c

V

V R vo

r t d r t dV
R

   
 


  

 
                 (17) 

 
Ultimately, we will need the gradient of (17) to evaluate the vector potential with the v-gauge. To 

compute the gradient, we differentiate only the spatial terms involving R, as indicated by the brackets in 
the equation below, 
 

/

/

1 1
( , ) ( ', ) '   

4
.

R c

V

V R vo

r t d r t dV
R

   
 

    
 
 
 

 
 

  (18) 

 
Using the product rule and Leibniz’s rule together with   2ˆ ˆ   and   1 / /R R R R R    


 we obtain 

 
/

/
/2 2

/

1
( , ) '. 

4

ˆ ˆ
( ', ) ( ', )

v

Vo

R c
R c
R v

R v

r t dV
R R

r t d r t
R R


 

      
 
    
 

   
     (19) 

 
Both terms of (19) can be more compactly written using integration by parts, resulting in 

 

2

/

/

ˆ1
( , ) '

4

( ', )
V

Vo

R c

R v

R
r t dV

R

r t
d

 

  



 

  
  

 


. (20) 

 

With the continuity relation  ' ( , ) ( ', ) / ( ', ) /J r t r t t r t               
   

 , we can write (20) as 
 

   

/

2

/

ˆ1
( , ) ' ( ', ) ' .

4

R c

V

V R vo

R
r t d J r t dV

R
   

 


     

 
      (21) 

 
This expression is the SI unit version of Jackson’s (7.6) in [3]. With the gradient relationship 

' ( , ) ( , )f R t f R t  
 

and integration by parts, we obtain the kth Cartesian component of the gradient, 
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                                         
/

2

/

ˆ1
( , ) ( ', ) '.

4

R c

V kk

V R vo k

R
r t d J r t dV

x R
   



 
  



 
  

 
 

                      (22) 

 
Several further steps lead to the v-gauge vector potential reported by Jackson in his (7.7) as 
 

       

  

2

2

/

3

/

1 ˆ ˆ ˆ ˆ( , ) ', / ', / ', / '
4

1 1 ˆ ˆ          3 ( ', ) ( ', ) '.
4

o

V

V

R c

V R vo

c
A r t J r t R c R R J r t R c R R J r t R c dV

R v

d R R J r t J r t dV
R





   


       

    

 
  



 

      

  
  (23a) 

 
 
By using the continuity equation in developing the equation above, we can express the vector potential 

entirely in terms of the current density. However, if one were to retain the charge density and compute the 
vector potential using integrations over both current and charge sources, the vector potential takes the 
alternate form given by Jackson in his (7.8), which in SI units, is  
 

     
2

2

/

/

ˆ1 ˆ( , ) ', / ' . 
4

ˆ', / ', / ( ', )o

V

V

R c

R v

c R
A r t R r t R v c dV

R v R
J r t R c R c r t R c d r t





      

 
    

 
 

     
 

                                                                                                                                                         (23b)  
 

As a check of our previous statement, if we set v = c in (23a) or (23b), we obtain the Lorenz gauge 
expression of (9b). Likewise, if we let v these expressions reduce to the Coulomb gauge expressions 
of (11c) and (11b). Equations (13) and (23a or b) complete the formulation of the scalar and vector 
potentials for the v-gauge. 

 
 One of the reviewers pointed out that under the Coulomb gauge where the vector potential has zero 

divergence, as shown in (7) and in (12) as 𝑣 → ∞,  its contribution to both the electric and magnetic fields, 
via (2) and (3), are solenoidal (also termed “transversal” in the context of 3D spatial Fourier Transforms).     
The scalar potential, whose contribution via the gradient in (3), provides the electric field with an 
irrotational component (termed “longitudinal” in the realm of 3D Fourier Transforms).    When using the 
v-gauge with finite velocity, so the divergence of the vector potential is not zero using (12), the vector 
potential has both solenoidal (transversal) and irrotational (longitudinal) portions.  This can be seen 
directly the change of gauge formula shown in (4a) when applied to the cases of Coulomb and finite 
velocity,  𝐴௏(𝑟, 𝑡) = 𝐴஼(𝑟, 𝑡) + 𝛻𝜒(𝑟,  Since CA


is solenoidal and the gradient of the gauge function is 

irrotational it follows that the finite velocity v-gauge vector potential will contribute both categories of 
vector function to the electric field while still contributing only a solenoidal part to the magnetic field due 
to the curl operation in (2).  This can also be seen explicitly in the gauge transformation steps depicted in 
(4c) and (4d). 
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C. Evaluation of the E and B Fields 

 
The last step in this process is to derive the electromagnetic fields from the potentials in the generalized 

v-gauge, using (2) for B and (3) for E.  
 
We calculate the two terms in (3) separately for the E-field. Using (13), we calculate the first term as 

 

               
ˆ1 1 1ˆ( , ) ( ', / ) ( ', / ) '

4
V

Vo

R
r t r t R v R r t R v dV

R R v t
  

 


    



 
  

  
                 (24) 

 
 

The second term of (3) is found using (23b), and this is 
/2

2

/

( , ) 1
'

4

ˆ( ', ') ( ', ') ( ', ') ( ', )ˆ ˆV o

V

R c

ret v R vret c

A r t
dV

t R

J r t r t c r t R r t
R c R c d

t t v t R t





   
 



                      
 

      
 

                                                                                                                                                     (25a)    
 

The term / t   in the integral of (25a) is equal to /   , and we can evaluate the integral to yield 
 

2
2 2( , ) 1

'. 
4

ˆ ˆ( ', ') ( ', ') ( ', ')ˆ ˆ( ', ') ( ', ')V o

V ret c ret v

A r t
dV

t R

J r t r t R R c r t
cR c r t c r t R

t t R R v t





  
 



                      


     
 

     

                                                                                                                                                               (25b) 
 
By adding (24) and (25b), we obtain the v-gauge electric field as  
 

2
2 2

ˆ1 1 1 ( ', ')ˆ( , ) ( ', ') '
4

1
                

4

ˆ ˆ( ', ') ( ', ') ( ', ')ˆ ˆ( ', ') ( ', ')

Vo
ret v

o

V

V

ret c ret v

R r t
E r t r t R dV

R R v t

d
R

J r t r t R R c r t
c R c r t c r t R

t t R R v t




 





  


 





 
  

                      






  

   
 

'V

     

                                                                                                                                                                 (26) 
 
In this expression 2 1 / ( )

o o
c    and we find that the retarded terms ' ( / )t t R v   from the scalar and vector 

potentials cancel, and this gives us a final expression for the electric field as 
 

                    


21 ( ', ') ( ', ')
( , ) ( , ) ( ', ') '

4
o

V L

V ret c

J r t r t R
E r t E r t cR c r t dV

R t t R

 



 

    
 

 
 
 


    



        (27) 

 
This expression is the same as would be found by substituting the Lorenz gauge potentials of (9a) and 

(9b) into (4d) to produce the E-field. It is emphasized that the resultant electric field found using the v-
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gauge potentials is precisely the same as using v = c, and it does not depend on the selected v at all. This 
result means that the electric field is gauge invariant. 

 
We can derive the corresponding magnetic flux density by taking the curl of the v-gauge vector potential 

from Eq(23b) as follows: 
 

   
2

2

/

/

( , ) ( , )

ˆ1 ˆ              ' , / ' .  
4

ˆ( ', / ) ', / ( ', )

V V

o

V

R c

R v

B r t A r t

c R
R r t R v c dV

R v R
J r t R c R c r t R c d r t





   

 

    
 

    
 

 

  

         

                                                                                                                                                             (28) 
 

Since  ˆ any scalar function 0R   the terms containing the charge density produce no contribution. 

This shows that the B field from the v-gauge depends only on the current density and is given by 
 

                 

1
( , ) ( ', / ) '

4
.o

V

VB r t J r t R c dV
R




  

 
  

  
                   (29) 

 
As expected, the same result is obtained by substituting the Lorenz gauge vector potential from (9b) 

into (4b) to generate the B-field. By taking the field point curl inside of the integral, we can use the 

product rule for curls,               ', / 1 / ', 1 / ',J r R R J r R J r         
    

 

to rewrite (29) as 
 

     2

ˆ1
( ' , ) ( ', ') ( ', ') '.

4

o

retV

V

R
B r t J r t J r t dV

R R




    

  
    

           (30) 

 
It is important to recognize that 

 

                    ( ', ') 1 ( ', ') ˆ( ', ')
' '

.
ret retret

J r t R J r t
J r t t R

t c c t

 
     

 
 
 
 

  
 

    (31) 

 
Substituting (31) into (30) yields 
 

               2

1 1 ˆ( , ') ( , ') ( ', ') ( ', ') ' .
4 '

o

V L

V ret

B r t B r t J r t J r t R dV
R c R t






   



 
  


      

        (32) 

 
Thus, like the electric field, the B field is independent of v and is also gauge invariant. Equations (27) 

and (32) are given in CGS units in [6] in (5.2) and (5.3) and are termed the “Jefimenko” expressions. They 
appear in several texts [12-14]. 
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In concluding this section, we emphasize that while the potentials depend on the gauge used, such as the 
v-gauge, the Lorenz gauge, or the Coulomb gauge, the electromagnetic fields are gauge invariant. 

 

III. EXAMPLE USING THE V-GAUGE 

 
For example, consider the ideal Hertz dipole shown in Fig. 2. We assume a time-harmonic variation of 

a current element ( ) cos
o

I t I t  flowing in an infinitesimally thin conductor along the z-axis over a 

differential length / 2 ' / 2d z d    . The current density may be expressed using Dirac delta functions 
and Heaviside unit step functions as 
 

     ˆ', ( ) ( ') ( ') ' / 2 ' / 2 .J r t z I t x y u z d u z d      
 

                    (33) 

 
Due to charge continuity ( ) /I t dq dt , there exist equal and opposite time-varying charges ( )q t  at 

the ends of the differential filament, as shown in the figure where 
0

( ) ( / ) sinq t I t  . The resultant charge 

density is given by  
 

          ( ', ) ( ) ( ') ( ') ' / 2 ' / 2r t q t x y z d z d       


  .            (34) 

 
The Lorenz gauge scalar potential given by (9a) is evaluated below. Integration of the delta functions 

sifts out the point values of the charges ±q(t) at the ends of the filament. Contributions of these charges to 
the potential are delayed by propagation over the distances R1 and R2 shown in the figure. 

 
 

 
 

Fig. 2. Hertzian dipole in a spherical coordinate system. 
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 

       1 2 1 2
1 2 1 2

1 1
( , , ) ', / '

4

1 1 1 1 1
/ /  = sin / sin / (35)

4 4

sin cos sin cos
2 2

4 cos cos
2 2

L
o V

o

o o

o

o

r t r t R c dV
R

I
q t R c q t R c t R c t R c

R R R R

r d r d
t t

I c c c c
d d

r r

  


 
  

   

   

 

   
         

   
                
  
  




 


 

   2

cos 1 1
cos / sin / .

4
o

o

I d
t r c t r c

c r r

  
 

 
   

 



 

 
The first approximation of (35) (on line 3) assumes that r >> dl. The final version of (35) results from 

using the relationship sin( ) sin cos cos sin        . 
 
The Lorenz gauge vector potential may be computed using (9b). Since r >> dl, the term 1/𝑅(𝑧′) ≐ 1/𝑟 

and we can write the resulting Lorenz vector potential as 
 

 

       
   0

1
( , ) ', / '

4

ˆ 1
            / ( ') ( ') ' / 2 ' / 2 ' ' '

4

ˆ
ˆ             = / cos /   .               

4 4

o

L

V

o

V

o o

A r t J r t R c dV
R

z
I t R c x y u z d u z d dx dy dz

R

z I d
I t r c z t r c

r r






 



 


 

 

    

  





  

 



          (36) 

Notice that the Lorenz potentials propagate away from the dipole with velocity c. The vector potential 

L
A


follows the time variation of the current while v has portions that separately track the time variation 

of current and charges on the dipole. 
 
The v-gauge scalar potential can be computed by comparing (13) to (35), where we replace c with v: 

 

     0

2

cos1 1 1 1
( , , ) ' , / ' cos / sin /

4 4
.

V

Vo o

I d
r t r t R v dV t r v t r v

R v r r


    

    
    

 
  




    

                                                                                                                                               (37) 
 

This potential function propagates away from the source at velocity v. 
 
For the Coulomb gauge with v   (37) gives 

                                                         

 0

2

cos
( , , )

4
sin                                                  (38)

C

o

I d
r t

r
t


 

 




where the portion involving the current vanishes, leaving a result that is identical to the scalar potential

 

for a static dipole. This potential tracks the charge variation in real-time at any distance and without a

 

time delay.  
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To compute the v-gauge vector potential, we will use the gauge function and (4a),  

 

                                   ( , , ) ( , , ) ( , , )
V L v

A r t A r t r t    
 

 .                                     (39) 

 
Then applying (4c) gives 
 

     

       
2 2

, ,
, , , ,

cos 1 1 1 1
  cos / sin / cos / sin / .

4
                

V
L V

o

o

r t
r t r t

t

I d
t r c t r c t r v t r v

c r r v r r

 
   


   

  


 



      
 

  
 


     

                                                                                                                                                                 (40) 
 

By integrating (40) over t, with zero integration constant, we obtain 
    

         0

2 2

cos 1 1 1 1
, ,   sin / cos / sin / cos / .

4
V

o

I d
r t t r c t r c t r v t r v

c r r v r r


     

   
       

 
 
 


  

                                                                                                                                                                 (41) 
 
The gradient operation is performed in spherical coordinates, noting no  -dependence to yield 
 

   

       



2 2

3 2 2 3

2

1
( , , )

cos

4

sin

4

2
sin / cos /

                
2 2 2

cos / sin / cos / cos /

1
                  sin

v v
V

o

o

o

o

r t r
r r

I d

I d

t r c t r c
c r c r

r

t r c t r v t r v t r v
r v r v r r

t r
c r

 
  




 


 

 

   
 

 

 
  

 



     
 
         
 

 





 



       3 2 3

1 1 1
/ cos / sin / cos /c t r c t r v t r v

r v r r
  

 
 

      
 

  (42) 

 
Adding (42) to the spherical components of ( , )

L
A r t
  in (36) with vector components 

cos  and sin  
r z z

A A A A


    yields the final expression for the v-gauge vector potential. 
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 

   

     


   

2 3
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4
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4

2 2
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2 2

sin / cos / cos /

1
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o

o

o

o

A r t A r t r t

I d

I d

t r c t r c
c r r

r
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   


  


  

 

  



  


  

     
 
       
 

  




 







     3 2 3

.
1 1 1

cos / sin / cos /t r c t r v t r v
r v r r

  
 

 
 
 
      
 

        (43) 

 
This result can be obtained more directly by substituting (33) and (34) into (23b). However, this does 

not give the insight gained using the gauge function starting with (39). Interestingly, the v-gauge vector 
potential in (43) has some parts due to the Lorenz gauge portion propagating at c while other portions 
propagate with v ≠ c. Note also that if we select v = c in the v-gauge terms of (41) and (42), simplifications 
can be made, and (43) gives the Lorenz gauge result in (36). 

 
For the v-gauge, we have introduced a dimensionless scalar potential function ( , )kr v and two 

dimensionless vector potential functions ( , )
r

kr v  and ( , )kr v


  as shown in (44).  

          
0 cos 1 1

( , , ) ( , )    where   ( , )
4

vjk ro
v

I Z kd c
r kr v kr v e

kr v jk r


  


    

 
 
 


     (44a) 

 

   

2

2 2

ˆˆ, , ( )                                                              (44b)
4
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cos 2 2 2 2
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o o
v r

jkr
r

v v

I Z k d
A r r

c

c
kr v e

kr jk r v jk rkr k r

  


 

   

                 



   

2

2 2

          (44c)

sin 1 1 1 1
       ( , ) 1       (44d)

v

v

jk r

jk rjkr

v v

e

c
kr v e e

kr jkr v jk rkr k r








 
 

  
                          

 

 
Magnitudes of these potentials are plotted in Fig.3a as a function of the dimensionless parameter kr to 
demonstrate their dependence on v. 
 
Oscillations for the non-Lorenz cases that appear in the vector potential plots of Figs. 3b and 3c are caused 
by rapidly changing complex phasor interference between portions of the potentials having spatial 
variation 𝑒

௝௞ೡ௥and vjk re . The effect appears most strongly at radial distances where the magnitudes of 
these two phasor portions are comparable.  
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We may summarize the scalar and vector potentials for the Hertzian dipole for various gauges in Table 1. 
 

Gauge Potentials Remarks 

Lorenz 

0 0 1
( , , ) cos 1

4
cjk r

L
c

I Z d
r e

r jk r
   


 

 
 


  Causal and retarded 

with speed of c 

Causal and retarded 
with speed of c 

 

  0 0, ,
4

cjk ro
L

I Z d
A r e z

r c

 



    

Coulomb 

0 1
( , , ) cos

4
o

C
c

I d Z
r

r jk r
   


 

  
 


 Non-causal and 

 instantaneous 

 
   



   

2 2

0

2 2

1 1 1
cos 2  

, ,
4 1 1 1

sin 1

c

c

jk r

c c c
o

C

jk r

c c c

r e
jk r k r k rI Z d

A r
rc

e
jk r k r k r



 


 





   
     

         
   
            



   Contains causal and non-
causal components 

v-Gauge 

0 0 cos 1
( , , ) 1

4
vjk r

v
v

I Z d c
r e

r v jk r


  


     

   


  Causal and retarded with 

speed of v 

 

   



   

0

2

2 22

2

2 22

, ,
4

2 2 2 2
cos 1  

1 1 1 1
sin 1

c v

c v

o
v

jk r jk r

c vc v

jk r jk r

c vc v

I Z d
A r

r c

c
r e e

jk r v jk rk r k r

c
e e

jk r v jk rk r k r

 




 

 

 



                            
 

      
                      

 


  Causal and retarded with 
speeds of c and v 

 
Notes: 

Zo = Free space wave impedance / 377o o      

c = Speed of light in free space 81/ 3 10 m/seco o     

v = Velocity gauge speed parameter         kc = /c       kv = /v 
 

                     Table 1. Scalar and Vector potentials for the Hertzian dipole for various gauges 
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A. Evaluation of the E and B Fields for the v-gauge 

 
The computation of the B-field for the v-gauge proceeds by inserting (43) into (2) and performing the 

curl operation. Since most of the terms (43) arise from the gradient of the gauge function 
V

 , and because 

the curl operation on a gradient is zero, the B-field will be just the curl of 
L

A


 in (36), given as 

 

                    
2

( , , ) ( , , ) ( , , ) ( , , )

sin 1 1
cos / sin / .  

4

V L V L

o o

B r t A r t r t A r t

I d
t r c t r c

r c r

    

  
  



    

      
     

 

                 (45) 

 
The electric field can be found either by solving (1b),  

 

                   
2 2( , , ) ( , , ) ( , , )

V V L
E r t c B r t dt c B r t dt     
  

                       (46) 

 
or by using the potentials via (3). Using (46) sidesteps the need to compute the scalar potential. 

We will now use (3) to show that the v-gauge potentials provide the same electric field as the Lorenz 
gauge. We first obtain the gradient of (37) and the time derivative of (43) as 

 



     

    

2 2 3

2 3

                     

1
( , , )

cos 2 2
cos / sin / sin /

4

sin 1 1
                   cos / sin /

4

v v
v

o

o

r t r
r r

I d
r t r v t r v t r v

v r v r r
o

I d
o t r v t r v

v r r

   


   
 


  

 

 
  

 
 

       
 

 
    

 







   (47) 

 

 
Fig, 3a. Magnitude of the dimensionless v-gauge scalar potential. 
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Fig. 3b. Magnitude of the dimensionless v-gauge r-component of the vector potential. 
 

 
Fig. 3c. Magnitude of the dimensionless v-gauge θ-component of the vector potential. 

 

 
   

     


   

   

2 3

2 2 3

2 2

3 2 3

, , cos

4

sin

4

2 2
cos / sin /

2 2
cos / sin / sin /

1
sin / cos /

                
1 1 1

sin / cos / si

v o

o

o

o

A r t I d

I d

t r c t r c
c r r

r
t

t r v t r v t r v
v r v r r

t r c t r c
c r c r

t r c t r v
r v r r

 





 

  



  


 
 





      
        

 

  


    








 
    (48)

n /t r v

 
 
 
  
 
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 By substituting (47) and (48) into (3), we can cancel all terms containing the velocity v, and the result 
for the E-field will be precisely the same as obtained using the Lorenz gauge: 

 

   

     

2 3

2 2 3

( , )
( , ) ( , ) ( , )

cos 2 2
ˆ             cos / sin /

4

sin 1 1ˆ              sin / cos / sin /
4

L

V V L

o

o

o

o

A r t
E r t r t E r t

t

I d
r t r c t r c

c r r

I d
t r c t r c t r c

c r c r r




 

 

 
   

 


  



   

      

 
  

 
  

 
   





      (49) 

 
Thus, the parameter v can take on any value in a complex v-plane (except zero), and the electric field will 
remain the same. 
 

Alternatively, the frequency-domain expressions for the time-harmonic B and E fields of (45) and (49) 
can be written as  

               2

2

( , ) ( , )

sin 1
            

4 ( )

V L

jkro o

B r B r

I d j
k e

kr kr

 

 







 
 
  

 

                                     (50) 

            

   


   
2

2 3 2 3

( , ) ( , )

             
4

2 2 1
ˆ cos sin

V L

jkro o

o

E r E r

I d
k Z e

j j j
r

krkr k r kr k r

 


  




            

        

  

     (51) 

 

where the resulting time-harmonic expressions for the fields are given by F( , ) Re ( , ) j tr t F r e    
  

 

 

 
 

Fig. 4. Normalized EM field magnitudes (independent of v) shown as a function of kr. 
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 with F denoting either the E or B phasors. The frequency domain expressions above are commonly 
available in the literature. 
 

The E and B fields produced by the Hertzian dipole have been computed numerically using the frequency 
domain versions of (2) and (3). This calculation used the v-gauge potentials of (37) and (43), which were 
plotted in Fig. 3. For any selected value of v, the resulting E and B fields were identical to those provided 
in the analytical expressions of (49) and (50).  

 
Figure 4 presents plots of the normalized E and ZoH field component magnitudes as a function of the 

parameter kr. These are plots of the kr-terms within the square brackets in (49) and (50), obtained by 
removing the common magnitude term 2 / 4jkr

o oo d k Z eI 
  and setting the sine and cosine terms to unity. 

The curves in this plot illustrate the near-field (kr << 1) and far-field (kr >> 1) behavior of the fields from 
the dipole source. 
 

IV. SUMMARIZING COMMENTS 
 

In this note, we have reviewed gauge theory in classical electromagnetics. The terms classical 
electromagnetics and classical electrodynamics are used interchangeably. In classical electromagnetic 
theory, currents and charges are assumed to be continuous functions of space and time. Under this 
assumption, it is noted that there is no absolute need to introduce potentials since the electromagnetic 
fields can be solved and unique solutions obtained directly from Maxwell’s equations.  

 
It is noted that most commercial-off-the-shelf (COTS) computational electromagnetic computer codes 

solve for EM fields directly without using potentials. At least one exception is the COMSOL Magnetic 
and Electric Fields interface in the quasi-static AC/DC Module, which solves for both scalar and vector 
potentials.  

 
If we choose for utility or simplicity to introduce the scalar and vector potentials, it is seen that the 

potentials depend on which gauge is used. However, the electromagnetic fields derived from the non-
unique potentials are unique. 

 
An interesting result from using the v-gauge formulation is the generally non-causal dependence of the 

scalar potential on the source charge density unless the Lorenz gauge with v = c is used. The Coulomb 
gauge with v = ∞ provides an instantaneous scalar potential contribution at a distant observation point, 
while the vector potential has a properly retarded contribution. However, when computed with these 
potentials, the EM fields are both causal. 

 
 

V. FUTURE RESEARCH 
 

One of the reviewers commented: Is the velocity v a global parameter, i.e., it is the same in all space, or 
one can introduce space dependence v(x,y,z), maybe, with some compensation term to keep physical 
values of electrical and magnetic field. Could such dependence make a simpler solution to some EM 
problem, e.g., coupling with thin-wire structures?  
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This is an interesting idea, perhaps applied to fields in inhomogeneous materials and can be a new line 

of research and beyond the scope of this Note.   
 

The same reviewer further asked: The Hamiltonian of the particle in magnetic field H contains vector 
potential A. Usually, for the quantum-mechanics calculation in magnetic field one use the Landau gauge 
or symmetrical gauge. It will be interesting try to use this v - gauge, if v coincides with longitudinal 
velocity of the particle along the direction of the magnetic field. (Especially for the problem of scattering 
of the particle on the spherically symmetric potential in the quantizing magnetic field). 
 
Certainly, beyond the intended scope of our paper but can also be a topic for future research. 
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